The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal ...The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.展开更多
The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a...The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a preliminary proppant settling test,from which a solid volume fraction of 0.575 is calibrated for the proppant pack in the fracture.In the established workflow to investigate proppant flowback,a displacement is applied to the fracture surfaces to compact the generated proppant pack as well as further mimicking proppant embedment under closure stress.When a pressure gradient is applied to drive the fluid-particle flow,a critical aperture-to-diameter ratio of 4 is observed,above which the proppant pack would collapse.The results also show that the volumetric proppant flowback rate increases quadratically with the fracture aperture,while a linear variation between the particle flux and the pressure gradient is exhibited for a fixed fracture aperture.The research outcome contributes towards an improved understanding of proppant flowback in hydraulic fractures,which also supports an optimised proppant size selection for hydraulic fracturing operations.展开更多
The flow of fluid through the porous matrix of a reservoir rock applies a seepage force to the solid rock matrix.Although the seepage force exerted by fluid flow through the porous matrix of a reservoir rock has a not...The flow of fluid through the porous matrix of a reservoir rock applies a seepage force to the solid rock matrix.Although the seepage force exerted by fluid flow through the porous matrix of a reservoir rock has a notable influence on rock deformation and failure,its effect on hydraulic fracture(HF)propagation remains ambiguous.Therefore,in this study,we improved a traditional fluid–solid coupling method by incorporating the role of seepage force during the fracturing fluid seepage,using the discrete element method.First,we validated the simulation results of the improved method by comparing them with an analytical solution of the seepage force and published experimental results.Next,we conducted numerical simulations in both homogeneous and heterogeneous sandstone formations to investigate the influence of seepage force on HF propagation.Our results indicate that fluid viscosity has a greater impact on the magnitude and extent of seepage force compared to injection rate,and that lower viscosity and injection rate correspond to shorter hydraulic fracture lengths.Furthermore,seepage force influences the direction of HF propagation,causing HFs to deflect towards the side of the reservoir with weaker cementation and higher permeability.展开更多
In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hy...In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.展开更多
Deep shale reservoirs are characterized by elevated breakdown pressures,diminished fracture complexity,and reduced modified volumes compared to medium and shallow reservoirs.Therefore,it is urgent to investigate parti...Deep shale reservoirs are characterized by elevated breakdown pressures,diminished fracture complexity,and reduced modified volumes compared to medium and shallow reservoirs.Therefore,it is urgent to investigate particular injection strategies that can optimize breakdown pressure and fracturing efficiency to address the increasing demands for deep shale reservoir stimulation.In this study,the efficiency of various stimulation strategies,including multi-cluster simultaneous fracturing,modified alternating fracturing,alternating shut-in fracturing,and cyclic alternating fracturing,was evaluated.Subsequently,the sensitivity of factors such as the cycle index,shut-in time,cluster spacing,and horizontal permeability was investigated.Additionally,the flow distribution effect within the wellbore was discussed.The results indicate that relative to multi-cluster simultaneous fracturing,modified alternating fracturing exhibits reduced susceptibility to the stress shadow effect,which results in earlier breakdown,extended hydraulic fracture lengths,and more consistent propagation despite an increase in breakdown pressure.The alternating shut-in fracturing benefits the increase of fracture length,which is closely related to the shut-in time.Furthermore,cyclic alternating fracturing markedly lowers breakdown pressure and contributes to uniform fracture propagation,in which the cycle count plays an important role.Modified alternating fracturing demonstrates insensitivity to variations in cluster spacing,whereas horizontal permeability is a critical factor affecting fracture length.The wellbore effect restrains the accumulation of pressure and flow near the perforation,delaying the initiation of hydraulic fractures.The simulation results can provide valuable numerical insights for optimizing injection strategies for deep shale hydraulic fracturing.展开更多
Perforation is a pivotal technique employed to establish main flow channels within the reservoir formation at the outset of hydraulic fracturing operations.Optimizing perforation designs is critical for augmenting the...Perforation is a pivotal technique employed to establish main flow channels within the reservoir formation at the outset of hydraulic fracturing operations.Optimizing perforation designs is critical for augmenting the efficacy of hydraulic fracturing and boosting oil or gas production.In this study,we employ a hybrid finite-discrete element method,known as the continuous–discontinuous element method(CDEM),to simulate the initiation of post-perforation hydraulic fractures and to derive enhanced design parameters.The model incorporates the four most prevalent perforation geometries,as delineated in an engineering technical report.Real-world perforations deviate from the ideal cylindrical shape,exhibiting variable cross-sectional profiles that typically manifest as an initial constriction followed by an expansion,a feature consistent across all four perforation types.Our simulations take into account variations in perforation hole geometries,cross-sectional diameters,and perforation lengths.The findings show that perforations generated by the 39g DP3 HMX perforating bullet yield the lowest breakdown pressure,which inversely correlates with increases in sectional diameter and perforation length.Moreover,this study reveals the relationship between breakdown pressure and fracture degree,providing valuable insights for engineers and designers to refine perforation strategies.展开更多
