The development of microbial-based products requires certain criteria for them to be successfully commercialized. The product must meet the following desirable criteria: effectiveness, contamination free, stability, c...The development of microbial-based products requires certain criteria for them to be successfully commercialized. The product must meet the following desirable criteria: effectiveness, contamination free, stability, cost-effectiveness, and a prolonged shelf life. Controlling the drying process is crucial for ensuring the stability and durability of the product. The traditional approach, which involved mechanical and natural drying, led to decreased productivity and quality. The objective of this research endeavour was to achieve a dry process enhancement while preserving the microbial quality of Trichoderma asperellum (M103). The temperature and relative humidity during the drying period were monitored under two conditions: with and without a dehumidifier. The results demonstrate that the dehumidifier increases drying period efficiency by up to 63%.展开更多
Humidification is an important step in humid air turbine system. The calculation on humidification is carried out at 423.15—573.15K, 5—15MPa. The results suggest that to produce high-enthalpy moist air, high water t...Humidification is an important step in humid air turbine system. The calculation on humidification is carried out at 423.15—573.15K, 5—15MPa. The results suggest that to produce high-enthalpy moist air, high water temperature and large water flow are needed. The water temperature is the most sensitive parameter to the humidification tower. And it is better for the humidification tower to work at temperature higher than 523 K when the system pressure is higher than 5 MPa. The comparison between the model used in this paper and ideal model shows that the ideal model can be used in simulation to simply the calculation when the temperature is lower than 473 K and pressure is lower than 5 MPa.展开更多
Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their re...Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their relative contributions to seed set are unclear.In this study,a 2-year field experiment including three sowing dates in each year and 20 inbred lines was conducted.Seed set,kernel number per ear,and grain yield were all reduced by more than 80%in the third sowing dates compared to the first sowing dates.Pollen viability,silk emergence ratio,and anthesis-silking interval were the key determinants of seed set under heat stress;and their correlation coefficients were 0.89^(***),0.65^(***),and-0.72^(***),respectively.Vapor pressure deficit(VPD)and relative air humidity(RH)both had significant correlations with pollen viability and the silk emergence ratio.High RH can alleviate the impacts of heat on maize seed set by maintaining high pollen viability and a high silk emergence ratio.Under a warming climate from 2020 to 2050,VPD will decrease due to the increased RH.Based on their pollen viability and silk emergence ratios,the 20 genotypes fell into four different groups.The group with high pollen viability and a high silk emergence ratio performed better under heat stress,and their performance can be further improved by combining the improved flowering pattern traits.展开更多
Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based compos...Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions.展开更多
In the preparation of a series of Ce_(0.8)Zr_(0.2)O_(y)catalysts catalyzing the removal of formaldehyde,BET,H2-TPR,IR,SEM,XPS,and XRD were used to characterize the catalyst,and the influence of humidity on the catalys...In the preparation of a series of Ce_(0.8)Zr_(0.2)O_(y)catalysts catalyzing the removal of formaldehyde,BET,H2-TPR,IR,SEM,XPS,and XRD were used to characterize the catalyst,and the influence of humidity on the catalyst activity was studied by adjusting the humidity during the process.The experimental results showed that the formaldehyde removal rate increased with the increase of humidity.When the humidity was higher than 50%,the formaldehyde removal rate decreased by 3%over that when the humidity was 50%.The characterization results showed that humidity facilitated the activation of oxygen and the formation of hydroxyl groups,which both promoted the formation and oxidative decomposition of intermediates and prevented the deposition of intermediates that clogged the pores,allowing more formaldehyde to be adsorbed and oxidized,which increased the activity of the catalyst.This provides new mechanistic evidence for the oxidation of formaldehyde and helps in the development of relatively low-cost materials for formaldehyde purification.展开更多
The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humid...The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humidity affect the responsiveness of commonly used high-energetic explosives,a series of BAM(Bundesanstalt für Materialforschung und-prüfung)impact and friction sensitivity tests were carried out to determine the critical impact energy and critical load pressure of four representative high-energetic explosives(RDX,HMX,PETN and CL-20)under different temperatures,particle sizes,and air humidity conditions.The experimental findings facilitated an examination of temperature and particle size affecting the sensitivity of high-energetic explosives,along with an assessment of the influence of air humidity on sensitivity testing.The results clearly indicate that high-energetic explosives display a substantial decline in critical reaction energy when subjected to micrometre-sized particles and an air humidity level of 45%at a temperature of 90℃.Furthermore,it was noted that the critical reaction energy of high-energetic explosives diminishes with an increase in temperature within 25℃−90℃.In the same vein,as the particle sizes of high-energetic explosives increase,so does the critical reaction energy for micrometre-sized particles.High air humidity significantly affects the sensitivity testing of high-energetic explosives,emphasizing the importance of refraining from conducting sensitivity tests in such conditions.展开更多
