To evaluate hormesis induced by Yttrium(Y) nitrate in male rats, Y was offered to F0 mother rats and F1 offspring at concentrations of 0, 20, 80, and320 ppm daily from gestational day (GD) 0 through postnatal day...To evaluate hormesis induced by Yttrium(Y) nitrate in male rats, Y was offered to F0 mother rats and F1 offspring at concentrations of 0, 20, 80, and320 ppm daily from gestational day (GD) 0 through postnatal day 70(PND70).The F1 offspring were evaluated with respect to motor function,learning and memory, and histopathology.展开更多
Shelford’s law of tolerance is illustrated by a bell-shaped curve depicting the relationship between environmental factor/factors’intensity and its favorability for species or populations.It is a fundamental basis o...Shelford’s law of tolerance is illustrated by a bell-shaped curve depicting the relationship between environmental factor/factors’intensity and its favorability for species or populations.It is a fundamental basis of ecology when considering the regularities of environment impacts on living systems,and applies in plant biology,agriculture and forestry to manage resistance to environmental limiting factors and to enhance productivity.In recent years,the concept of hormesis has been increasingly used to study the dose-response relationships in living organisms of different complexities,including plants.This requires the need for an analysis of the relationships between the hormetic dose-response model and the classical understanding of plant reactions to environments in terms of Shelford’s law of tolerance.This paper analyses various dimensions of the relationships between the hormetic model and Shelford’s tolerance law curve under the influence of natural environmental factors on plants,which are limiting for plants both in deficiency and excess.The analysis has shown that Shelford’s curve and hormetic model do not contradict but instead complement each other.The hormetic response of plants is localized in the stress zone of the Shelford’s curve when adaptive mechanisms are disabled within the ecological optimum.At the same time,in a species range,the ecological optimum is the most favorable combination of all or at least the most important environmental factors,each of which usually deviates slightly from its optimal value.Adaptive mechanisms cannot be completely disabled in the optimum,and hormesis covers optimum and stress zones.Hormesis can modify the plant tolerance range to environmental factors by preconditioning and makes limits of plant tolerance to environmental factors flexible to a certain extent.In turn,as a result of tolerance range evolution,quantitative characteristics of hormesis(width and magnitude of hormetic zone)as well as the range of stimulating doses,may significantly differ in various plant species and even populations and intra-population groups,including plants at different development stages.Using hormetic preconditioning for managing plant resistance to environmental limiting factors provides an important perspective for increasing the productivity of woody plants in forestry.展开更多
Hyaluronic acid (HA) preparations have emerged as pivotal components in contemporary dentistry, gaining widespread recognition for their multifaceted roles in various biological functions. Extensive literature undersc...Hyaluronic acid (HA) preparations have emerged as pivotal components in contemporary dentistry, gaining widespread recognition for their multifaceted roles in various biological functions. Extensive literature underscores the significance of HA in maintaining tissue water balance, fostering cell proliferation, promoting rapid cell migration, influencing cell differentiation during organism development, and facilitating tissue regeneration. Notably, HA’s interactions with cell surface receptors contribute to the viscosity of synovial fluid, activate the immune system, and enhance cartilage elasticity. Beyond these established functions, HA has also been investigated for its potential involvement in determining and studying the hormetic effects of radon water, adding a novel dimension to its applications in dental research. A thorough exploration of existing studies reveals a nuanced understanding of how HA interventions impact the outcomes of dental procedures. The comprehensive scope of these investigations allows for a more accurate assessment of the potential effectiveness of specific interventions and provides valuable insights into post-procedural prognoses for individual patients. This synthesis of literature serves as the foundation for elucidating the intricate interplay between HA, radon exposure, and their relevance in modern dental practices.展开更多
基金supported by the National Key Research and Development Program of China [2017YFC1601701]Fundamental Research Funds for the Central Universities [3142018038]
文摘To evaluate hormesis induced by Yttrium(Y) nitrate in male rats, Y was offered to F0 mother rats and F1 offspring at concentrations of 0, 20, 80, and320 ppm daily from gestational day (GD) 0 through postnatal day 70(PND70).The F1 offspring were evaluated with respect to motor function,learning and memory, and histopathology.
文摘Shelford’s law of tolerance is illustrated by a bell-shaped curve depicting the relationship between environmental factor/factors’intensity and its favorability for species or populations.It is a fundamental basis of ecology when considering the regularities of environment impacts on living systems,and applies in plant biology,agriculture and forestry to manage resistance to environmental limiting factors and to enhance productivity.In recent years,the concept of hormesis has been increasingly used to study the dose-response relationships in living organisms of different complexities,including plants.This requires the need for an analysis of the relationships between the hormetic dose-response model and the classical understanding of plant reactions to environments in terms of Shelford’s law of tolerance.This paper analyses various dimensions of the relationships between the hormetic model and Shelford’s tolerance law curve under the influence of natural environmental factors on plants,which are limiting for plants both in deficiency and excess.The analysis has shown that Shelford’s curve and hormetic model do not contradict but instead complement each other.The hormetic response of plants is localized in the stress zone of the Shelford’s curve when adaptive mechanisms are disabled within the ecological optimum.At the same time,in a species range,the ecological optimum is the most favorable combination of all or at least the most important environmental factors,each of which usually deviates slightly from its optimal value.Adaptive mechanisms cannot be completely disabled in the optimum,and hormesis covers optimum and stress zones.Hormesis can modify the plant tolerance range to environmental factors by preconditioning and makes limits of plant tolerance to environmental factors flexible to a certain extent.In turn,as a result of tolerance range evolution,quantitative characteristics of hormesis(width and magnitude of hormetic zone)as well as the range of stimulating doses,may significantly differ in various plant species and even populations and intra-population groups,including plants at different development stages.Using hormetic preconditioning for managing plant resistance to environmental limiting factors provides an important perspective for increasing the productivity of woody plants in forestry.
文摘Hyaluronic acid (HA) preparations have emerged as pivotal components in contemporary dentistry, gaining widespread recognition for their multifaceted roles in various biological functions. Extensive literature underscores the significance of HA in maintaining tissue water balance, fostering cell proliferation, promoting rapid cell migration, influencing cell differentiation during organism development, and facilitating tissue regeneration. Notably, HA’s interactions with cell surface receptors contribute to the viscosity of synovial fluid, activate the immune system, and enhance cartilage elasticity. Beyond these established functions, HA has also been investigated for its potential involvement in determining and studying the hormetic effects of radon water, adding a novel dimension to its applications in dental research. A thorough exploration of existing studies reveals a nuanced understanding of how HA interventions impact the outcomes of dental procedures. The comprehensive scope of these investigations allows for a more accurate assessment of the potential effectiveness of specific interventions and provides valuable insights into post-procedural prognoses for individual patients. This synthesis of literature serves as the foundation for elucidating the intricate interplay between HA, radon exposure, and their relevance in modern dental practices.