The existence of high-density bedding planes is a typical characteristic of shale oil reservoirs.Understanding the behavior of hydraulic fracturing in high-density laminated rocks is significant for promoting shale oi...The existence of high-density bedding planes is a typical characteristic of shale oil reservoirs.Understanding the behavior of hydraulic fracturing in high-density laminated rocks is significant for promoting shale oil production.In this study,a hydraulic fracturing model considering tensile failure and frictional slip of the bedding planes is established within the framework of the unified pipe-interface element method(UP-IEM).The model developed for simulating the interaction between the hydraulic fracture and the bedding plane is validated by comparison with experimental results.The hydraulic fracturing patterns in sealed and unsealed bedding planes are compared.Additionally,the effects of differential stress,bedding plane permeability,spacing,and the friction coefficient of the bedding plane are investigated.The results showed that a single main fracture crossing the bedding planes is more likely to form in sealed bedding planes under high differential stress.The decrease in bedding plane permeability and the increase in the friction coefficient also promote the fracture propagating perpendicular to the bedding planes.Shale with high-density bedding planes has a poorer fracturing effect than that with low-density bedding planes,as the hydraulic fracture is prone to initiate and propagate along the bedding planes.Moreover,higher injection pressure is needed to maintain fracture propagation along the bedding.An increase in bedding density will lead to a smaller fracturing area.Fracturing fluid seepage into the bedding planes slows shale fracturing.It is recommended that increasing the injection flow rate,selecting alternative fracturing fluids,and employing multi-well/multi-cluster fracturing may be efficient methods to improve energy production in shale oil reservoirs.展开更多
Horizontal well drilling and multi-stage hydraulic fracturing are key technologies for the development of shale gas reservoirs.Instantaneous acquisition of hydraulic fracture parameters is crucial for evaluating fract...Horizontal well drilling and multi-stage hydraulic fracturing are key technologies for the development of shale gas reservoirs.Instantaneous acquisition of hydraulic fracture parameters is crucial for evaluating fracturing effectiveness,optimizing processes,and predicting gas productivity.This paper establishes a transient flow model for shale gas wells based on the boundary element method,achieving the characterization of stimulated reservoir volume for a single stage.By integrating pressure monitoring data following the pumping shut-in period of hydraulic fracturing for well testing interpretation,a workflow for inverting fracture parameters of shale gas wells is established.This new method eliminates the need for prolonged production testing and can interpret parameters of individual hydraulic fracture segments,offering significant advantages over the conventional pressure transient analysismethod.The practical application of thismethodology was conducted on 10 shale gaswellswithin the Changning shale gas block of Sichuan,China.The results show a high correlation between the interpreted single-stage total length and surface area of hydraulic fractures and the outcomes of gas production profile tests.Additionally,significant correlations are observed between these parameters and cluster number,horizontal stress difference,and natural fracture density.This demonstrates the effectiveness of the proposed fracture parameter inversion method and the feasibility of field application.The findings of this study aim to provide solutions and references for the inversion of fracture parameters in shale gas wells.展开更多
Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient applicat...Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient application of this technology, but is also a great challenge because of the strong nonlinear coupling between the viscous flow of fluid and fracture propagation. By taking advantage of a cohesive zone method to simulate the fracture process, a finite element model based on the existing pore pressure cohesive finite elements has been established to investigate the propagation of a penny-shaped hydraulic fracture in an infinite elastic medium. The effect of cohesive material parameters and fluid viscosity on the hydraulic fracture behaviour has been investigated. Excellent agreement between the finite element results and analytical solutions for the limiting case where the fracture process is dominated by rock fracture toughness demonstrates the ability of the cohesive zone finite element model in simulating the hydraulic fracture growth for this case.展开更多