This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines...This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines content and the percentage of fractured coarse aggregates were identified as direct indicators of the resilient modulus susceptibility to changes in water content.The results showed that the percentage of fractured coarse aggregates particles(FR)has a more significant impact on the resilient modulus(Er)of crushed granular materials used in pavement construction than the combined indicator of the fines content and sample volumetrics(nf).Crushed granular materials with a higher percentage of fractured coarse aggregates are relatively insensitive to changes in the degree of saturation,but become more sensitive as the fine fraction porosity decreases.An adjusted model was proposed based on the existing formulation,but considers a complex parameter to describe and adjust the sensitivity of base granular materials to variations in moisture content with respect to fabrication charac-teristics,fines content and volumetric properties.The model shows that the variation of Er values is below10%for fully crushed granular materials.However,it reaches approximately±12%for materials with 75%of crushed coarse aggregates andþ40%and-25%for materials with FR=50%.This model could help select good ag-gregates characteristics and adjust grain-size distribution for environments where significant moisture content variations can occur in the pavement system,such as in the Province of Quebec(Canada).As it is based on pa-rameters that can be easily determined or estimated,it also represents a valuable tool for detailed design and analysis that can consider material characteristics.展开更多
Background: Although a number of studies have reported that the hot and humid compress from traditional Chinese medicine (TCM) is effective in treating lumbar disc herniation (LDH) with qi stagnation and blood stasis,...Background: Although a number of studies have reported that the hot and humid compress from traditional Chinese medicine (TCM) is effective in treating lumbar disc herniation (LDH) with qi stagnation and blood stasis, clinical evidence is limited. Objective: The purpose of this study is to provide high-quality evidence to support the effectiveness of the traditional Chinese hot and humid compress in the treatment of LDH with qi stagnation and blood stasis. Methods: From October 2021 to November 2023, 86 patients with LDH of qi stagnation and blood stasis type were recruited in our hospital and divided into a control (n = 43) and an observation group (n = 43) according to the random number table method. The control group was given routine clinical treatment, and the observation group was treated with the hot and humid compress therapy for two weeks. The visual analogue scale (VAS) score, Japanese Orthopaedic Association (JOA) score, TCM syndrome score, serum interleukin-6 (IL-6), serum interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were observed and compared between the two groups before and after treatment, and the clinical efficacy of the two groups was evaluated. Results: After treatment, the VAS score, TCM symptom score, and serum IL-6, IL-1β, and TNF-α levels decreased in both groups (P P P P P Conclusions: The hot and humid compress of traditional Chinese medicine can effectively relieve pain, restore lumbar function, improve TCM syndromes, reduce the level of inflammatory factors, and have a curative effect in treating LDH.展开更多
Many attempts have been made to estimate calorific value of bagasse using mathematical equations, which were created based on data from proximate, ultimate, physical and chemical analysis. Questions have been raised o...Many attempts have been made to estimate calorific value of bagasse using mathematical equations, which were created based on data from proximate, ultimate, physical and chemical analysis. Questions have been raised on the applicability of these equations in different parts of the globe. This study was initiated to tackle these problems and also check the most suited mathematical models for the Law Heating Value of Cameroonian bagasse. Data and bagasse samples were collected at the Cameroonian sugarcane factory. The effects of cane variety, age of harvesting, source, moisture content, and sucrose on the LHV of Cameroon bagasse have been tested. It was shown that humidity does not change within a variety, but changes from the dry season to the rainy season;the sugar in the rainy season is significantly different from that collected in the dry season. Samples of the same variety have identical LHV. LHV in the dry season is significantly different from LHV in the rainy season. According to the fact that this study was done for cane with different ages of harvesting, the maturity of Cameroonian sugarcane does not affect LHV of bagasse. Tree selected models are much superior tool for the prediction of the LHV for bagasse in Cameroon compared to others. The standard deviation of these validated models is around 200 kJ/kg compared to the experimental. Thus, the models determined in foreign countries, are not necessarily applicable in predicting the LHV of bagasse in other countries with the same accuracy as that in their native country. There was linear relationship between humidity, ash and sugar content in the bagasse. It is possible to build models based on data from physical composition of bagasse using regression analysis.展开更多
Under the condition of high temperature, the effects of five cover patterns (clean tillage, film mulching, weed covering, branches and leaves covering and growing grass covering) on soil properties in young Phoebe b...Under the condition of high temperature, the effects of five cover patterns (clean tillage, film mulching, weed covering, branches and leaves covering and growing grass covering) on soil properties in young Phoebe boumei forest were in- vestigated. The results showed that the five cover patterns all showed significant ef- fects on soil properties in young Phoebe bournei forest under the condition of high temperature. Land cover increased land temperature in Phoebe boumei forest. Un- der the film mulching, the land temperature was increased most rapidly with the largest increment. However, weed covering, branches and leaves covering and growing grass covering decreased land temperature. Among them, growing grass covering showed the best cooling effect. The film mulching, weed covering, branch- es and leaves covering and growing grass covering all increased land humidity. The film mulching showed the best moisture-preserving effect in the early period, but in the late period, the humidity in the film mulching treatment group was lower than that in the clean tillage treatment group. Among the five mulching patterns, moisture loss in the film mulching treatment group was slowest and least, followed by those in the weed covering and branches and leaves covering treatment groups, and moisture loss in the growing grass covering treatment group was fastest and most.展开更多