Frac-packing technology has been introduced to improve the development effect of weakly consolidated sandstone.It has double effects on increasing production and sand control.However,determining operation parameters o...Frac-packing technology has been introduced to improve the development effect of weakly consolidated sandstone.It has double effects on increasing production and sand control.However,determining operation parameters of frac-packing is the key factor due to the particularity of weakly consolidated sandstone.In order to study the mechanisms of hydraulic fracture propagation and reveal the effect of fracturing parameters on fracture morphology in weakly consolidated sandstone,finite element numerical model of fluid-solid coupling is established to carry out numerical simulation to analyze influences of mechanical characteristics,formation permeability,fracturing fluid injection rate and viscosity on fracture propagation.The result shows that lower elastic modulus is favorable for inducing short and wide fractures and controls the fracture length while Poisson ratio has almost no effect.Large injection rate and high viscosity of fracturing fluid are advantageous to fracture initiation and propagation.Suitable fractures are produced when the injection rate is approximate to3–4m3/min and fluid viscosity is over100mPa?s.The leak-off of fracturing fluid to formation is rising with the increase of formation permeability,which is adverse to fracture propagation.The work provides theoretical reference to determine the construction parameters for the frac-packing design in weakly consolidated reservoirs.展开更多
Depletion-induced stress change causes the redistribution of stress field in reservoirs,which can lead to the reorientation of principal stresses.Stress reorientation has a direct impact on fracture propagation of inf...Depletion-induced stress change causes the redistribution of stress field in reservoirs,which can lead to the reorientation of principal stresses.Stress reorientation has a direct impact on fracture propagation of infill wells.To understand the effect of stress reorientation on the propagation of infill well’s fractures,an integrated simulation workflow that combines the reservoir flow calculation and the infill well hydraulic fracturing modeling is adopted.The reservoir simulation is computed to examine the relationship between the extent of stress reversal region and reservoir properties.Then,the hydraulic fracturing model considering the altered stress field for production is built to characterize the stress evolution of secondary fracturing.Numerical simulations show that stress reorientation may occur due to the decreasing of the horizontal stresses in an elliptical region around the parent well.Also,the initial stress difference is the driving factor for stress reorientation.However,the bottom hole pressure,permeability and other properties connected with fluid flow control timing of the stress reorientation.The decrease of the horizontal stresses around the parent well lead to asymmetrical propagation of a hydraulic fracture of the infill well.The study provides insights on understanding the influence of stress reorientation to the infill well fracturing treatment and interference between parent and infill wells.展开更多
Pre-driven longwall retracement roadway(PLRR)is commonly used in large mine shaft.The support crushing disasters occur frequently during the retracement,and roof management is necessary.Taking the 31107 panel as resea...Pre-driven longwall retracement roadway(PLRR)is commonly used in large mine shaft.The support crushing disasters occur frequently during the retracement,and roof management is necessary.Taking the 31107 panel as research background,the roof breaking structure of PLRR is analyzed.It is concluded that the roof cutting with vertical hydraulic fracture(HF)at a specified position,that is,fixed-length roof cutting,can reduce support load and keep immediate roof intact.The extended finite element method(XFEM)is applied to simulate hydraulic fracturing.The results show that both the axial and transverse hydraulic fracturing cannot effectively create vertical HFs.Therefore,a novel construction method of vertical HF based on the stress shadow effect(SSE)is proposed.The stress reversal region and HF orientation caused by the prefabricated hydraulic fracture(PF)are verified in simulation.The sub-vertical HFs are obtained between two PFs,the vertical extension range of which is much larger than that of directional hydraulic fracturing.The new construction method was used to determine the field plan for fixed-length roof cutting.The roof formed a stable suspended structure and deformation of the main PLRR was improved after hydraulic fracturing.展开更多
Hydraulic fracture is important in unconventional oil and gas exploration.During the propagation of the hydraulic fracture,the crack tip is blunted due to the development of the process zone in the near-tip area.In th...Hydraulic fracture is important in unconventional oil and gas exploration.During the propagation of the hydraulic fracture,the crack tip is blunted due to the development of the process zone in the near-tip area.In this study,the blunting of the hydraulic fracture in polymethyl methacrylate specimens due to multi-timescale stress concentration is investigated.The ratio of the initiation toughness to the arrest toughness of the blunted hydraulic fracture is measured using both the dynamic and the static methods.Results show that a hydraulic fracture can be blunted with the time span of stress concentration from 1 ms to 600 s.It is also shown that the blunting of hydraulic fracture is a highly localized process.The morphology of the blunted crack depends on the stress distribution in the vicinity of the crack tip.展开更多
This study applies the Lindenmayer system based on fractal theory to generate synthetic fracture networks in hydraulically fractured wells.The applied flow model is based on complex analysis methods,which can quantify...This study applies the Lindenmayer system based on fractal theory to generate synthetic fracture networks in hydraulically fractured wells.The applied flow model is based on complex analysis methods,which can quantify the flow near the fractures,and being gridless,is computationally faster than traditional discrete volume simulations.The representation of hydraulic fractures as fractals is a more realistic representation than planar bi-wing fractures used in most reservoir models.Fluid withdrawal from the reservoir with evenly spaced hydraulic fractures may leave dead zones between planar fractures.Complex fractal networks will drain the reservoir matrix more effectively,due to the mitigation of stagnation flow zones.The flow velocities,pressure response,and drained rock volume(DRV)are visualized for a variety of fractal fracture networks in a single-fracture treatment stage.The major advancement of this study is the improved representation of hydraulic fractures as complex fractals rather than restricting to planar fracture geometries.Our models indicate that when the complexity of hydraulic fracture networks increases,this will suppress the occurrence of dead flow zones.In order to increase the DRV and improve ultimate recovery,our flow models suggest that fracture treatment programs must find ways to create more complex fracture networks.展开更多
The fracture-cavity carbonate reservoirs in the Tahe Oilfield in China are mainly exploited by fracturing.We need the hydraulic fractures to communicate with caves to create a flow channel.However,due to the existence...The fracture-cavity carbonate reservoirs in the Tahe Oilfield in China are mainly exploited by fracturing.We need the hydraulic fractures to communicate with caves to create a flow channel.However,due to the existence of the fracture-cavity systems,the hydraulic fracture propagation morphology is complicated,while the propagation characteristics are not clear.To analyze the hydraulic fracture propagation in fracture-cavity carbonate formations,based on the discontinuous discrete fracture model,we developed a solid-seepage-freeflow coupled fracturing model for fracture-cavity formations,which can simulate the complex interaction behavior of fractures and caves.Based on the simulation results,we found the interaction rule between hydraulic fractures and fracture-cavity systems:the stress concentration around caves is the main factor that determines the fracture propagation path.Deflection due to stress concentration is usually not conducive to communication,while natural fractures distributed around caves could break the rejection action.Increasing the hydraulic energy in the hydraulic fracture can make fracture propagate directly and reduce the influence of deflection.The steering fracture formed by temporary plugging is beneficial to the communication of fracture-cavity systems in the non-principal stress direction.According to the simulation results of different fracture-cavity characteristics,we raised four optimization communication modes for fracture-cavity carbonate formation to provide references for fracturing optimization design and parameter optimization.展开更多
Using the visualized experimental device of temporary plugging in hydraulic fractures, the plugging behaviors of temporary plugging particles with different sizes and concentrations in hydraulic fractures were experim...Using the visualized experimental device of temporary plugging in hydraulic fractures, the plugging behaviors of temporary plugging particles with different sizes and concentrations in hydraulic fractures were experimentally analyzed under the conditions of different carrier fluid displacements and viscosities. The results show that the greater the carrier fluid viscosity and displacement, the more difficult it is to form a plugging layer, and that the larger the size and concentration of the temporary plugging particle, the less difficult it is to form a plugging layer. When the ratio of particle size to fracture width is 0.45, the formation of the plugging layer is mainly controlled by the mass concentration of the temporary plugging particle and the viscosity of the carrier fluid, and a stable plugging layer cannot form if the mass concentration of the temporary plugging particle is less than 20 kg/m^(3)or the viscosity of the carrier fluid is greater than 3 mPa·s. When the ratio of particle size to fracture width is 0.60, the formation of the plugging layer is mainly controlled by the mass concentration of the temporary plugging particle, and a stable plugging layer cannot form if the mass concentration of the temporary plugging particle is less than 10 kg/m^(3). When the ratio of particle size to fracture width is 0.75, the formation of the plugging layer is basically not affected by other parameters, and a stable plugging layer can form within the experimental conditions. The formation process of plugging layer includes two stages and four modes. The main controlling factors affecting the formation mode are the ratio of particle size to fracture width, carrier fluid displacement and carrier fluid viscosity.展开更多
Tight glutenite reservoirs are widely developed in Bohai Bay Basin,East China.They are mostly huge thick and rely on hydraulic fracturing treatment for commercial exploitation.To investigate the propagation behavior o...Tight glutenite reservoirs are widely developed in Bohai Bay Basin,East China.They are mostly huge thick and rely on hydraulic fracturing treatment for commercial exploitation.To investigate the propagation behavior of hydraulic fractures in these glutenite reservoirs,the geological feature of reservoirs in Bohai Bay Basin is studied firstly,including the reservoir vertical distribution feature and the heterogeneous lithology.Then,hydraulic fracturing treatments in block Yan 222 are carried out and the fracturing processes are monitored by the microseismic system.Results show the hydraulic fractures generated in the reservoirs are mostly in X shape.The cause of X-shaped hydraulic fractures in this study is mainly ascribed to(I)the reservoir heterogeneity and(II)the stress shadow effect of two close hydraulic fractures propagating in the same orientation,which is confirmed by the following numerical simulation and related research in detail.This study can provide a reference for the research on the fracturing behavior of the deep thick glutenite reservoirs.展开更多