By using the daily average relative humidity data in Urumqi during 1961-2000,the basic climate characteristics and the variation trend of relative humidity in Urumqi in recent 40 years were analyzed.The results showed...By using the daily average relative humidity data in Urumqi during 1961-2000,the basic climate characteristics and the variation trend of relative humidity in Urumqi in recent 40 years were analyzed.The results showed that the yearly average relative humidity in Urumqi was 57.5%.The relative humidity in winter was 77.5% which was the biggest all the year round,and the relative humidity in summer was 41.2% which was the smallest.The relative humidity in spring,summer,autumn,winter and the yearly relative humidity all displayed the increase trend.The yearly mean relative humidity had the periods of mainly 2,3-4 and quasi-7 years.The periodic oscillation of quasi-7 years was the strongest.展开更多
According to the distribution of arid and humid regions in China,the typical arid region (Erjina),the typical semi-arid/semi-humid region (Guanzhong basin/Loess Plateau) and the typical humid region (Poyang Lake basin...According to the distribution of arid and humid regions in China,the typical arid region (Erjina),the typical semi-arid/semi-humid region (Guanzhong basin/Loess Plateau) and the typical humid region (Poyang Lake basin) were selected as the study areas.Based on NDVI data from 1982 to 2000 and meteorological observing data of three study areas from 1981 to 2000,the interactions between vegetation NDVI and climatic factors (temperature and precipitation) in typical arid and humid regions were discussed in this study.The results showed that in the responses of vegetation to climatic factors,vegetation in the typical arid region (Erjina) was more sensitive to precipitation,while vegetation in the typical semi-arid/semi-humid region (Guanzhong basin/Loess Plateau) was more sensitive to both temperature and precipitation,and vegetation in the typical humid region (Poyang Lake basin) was more sensitive to temperature.As for effects of vegetation on climatic factors,there was a remarkable negative correlation between vegetation NDVI in the past winter and temperature in the present summer,and also a significant positive correlation between vegetation NDVI in the past winter and precipitation in the present summer.However,in the typical semi-arid/semi-humid region (Guanzhong basin/Loess Plateau),there was a significant positive correlation between vegetation NDVI in the present spring and temperature in the present summer.展开更多
In order to analyze the ventilation and cooling performance of single-tunnel plastic greenhouse in Yangtze-Huai region, the effects of two different ventilation modes (side window, side window+roof window) on the t...In order to analyze the ventilation and cooling performance of single-tunnel plastic greenhouse in Yangtze-Huai region, the effects of two different ventilation modes (side window, side window+roof window) on the temperature and humidity of plastic greenhouse were studied. The results showed that the ventilation mode of opening side window and roof window could effectively reduce the temperature and humidity at the plant canopy height, which was conducive to the growth of plant in greenhouse.展开更多
Forest fire is a serious disaster all over the world. The Fire Weather Index (FWI) System can be used in ap- plied forestry as a tool to investigate and manage all types of fire. Relative humidity (RH) is a very impor...Forest fire is a serious disaster all over the world. The Fire Weather Index (FWI) System can be used in ap- plied forestry as a tool to investigate and manage all types of fire. Relative humidity (RH) is a very important parameter to calculate FWI. However, RH interpolated from meteorological data may not be able to provide precise and confident values for areas between far separated stations. The principal objective of this study is to provide high-resolution RH for FWI using MODIS data. The precipitable water vapor (PW) can be retrieved from MODIS using split window tech- niques. Four-year-time-series (2000-2003) of 8-day mean PW and specific humidity (Q) of Peninsular Malaysia were analyzed and the statistic expression between PW and Q was developed. The root-mean-square-error (RMSE) of Q es- timated by PW is generally less than 0.0004 and the correlation coefficient is 0.90. Based on the experiential formula between PW and Q, surface RH can be computed with combination of auxiliary data such as DEM and air temperature (Ta). The mean absolute errors of the estimated RH in Peninsular Malaysia are less than 5% compared to the measured RH and the correlation coefficient is 0.8219. It is proven to be a simple and feasible model to compute high-resolution RH using remote sensing data.展开更多
This paper presents the main findings of the effect of indoor humidity on occupants’ thermal comfort in the humid tropics of Malaysia. An extensive field investigation was carried out in Kota Kinabalu city and the su...This paper presents the main findings of the effect of indoor humidity on occupants’ thermal comfort in the humid tropics of Malaysia. An extensive field investigation was carried out in Kota Kinabalu city and the surrounding areas, located in East Malaysia. A total of 890 individuals were asked to complete a questionnaire. Measured indoor climates were also recorded. The survey was designed as cross sectional data collection. The present investigation found that the occupants were thermally comfortable at wide relative humidity range. The mean relative humidity corresponding to the optimum comfort temperature was close to 73%. Regression models failed to predict accurately the effect of relative humidity on occupants’ thermal perceptions. In addition, a quadratic regression model was developed for the prediction of the mean indoor relative humidity based on indoor temperature. The suggested regression model can be used for an approximate prediction of indoor relative humidity when required.展开更多