Vertical height growth of hydraulic fractures(HFs)can unexpectedly penetrate a stratigraphic interface and propagate into neighboring layers,thereby resulting in low gas-production efficiency and high risk of groundwa...Vertical height growth of hydraulic fractures(HFs)can unexpectedly penetrate a stratigraphic interface and propagate into neighboring layers,thereby resulting in low gas-production efficiency and high risk of groundwater contamination or fault reactivation.Understanding of hydraulic fracture behavior at the interface is of pivotal importance for the successful development of layered reservoirs.In this paper,a twodimensional analytical model was developed to examine HF penetration and termination behavior at an orthogonal interface between two dissimilar materials.This model involves changes in the stress singularity ahead of the HF tip,which may alter at the formation interface due to material heterogeneity.Three critical stress conditions were considered to assess possible fracture behavior(i.e.,crossing,slippage,and opening)at the interface.Then,this model was verified by comparing its theoretical predictions to numerical simulations and three independent experiments.Good agreement with the simulation results and experimental data was observed,which shows the validity and reliability of this model.Finally,a parametric study was conducted to investigate the effects of key formation parameters(elastic modulus,Poisson’s ratio,and fracture toughness)between adjacent layers.These results indicate that the variation in the introduced parameters can limit or promote vertical HF growth by redistributing the induced normal and shear stresses at the interface.Among the three studied parameters,Poisson’s ratio has the least influence on the formation interface.When the fracture toughness and elastic modulus of the bounding layer are larger than those of the pay zone layer,the influence of fracture toughness will dominate the HF behavior at the interface;otherwise,the HF behavior will more likely be influenced by elastic modulus.展开更多
The existing acoustic logging methods for evaluating the hydraulic fracturing effectiveness usually use the fracture density to evaluate the fracture volume, and the results often cannot accurately reflect the actual ...The existing acoustic logging methods for evaluating the hydraulic fracturing effectiveness usually use the fracture density to evaluate the fracture volume, and the results often cannot accurately reflect the actual productivity. This paper studies the dynamic fluid flow through hydraulic fractures and its effect on borehole acoustic waves. Firstly, based on the fractal characteristics of fractures observed in hydraulic fracturing experiments, a permeability model of complex fracture network is established. Combining the dynamic fluid flow response of the model with the Biot-Rosenbaum theory that describes the acoustic wave propagation in permeable formations, the influence of hydraulic fractures on the velocity dispersion of borehole Stoneley-wave is then calculated and analyzed, whereby a novel hydraulic fracture fluid transport property evaluation method is proposed. The results show that the Stoneley-wave velocity dispersion characteristics caused by complex fractures can be equivalent to those of the plane fracture model, provided that the average permeability of the complex fracture model is equal to the permeability of the plane fracture. In addition, for fractures under high-permeability(fracture width 10~100 μm, permeability ~100 μm^(2)) and reduced permeability(1~10 μm, ~10 μm^(2), as in fracture closure) conditions, the Stoneley-wave velocity dispersion characteristics are significantly different. The field application shows that this fluid transport property evaluation method is practical to assess the permeability and the connectivity of hydraulic fractures.展开更多
Objective As the most widely used and effective technique in reservoir reconstruction of unconventional natural gas,hydraulic fracturing has been achieved good effect in CBM development.It is important to note that co...Objective As the most widely used and effective technique in reservoir reconstruction of unconventional natural gas,hydraulic fracturing has been achieved good effect in CBM development.It is important to note that coal seam is both source rock and reservoir,展开更多
基金National Natural Science Foundation of China (51974176, 52174194, 51934004)Shandong Provincial Colleges and Universities Youth Innovation and Technology Support Program (2019KJH006)+1 种基金Taishan Scholars Project (TS20190935)Shandong outstanding youth fund (ZR2020JQ22).
文摘The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.
基金Funding support from Heilongjiang"Open Competition"project(Grant No.DQYT2022-JS-758)is greatly acknowledgedFinancial support from the National Natural Science Foundation of China(Grant Nos.52304025 and 52174025)is acknowledged+1 种基金supports from Northeast Petroleum University and Guangdong Basic and Applied Basic Research Foundationsupport from the Heilongjiang Touyan Innovation Team Program.
文摘The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a preliminary proppant settling test,from which a solid volume fraction of 0.575 is calibrated for the proppant pack in the fracture.In the established workflow to investigate proppant flowback,a displacement is applied to the fracture surfaces to compact the generated proppant pack as well as further mimicking proppant embedment under closure stress.When a pressure gradient is applied to drive the fluid-particle flow,a critical aperture-to-diameter ratio of 4 is observed,above which the proppant pack would collapse.The results also show that the volumetric proppant flowback rate increases quadratically with the fracture aperture,while a linear variation between the particle flux and the pressure gradient is exhibited for a fixed fracture aperture.The research outcome contributes towards an improved understanding of proppant flowback in hydraulic fractures,which also supports an optimised proppant size selection for hydraulic fracturing operations.
基金National Natural Science Foundation of China(51934005,U23B2089)Shaanxi Provincial Natural Science Basic Research Program Project(2024JC-YBQN-0554).