Capacitive humidity sensors were made of nanometer barium titanate.The pellets were prepared under different pressures between 3920N to 7850N force.The capacitance changes in three orders of magnitude in the relative ...Capacitive humidity sensors were made of nanometer barium titanate.The pellets were prepared under different pressures between 3920N to 7850N force.The capacitance changes in three orders of magnitude in the relative humidity range of 10%~98%,indicating high humidity sensitivity of the sensors.At a certain measuring frequency,the capacitance of the sensors increases as increasing of the preparation pressure,while the sensitivity of the sensors basically remains the same.The frequencies corresponding to the peaks of the dielectric loss of the sensors move to the higher frequency direction as increasing of the relative humidity.At a certain humidity,the frequencies corresponding to the peaks of the dielectric loss move to the higher frequency direction as increasing of the preparation pressure.展开更多
The vertical distribution of vegetation types along an elevational gradient in mountain areas largely depends on the elevational changes in air temperature and humidity. In this study, we presented the seasonal and di...The vertical distribution of vegetation types along an elevational gradient in mountain areas largely depends on the elevational changes in air temperature and humidity. In this study, we presented the seasonal and diurnal variations in the elevational gradients of air temperature and humidity on the southern and northern slopes in the middle Tianshan Mountain Range using data collected throughout the year via HOBO data loggers. The measurements were conducted at 12 different elevations from 1548 to 3277 m from September 2004 to August 2005. The results showed that the annual mean air temperature decreased along the elevational gradients with temperature lapse rates of(0.71±0.20)°C/100 m and(0.59±0.05)°C/100 m on the northern and southern slopes, respectively. The annual mean absolute humidity significantly decreased with increasing elevation on the northern slope but showed no significant trend on the southern slope. The annual mean relative humidity did not show a significant trend on the northern slope but increased with increasing elevation on the southern slope. The mean air temperature lapse rate exhibited significant seasonal variation, which is steeper insummer and shallower in winter, and this value varied between 0.37°C/100 m and 0.75°C/100 m on the southern slope and between 0.30°C/100 m and 1.02°C/100 m on the northern slope. The mean absolute and relative humidity also exhibited significant seasonal variations on both slopes, with the maximum occurring in summer and the minimum occurring in winter or spring. The monthly diurnal range of air temperature on both slopes was higher in spring than in winter. The annual range of air temperature on the southern slope was higher than that on the northern slope. Our results suggest that significant spatiotemporal variations in humidity and temperature lapse rate are useful when analyzing the relationships between species range sizes and climate in mountain areas.展开更多
Temperature and humidity independent control(THIC)air-conditioning system is a promising technology.In this work,a novel temperature and humidity independent control(THIC)system is proposed,namely VMD-ACERS,which inte...Temperature and humidity independent control(THIC)air-conditioning system is a promising technology.In this work,a novel temperature and humidity independent control(THIC)system is proposed,namely VMD-ACERS,which integrates vacuum membrane-based dehumidification and air carrying energy radiant air-conditioning system.This work establishes a novel coefficient of performance(COP)model of VMD-ACERS.The main parameters affecting the COP of conventional fan coil unit cooling system(FCUCS)and VMD-ACERS are investigated.The performance of FCUCS and VMD-ACERS are compared,and the energy-saving potential of VMD-ACERS is proved.Results indicate that,for FCUCS,the importance ranking of parameters is basically stable.However,for VMD-ACERS,the importance ranking will be affected by FCU and refrigerant.The most important parameters of VMD-ACERS are condensation temperature and permeate side pressure.On the contrary,superheating,subcooling are relatively less important parameters.For VMD-ACERS,it is not necessary to pursue the membrane with very high selectivity,because the selectivity of membrane would also be a less important parameter when it reaches 500.The COP of VMD-ACERS is higher than that of FCUCS when the permeate side pressure is higher than 8 k Pa.The VMD-ACERS solves two technical problems about power-saving and thermal comfort of conventional THIC,and can extend the application of THIC air-conditioning system.展开更多
The development and character of compound temperature-humidity sensor were discussed in this study.The design of sampling,control and output unit of temperature-humidity sensor as well as their manufacture method and ...The development and character of compound temperature-humidity sensor were discussed in this study.The design of sampling,control and output unit of temperature-humidity sensor as well as their manufacture method and character were studied in detail.The relationship between components of humidity resistance materials and negative temperature coefficient ( NTC) thermistor materials in sampling unit of compound sensor and character of electrical resistance and temperature was obtained.Couples of character curves of compound temperature-humidity sensor and data of materials of sampling unit were shown in this paper too.展开更多
文摘The development of microbial-based products requires certain criteria for them to be successfully commercialized. The product must meet the following desirable criteria: effectiveness, contamination free, stability, cost-effectiveness, and a prolonged shelf life. Controlling the drying process is crucial for ensuring the stability and durability of the product. The traditional approach, which involved mechanical and natural drying, led to decreased productivity and quality. The objective of this research endeavour was to achieve a dry process enhancement while preserving the microbial quality of Trichoderma asperellum (M103). The temperature and relative humidity during the drying period were monitored under two conditions: with and without a dehumidifier. The results demonstrate that the dehumidifier increases drying period efficiency by up to 63%.