文摘The flow of fluid through the porous matrix of a reservoir rock applies a seepage force to the solid rock matrix.Although the seepage force exerted by fluid flow through the porous matrix of a reservoir rock has a notable influence on rock deformation and failure,its effect on hydraulic fracture(HF)propagation remains ambiguous.Therefore,in this study,we improved a traditional fluid–solid coupling method by incorporating the role of seepage force during the fracturing fluid seepage,using the discrete element method.First,we validated the simulation results of the improved method by comparing them with an analytical solution of the seepage force and published experimental results.Next,we conducted numerical simulations in both homogeneous and heterogeneous sandstone formations to investigate the influence of seepage force on HF propagation.Our results indicate that fluid viscosity has a greater impact on the magnitude and extent of seepage force compared to injection rate,and that lower viscosity and injection rate correspond to shorter hydraulic fracture lengths.Furthermore,seepage force influences the direction of HF propagation,causing HFs to deflect towards the side of the reservoir with weaker cementation and higher permeability.
文摘In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.42377156,42077251 and 42202305).
文摘Deep shale reservoirs are characterized by elevated breakdown pressures,diminished fracture complexity,and reduced modified volumes compared to medium and shallow reservoirs.Therefore,it is urgent to investigate particular injection strategies that can optimize breakdown pressure and fracturing efficiency to address the increasing demands for deep shale reservoir stimulation.In this study,the efficiency of various stimulation strategies,including multi-cluster simultaneous fracturing,modified alternating fracturing,alternating shut-in fracturing,and cyclic alternating fracturing,was evaluated.Subsequently,the sensitivity of factors such as the cycle index,shut-in time,cluster spacing,and horizontal permeability was investigated.Additionally,the flow distribution effect within the wellbore was discussed.The results indicate that relative to multi-cluster simultaneous fracturing,modified alternating fracturing exhibits reduced susceptibility to the stress shadow effect,which results in earlier breakdown,extended hydraulic fracture lengths,and more consistent propagation despite an increase in breakdown pressure.The alternating shut-in fracturing benefits the increase of fracture length,which is closely related to the shut-in time.Furthermore,cyclic alternating fracturing markedly lowers breakdown pressure and contributes to uniform fracture propagation,in which the cycle count plays an important role.Modified alternating fracturing demonstrates insensitivity to variations in cluster spacing,whereas horizontal permeability is a critical factor affecting fracture length.The wellbore effect restrains the accumulation of pressure and flow near the perforation,delaying the initiation of hydraulic fractures.The simulation results can provide valuable numerical insights for optimizing injection strategies for deep shale hydraulic fracturing.
基金support from the National Natural Science Foundation of China(Grant Nos.52178324,12102059)the China Postdoctoral Science Foundation(Grant No.2023M743604)+1 种基金the Beijing Natural Science Foundation(Grant No.3212027),the National Key R&D Program of China(Grant No.2023YFC3007203)the 2019 Foreign Experts Plan of Hebei Province.
文摘Perforation is a pivotal technique employed to establish main flow channels within the reservoir formation at the outset of hydraulic fracturing operations.Optimizing perforation designs is critical for augmenting the efficacy of hydraulic fracturing and boosting oil or gas production.In this study,we employ a hybrid finite-discrete element method,known as the continuous–discontinuous element method(CDEM),to simulate the initiation of post-perforation hydraulic fractures and to derive enhanced design parameters.The model incorporates the four most prevalent perforation geometries,as delineated in an engineering technical report.Real-world perforations deviate from the ideal cylindrical shape,exhibiting variable cross-sectional profiles that typically manifest as an initial constriction followed by an expansion,a feature consistent across all four perforation types.Our simulations take into account variations in perforation hole geometries,cross-sectional diameters,and perforation lengths.The findings show that perforations generated by the 39g DP3 HMX perforating bullet yield the lowest breakdown pressure,which inversely correlates with increases in sectional diameter and perforation length.Moreover,this study reveals the relationship between breakdown pressure and fracture degree,providing valuable insights for engineers and designers to refine perforation strategies.
基金The authors wish to acknowledge the financial support from Key Laboratory of Deep Earth Science and Engineering(Sichuan University),Ministry of Education(DESE202202,H.Y)State Energy Center for Shale Oil Research and Development(33550000-22-ZC0613-0365,H.Y)+2 种基金National Natural Science Foundation of China(42307209,X.Y)China Postdoctoral Science Foundation(2022M712425,X.Y)Shanghai Pujiang Program(2022PJD076,X.Y).
文摘The existence of high-density bedding planes is a typical characteristic of shale oil reservoirs.Understanding the behavior of hydraulic fracturing in high-density laminated rocks is significant for promoting shale oil production.In this study,a hydraulic fracturing model considering tensile failure and frictional slip of the bedding planes is established within the framework of the unified pipe-interface element method(UP-IEM).The model developed for simulating the interaction between the hydraulic fracture and the bedding plane is validated by comparison with experimental results.The hydraulic fracturing patterns in sealed and unsealed bedding planes are compared.Additionally,the effects of differential stress,bedding plane permeability,spacing,and the friction coefficient of the bedding plane are investigated.The results showed that a single main fracture crossing the bedding planes is more likely to form in sealed bedding planes under high differential stress.The decrease in bedding plane permeability and the increase in the friction coefficient also promote the fracture propagating perpendicular to the bedding planes.Shale with high-density bedding planes has a poorer fracturing effect than that with low-density bedding planes,as the hydraulic fracture is prone to initiate and propagate along the bedding planes.Moreover,higher injection pressure is needed to maintain fracture propagation along the bedding.An increase in bedding density will lead to a smaller fracturing area.Fracturing fluid seepage into the bedding planes slows shale fracturing.It is recommended that increasing the injection flow rate,selecting alternative fracturing fluids,and employing multi-well/multi-cluster fracturing may be efficient methods to improve energy production in shale oil reservoirs.
基金funded by the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance,grant numbers“2020CX020202,2020CX030202 and 2020CX010403”.
文摘Horizontal well drilling and multi-stage hydraulic fracturing are key technologies for the development of shale gas reservoirs.Instantaneous acquisition of hydraulic fracture parameters is crucial for evaluating fracturing effectiveness,optimizing processes,and predicting gas productivity.This paper establishes a transient flow model for shale gas wells based on the boundary element method,achieving the characterization of stimulated reservoir volume for a single stage.By integrating pressure monitoring data following the pumping shut-in period of hydraulic fracturing for well testing interpretation,a workflow for inverting fracture parameters of shale gas wells is established.This new method eliminates the need for prolonged production testing and can interpret parameters of individual hydraulic fracture segments,offering significant advantages over the conventional pressure transient analysismethod.The practical application of thismethodology was conducted on 10 shale gaswellswithin the Changning shale gas block of Sichuan,China.The results show a high correlation between the interpreted single-stage total length and surface area of hydraulic fractures and the outcomes of gas production profile tests.Additionally,significant correlations are observed between these parameters and cluster number,horizontal stress difference,and natural fracture density.This demonstrates the effectiveness of the proposed fracture parameter inversion method and the feasibility of field application.The findings of this study aim to provide solutions and references for the inversion of fracture parameters in shale gas wells.
文摘Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient application of this technology, but is also a great challenge because of the strong nonlinear coupling between the viscous flow of fluid and fracture propagation. By taking advantage of a cohesive zone method to simulate the fracture process, a finite element model based on the existing pore pressure cohesive finite elements has been established to investigate the propagation of a penny-shaped hydraulic fracture in an infinite elastic medium. The effect of cohesive material parameters and fluid viscosity on the hydraulic fracture behaviour has been investigated. Excellent agreement between the finite element results and analytical solutions for the limiting case where the fracture process is dominated by rock fracture toughness demonstrates the ability of the cohesive zone finite element model in simulating the hydraulic fracture growth for this case.
基金Project(2016ZX05058-002-006)supported by National Science and Technology Major Projects of ChinaProject(2018CXTD346)supported by Innovative Research Team Program of Natural Science Foundation of Hainan Province,China
文摘Frac-packing technology has been introduced to improve the development effect of weakly consolidated sandstone.It has double effects on increasing production and sand control.However,determining operation parameters of frac-packing is the key factor due to the particularity of weakly consolidated sandstone.In order to study the mechanisms of hydraulic fracture propagation and reveal the effect of fracturing parameters on fracture morphology in weakly consolidated sandstone,finite element numerical model of fluid-solid coupling is established to carry out numerical simulation to analyze influences of mechanical characteristics,formation permeability,fracturing fluid injection rate and viscosity on fracture propagation.The result shows that lower elastic modulus is favorable for inducing short and wide fractures and controls the fracture length while Poisson ratio has almost no effect.Large injection rate and high viscosity of fracturing fluid are advantageous to fracture initiation and propagation.Suitable fractures are produced when the injection rate is approximate to3–4m3/min and fluid viscosity is over100mPa?s.The leak-off of fracturing fluid to formation is rising with the increase of formation permeability,which is adverse to fracture propagation.The work provides theoretical reference to determine the construction parameters for the frac-packing design in weakly consolidated reservoirs.