基金Supported by the Natural Science Foundation of Jiangsu Province (BK97124) the National Natural Science Foundation (No. 20376032)+1 种基金 the Outstanding Youth Fund of National Natural Science Foundation (No. 29925616)Key Fund of National Natural Science Fo
文摘Humidification is an important step in humid air turbine system. The calculation on humidification is carried out at 423.15—573.15K, 5—15MPa. The results suggest that to produce high-enthalpy moist air, high water temperature and large water flow are needed. The water temperature is the most sensitive parameter to the humidification tower. And it is better for the humidification tower to work at temperature higher than 523 K when the system pressure is higher than 5 MPa. The comparison between the model used in this paper and ideal model shows that the ideal model can be used in simulation to simply the calculation when the temperature is lower than 473 K and pressure is lower than 5 MPa.
基金supported by the Performance Incentive and Guidance Project for Scientific Research Institutions,China(cstc2022jxjl80028)the General Project of Chongqing Natural Science Foundation,China(cstc2021jcyj-msxmX0747)+2 种基金the Youth Innovation Team Project of Chongqing Academy of Agricultural Sciences,China(NKY-2018QC02)the Jiangjin Experimental Station of National Germplasm Resources Observation,China(NAES025GR05)the Chongqing Technical Innovation and Application Development Special Project,China(CSTB2022T1AD-KPX0008).
文摘Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their relative contributions to seed set are unclear.In this study,a 2-year field experiment including three sowing dates in each year and 20 inbred lines was conducted.Seed set,kernel number per ear,and grain yield were all reduced by more than 80%in the third sowing dates compared to the first sowing dates.Pollen viability,silk emergence ratio,and anthesis-silking interval were the key determinants of seed set under heat stress;and their correlation coefficients were 0.89^(***),0.65^(***),and-0.72^(***),respectively.Vapor pressure deficit(VPD)and relative air humidity(RH)both had significant correlations with pollen viability and the silk emergence ratio.High RH can alleviate the impacts of heat on maize seed set by maintaining high pollen viability and a high silk emergence ratio.Under a warming climate from 2020 to 2050,VPD will decrease due to the increased RH.Based on their pollen viability and silk emergence ratios,the 20 genotypes fell into four different groups.The group with high pollen viability and a high silk emergence ratio performed better under heat stress,and their performance can be further improved by combining the improved flowering pattern traits.
基金Funded by the National Natural Science Foundation of China(No.51678254)。
文摘Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions.
基金Funded by the Young and Middle-aged Academic and Technical Leaders Reserve Talent Project of Yunnan Province(No.202105AC160054)。
文摘In the preparation of a series of Ce_(0.8)Zr_(0.2)O_(y)catalysts catalyzing the removal of formaldehyde,BET,H2-TPR,IR,SEM,XPS,and XRD were used to characterize the catalyst,and the influence of humidity on the catalyst activity was studied by adjusting the humidity during the process.The experimental results showed that the formaldehyde removal rate increased with the increase of humidity.When the humidity was higher than 50%,the formaldehyde removal rate decreased by 3%over that when the humidity was 50%.The characterization results showed that humidity facilitated the activation of oxygen and the formation of hydroxyl groups,which both promoted the formation and oxidative decomposition of intermediates and prevented the deposition of intermediates that clogged the pores,allowing more formaldehyde to be adsorbed and oxidized,which increased the activity of the catalyst.This provides new mechanistic evidence for the oxidation of formaldehyde and helps in the development of relatively low-cost materials for formaldehyde purification.
基金supported by National Natural Science Foundation of China(No.12272184).
文摘The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humidity affect the responsiveness of commonly used high-energetic explosives,a series of BAM(Bundesanstalt für Materialforschung und-prüfung)impact and friction sensitivity tests were carried out to determine the critical impact energy and critical load pressure of four representative high-energetic explosives(RDX,HMX,PETN and CL-20)under different temperatures,particle sizes,and air humidity conditions.The experimental findings facilitated an examination of temperature and particle size affecting the sensitivity of high-energetic explosives,along with an assessment of the influence of air humidity on sensitivity testing.The results clearly indicate that high-energetic explosives display a substantial decline in critical reaction energy when subjected to micrometre-sized particles and an air humidity level of 45%at a temperature of 90℃.Furthermore,it was noted that the critical reaction energy of high-energetic explosives diminishes with an increase in temperature within 25℃−90℃.In the same vein,as the particle sizes of high-energetic explosives increase,so does the critical reaction energy for micrometre-sized particles.High air humidity significantly affects the sensitivity testing of high-energetic explosives,emphasizing the importance of refraining from conducting sensitivity tests in such conditions.
文摘This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines content and the percentage of fractured coarse aggregates were identified as direct indicators of the resilient modulus susceptibility to changes in water content.The results showed that the percentage of fractured coarse aggregates particles(FR)has a more significant impact on the resilient modulus(Er)of crushed granular materials used in pavement construction than the combined indicator of the fines content and sample volumetrics(nf).Crushed granular materials with a higher percentage of fractured coarse aggregates are relatively insensitive to changes in the degree of saturation,but become more sensitive as the fine fraction porosity decreases.An adjusted model was proposed based on the existing formulation,but considers a complex parameter to describe and adjust the sensitivity of base granular materials to variations in moisture content with respect to fabrication charac-teristics,fines content and volumetric properties.The model shows that the variation of Er values is below10%for fully crushed granular materials.However,it reaches approximately±12%for materials with 75%of crushed coarse aggregates andþ40%and-25%for materials with FR=50%.This model could help select good ag-gregates characteristics and adjust grain-size distribution for environments where significant moisture content variations can occur in the pavement system,such as in the Province of Quebec(Canada).As it is based on pa-rameters that can be easily determined or estimated,it also represents a valuable tool for detailed design and analysis that can consider material characteristics.
文摘Background: Although a number of studies have reported that the hot and humid compress from traditional Chinese medicine (TCM) is effective in treating lumbar disc herniation (LDH) with qi stagnation and blood stasis, clinical evidence is limited. Objective: The purpose of this study is to provide high-quality evidence to support the effectiveness of the traditional Chinese hot and humid compress in the treatment of LDH with qi stagnation and blood stasis. Methods: From October 2021 to November 2023, 86 patients with LDH of qi stagnation and blood stasis type were recruited in our hospital and divided into a control (n = 43) and an observation group (n = 43) according to the random number table method. The control group was given routine clinical treatment, and the observation group was treated with the hot and humid compress therapy for two weeks. The visual analogue scale (VAS) score, Japanese Orthopaedic Association (JOA) score, TCM syndrome score, serum interleukin-6 (IL-6), serum interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were observed and compared between the two groups before and after treatment, and the clinical efficacy of the two groups was evaluated. Results: After treatment, the VAS score, TCM symptom score, and serum IL-6, IL-1β, and TNF-α levels decreased in both groups (P P P P P Conclusions: The hot and humid compress of traditional Chinese medicine can effectively relieve pain, restore lumbar function, improve TCM syndromes, reduce the level of inflammatory factors, and have a curative effect in treating LDH.
文摘Many attempts have been made to estimate calorific value of bagasse using mathematical equations, which were created based on data from proximate, ultimate, physical and chemical analysis. Questions have been raised on the applicability of these equations in different parts of the globe. This study was initiated to tackle these problems and also check the most suited mathematical models for the Law Heating Value of Cameroonian bagasse. Data and bagasse samples were collected at the Cameroonian sugarcane factory. The effects of cane variety, age of harvesting, source, moisture content, and sucrose on the LHV of Cameroon bagasse have been tested. It was shown that humidity does not change within a variety, but changes from the dry season to the rainy season;the sugar in the rainy season is significantly different from that collected in the dry season. Samples of the same variety have identical LHV. LHV in the dry season is significantly different from LHV in the rainy season. According to the fact that this study was done for cane with different ages of harvesting, the maturity of Cameroonian sugarcane does not affect LHV of bagasse. Tree selected models are much superior tool for the prediction of the LHV for bagasse in Cameroon compared to others. The standard deviation of these validated models is around 200 kJ/kg compared to the experimental. Thus, the models determined in foreign countries, are not necessarily applicable in predicting the LHV of bagasse in other countries with the same accuracy as that in their native country. There was linear relationship between humidity, ash and sugar content in the bagasse. It is possible to build models based on data from physical composition of bagasse using regression analysis.
基金Supported by Forestry Science and Technology Program of Hunan Province(XLK201406)~~
文摘Under the condition of high temperature, the effects of five cover patterns (clean tillage, film mulching, weed covering, branches and leaves covering and growing grass covering) on soil properties in young Phoebe boumei forest were in- vestigated. The results showed that the five cover patterns all showed significant ef- fects on soil properties in young Phoebe bournei forest under the condition of high temperature. Land cover increased land temperature in Phoebe boumei forest. Un- der the film mulching, the land temperature was increased most rapidly with the largest increment. However, weed covering, branches and leaves covering and growing grass covering decreased land temperature. Among them, growing grass covering showed the best cooling effect. The film mulching, weed covering, branch- es and leaves covering and growing grass covering all increased land humidity. The film mulching showed the best moisture-preserving effect in the early period, but in the late period, the humidity in the film mulching treatment group was lower than that in the clean tillage treatment group. Among the five mulching patterns, moisture loss in the film mulching treatment group was slowest and least, followed by those in the weed covering and branches and leaves covering treatment groups, and moisture loss in the growing grass covering treatment group was fastest and most.
文摘By using the daily average relative humidity data in Urumqi during 1961-2000,the basic climate characteristics and the variation trend of relative humidity in Urumqi in recent 40 years were analyzed.The results showed that the yearly average relative humidity in Urumqi was 57.5%.The relative humidity in winter was 77.5% which was the biggest all the year round,and the relative humidity in summer was 41.2% which was the smallest.The relative humidity in spring,summer,autumn,winter and the yearly relative humidity all displayed the increase trend.The yearly mean relative humidity had the periods of mainly 2,3-4 and quasi-7 years.The periodic oscillation of quasi-7 years was the strongest.
基金Supported by Scientific Research Fund Project from Nanjing University of Information Science & Technology (20070005)
文摘According to the distribution of arid and humid regions in China,the typical arid region (Erjina),the typical semi-arid/semi-humid region (Guanzhong basin/Loess Plateau) and the typical humid region (Poyang Lake basin) were selected as the study areas.Based on NDVI data from 1982 to 2000 and meteorological observing data of three study areas from 1981 to 2000,the interactions between vegetation NDVI and climatic factors (temperature and precipitation) in typical arid and humid regions were discussed in this study.The results showed that in the responses of vegetation to climatic factors,vegetation in the typical arid region (Erjina) was more sensitive to precipitation,while vegetation in the typical semi-arid/semi-humid region (Guanzhong basin/Loess Plateau) was more sensitive to both temperature and precipitation,and vegetation in the typical humid region (Poyang Lake basin) was more sensitive to temperature.As for effects of vegetation on climatic factors,there was a remarkable negative correlation between vegetation NDVI in the past winter and temperature in the present summer,and also a significant positive correlation between vegetation NDVI in the past winter and precipitation in the present summer.However,in the typical semi-arid/semi-humid region (Guanzhong basin/Loess Plateau),there was a significant positive correlation between vegetation NDVI in the present spring and temperature in the present summer.
基金Supported by Jiangsu Agricultural Science and Technology Innovation Fund[CX(14)2112]~~
文摘In order to analyze the ventilation and cooling performance of single-tunnel plastic greenhouse in Yangtze-Huai region, the effects of two different ventilation modes (side window, side window+roof window) on the temperature and humidity of plastic greenhouse were studied. The results showed that the ventilation mode of opening side window and roof window could effectively reduce the temperature and humidity at the plant canopy height, which was conducive to the growth of plant in greenhouse.
基金Under the auspices of the Airborne Remote Sensing (MARS) Program of Malaysia (No. KSTAS/MACRES/T/2/2004)
文摘Forest fire is a serious disaster all over the world. The Fire Weather Index (FWI) System can be used in ap- plied forestry as a tool to investigate and manage all types of fire. Relative humidity (RH) is a very important parameter to calculate FWI. However, RH interpolated from meteorological data may not be able to provide precise and confident values for areas between far separated stations. The principal objective of this study is to provide high-resolution RH for FWI using MODIS data. The precipitable water vapor (PW) can be retrieved from MODIS using split window tech- niques. Four-year-time-series (2000-2003) of 8-day mean PW and specific humidity (Q) of Peninsular Malaysia were analyzed and the statistic expression between PW and Q was developed. The root-mean-square-error (RMSE) of Q es- timated by PW is generally less than 0.0004 and the correlation coefficient is 0.90. Based on the experiential formula between PW and Q, surface RH can be computed with combination of auxiliary data such as DEM and air temperature (Ta). The mean absolute errors of the estimated RH in Peninsular Malaysia are less than 5% compared to the measured RH and the correlation coefficient is 0.8219. It is proven to be a simple and feasible model to compute high-resolution RH using remote sensing data.
文摘This paper presents the main findings of the effect of indoor humidity on occupants’ thermal comfort in the humid tropics of Malaysia. An extensive field investigation was carried out in Kota Kinabalu city and the surrounding areas, located in East Malaysia. A total of 890 individuals were asked to complete a questionnaire. Measured indoor climates were also recorded. The survey was designed as cross sectional data collection. The present investigation found that the occupants were thermally comfortable at wide relative humidity range. The mean relative humidity corresponding to the optimum comfort temperature was close to 73%. Regression models failed to predict accurately the effect of relative humidity on occupants’ thermal perceptions. In addition, a quadratic regression model was developed for the prediction of the mean indoor relative humidity based on indoor temperature. The suggested regression model can be used for an approximate prediction of indoor relative humidity when required.
基金The project is supported by the National Natural Science Foundation of China (60074031, 60474052).
文摘Capacitive humidity sensors were made of nanometer barium titanate.The pellets were prepared under different pressures between 3920N to 7850N force.The capacitance changes in three orders of magnitude in the relative humidity range of 10%~98%,indicating high humidity sensitivity of the sensors.At a certain measuring frequency,the capacitance of the sensors increases as increasing of the preparation pressure,while the sensitivity of the sensors basically remains the same.The frequencies corresponding to the peaks of the dielectric loss of the sensors move to the higher frequency direction as increasing of the relative humidity.At a certain humidity,the frequencies corresponding to the peaks of the dielectric loss move to the higher frequency direction as increasing of the preparation pressure.
基金supported by the National Key R&D Program of China(2017YFA0605101)the National Natural Science Foundation of China(31770489,41273098 and 31621091)
文摘The vertical distribution of vegetation types along an elevational gradient in mountain areas largely depends on the elevational changes in air temperature and humidity. In this study, we presented the seasonal and diurnal variations in the elevational gradients of air temperature and humidity on the southern and northern slopes in the middle Tianshan Mountain Range using data collected throughout the year via HOBO data loggers. The measurements were conducted at 12 different elevations from 1548 to 3277 m from September 2004 to August 2005. The results showed that the annual mean air temperature decreased along the elevational gradients with temperature lapse rates of(0.71±0.20)°C/100 m and(0.59±0.05)°C/100 m on the northern and southern slopes, respectively. The annual mean absolute humidity significantly decreased with increasing elevation on the northern slope but showed no significant trend on the southern slope. The annual mean relative humidity did not show a significant trend on the northern slope but increased with increasing elevation on the southern slope. The mean air temperature lapse rate exhibited significant seasonal variation, which is steeper insummer and shallower in winter, and this value varied between 0.37°C/100 m and 0.75°C/100 m on the southern slope and between 0.30°C/100 m and 1.02°C/100 m on the northern slope. The mean absolute and relative humidity also exhibited significant seasonal variations on both slopes, with the maximum occurring in summer and the minimum occurring in winter or spring. The monthly diurnal range of air temperature on both slopes was higher in spring than in winter. The annual range of air temperature on the southern slope was higher than that on the northern slope. Our results suggest that significant spatiotemporal variations in humidity and temperature lapse rate are useful when analyzing the relationships between species range sizes and climate in mountain areas.
基金The National Key Technology Support Program(2015BAJ03B01)the Hunan Provincial Innovation Foundation for Postgraduate Studies(CX20190287)。
文摘Temperature and humidity independent control(THIC)air-conditioning system is a promising technology.In this work,a novel temperature and humidity independent control(THIC)system is proposed,namely VMD-ACERS,which integrates vacuum membrane-based dehumidification and air carrying energy radiant air-conditioning system.This work establishes a novel coefficient of performance(COP)model of VMD-ACERS.The main parameters affecting the COP of conventional fan coil unit cooling system(FCUCS)and VMD-ACERS are investigated.The performance of FCUCS and VMD-ACERS are compared,and the energy-saving potential of VMD-ACERS is proved.Results indicate that,for FCUCS,the importance ranking of parameters is basically stable.However,for VMD-ACERS,the importance ranking will be affected by FCU and refrigerant.The most important parameters of VMD-ACERS are condensation temperature and permeate side pressure.On the contrary,superheating,subcooling are relatively less important parameters.For VMD-ACERS,it is not necessary to pursue the membrane with very high selectivity,because the selectivity of membrane would also be a less important parameter when it reaches 500.The COP of VMD-ACERS is higher than that of FCUCS when the permeate side pressure is higher than 8 k Pa.The VMD-ACERS solves two technical problems about power-saving and thermal comfort of conventional THIC,and can extend the application of THIC air-conditioning system.
文摘The development and character of compound temperature-humidity sensor were discussed in this study.The design of sampling,control and output unit of temperature-humidity sensor as well as their manufacture method and character were studied in detail.The relationship between components of humidity resistance materials and negative temperature coefficient ( NTC) thermistor materials in sampling unit of compound sensor and character of electrical resistance and temperature was obtained.Couples of character curves of compound temperature-humidity sensor and data of materials of sampling unit were shown in this paper too.