基金the support provided by the Scientific Research and Technology Development Project of CNPC(Grant No.kt2017-19-01-1)the National Natural Science Foundation of China(Grant No.41772286,No.42077247 and No.42002271)+2 种基金Petro China Innovation Foundation(Grant No.2018D-5007-0202)Project funded by China Postdoctoral Science Foundation(Grant No.2021T140514)Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z020009)。
文摘Depletion-induced stress change causes the redistribution of stress field in reservoirs,which can lead to the reorientation of principal stresses.Stress reorientation has a direct impact on fracture propagation of infill wells.To understand the effect of stress reorientation on the propagation of infill well’s fractures,an integrated simulation workflow that combines the reservoir flow calculation and the infill well hydraulic fracturing modeling is adopted.The reservoir simulation is computed to examine the relationship between the extent of stress reversal region and reservoir properties.Then,the hydraulic fracturing model considering the altered stress field for production is built to characterize the stress evolution of secondary fracturing.Numerical simulations show that stress reorientation may occur due to the decreasing of the horizontal stresses in an elliptical region around the parent well.Also,the initial stress difference is the driving factor for stress reorientation.However,the bottom hole pressure,permeability and other properties connected with fluid flow control timing of the stress reorientation.The decrease of the horizontal stresses around the parent well lead to asymmetrical propagation of a hydraulic fracture of the infill well.The study provides insights on understanding the influence of stress reorientation to the infill well fracturing treatment and interference between parent and infill wells.
基金financially supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX21_2358)the National Key Research and Development Program of China(2020YFB1314204)National Natural Science Foundation of China(No.52074239)。
文摘Pre-driven longwall retracement roadway(PLRR)is commonly used in large mine shaft.The support crushing disasters occur frequently during the retracement,and roof management is necessary.Taking the 31107 panel as research background,the roof breaking structure of PLRR is analyzed.It is concluded that the roof cutting with vertical hydraulic fracture(HF)at a specified position,that is,fixed-length roof cutting,can reduce support load and keep immediate roof intact.The extended finite element method(XFEM)is applied to simulate hydraulic fracturing.The results show that both the axial and transverse hydraulic fracturing cannot effectively create vertical HFs.Therefore,a novel construction method of vertical HF based on the stress shadow effect(SSE)is proposed.The stress reversal region and HF orientation caused by the prefabricated hydraulic fracture(PF)are verified in simulation.The sub-vertical HFs are obtained between two PFs,the vertical extension range of which is much larger than that of directional hydraulic fracturing.The new construction method was used to determine the field plan for fixed-length roof cutting.The roof formed a stable suspended structure and deformation of the main PLRR was improved after hydraulic fracturing.
基金the support from the China National Science and Technology Major Project"Changning-Weiyuan shale gas development demonstration project"(2016ZX05062)the support from the China National Petroleum Corporation:"Research on Influencing Factors of Gas Hydrate Sand Production and Experimental Design"(No.CPETQ201921)。
文摘Hydraulic fracture is important in unconventional oil and gas exploration.During the propagation of the hydraulic fracture,the crack tip is blunted due to the development of the process zone in the near-tip area.In this study,the blunting of the hydraulic fracture in polymethyl methacrylate specimens due to multi-timescale stress concentration is investigated.The ratio of the initiation toughness to the arrest toughness of the blunted hydraulic fracture is measured using both the dynamic and the static methods.Results show that a hydraulic fracture can be blunted with the time span of stress concentration from 1 ms to 600 s.It is also shown that the blunting of hydraulic fracture is a highly localized process.The morphology of the blunted crack depends on the stress distribution in the vicinity of the crack tip.
文摘This study applies the Lindenmayer system based on fractal theory to generate synthetic fracture networks in hydraulically fractured wells.The applied flow model is based on complex analysis methods,which can quantify the flow near the fractures,and being gridless,is computationally faster than traditional discrete volume simulations.The representation of hydraulic fractures as fractals is a more realistic representation than planar bi-wing fractures used in most reservoir models.Fluid withdrawal from the reservoir with evenly spaced hydraulic fractures may leave dead zones between planar fractures.Complex fractal networks will drain the reservoir matrix more effectively,due to the mitigation of stagnation flow zones.The flow velocities,pressure response,and drained rock volume(DRV)are visualized for a variety of fractal fracture networks in a single-fracture treatment stage.The major advancement of this study is the improved representation of hydraulic fractures as complex fractals rather than restricting to planar fracture geometries.Our models indicate that when the complexity of hydraulic fracture networks increases,this will suppress the occurrence of dead flow zones.In order to increase the DRV and improve ultimate recovery,our flow models suggest that fracture treatment programs must find ways to create more complex fracture networks.
基金the National Natural Science Foundation Program(No.51874321)。
文摘The fracture-cavity carbonate reservoirs in the Tahe Oilfield in China are mainly exploited by fracturing.We need the hydraulic fractures to communicate with caves to create a flow channel.However,due to the existence of the fracture-cavity systems,the hydraulic fracture propagation morphology is complicated,while the propagation characteristics are not clear.To analyze the hydraulic fracture propagation in fracture-cavity carbonate formations,based on the discontinuous discrete fracture model,we developed a solid-seepage-freeflow coupled fracturing model for fracture-cavity formations,which can simulate the complex interaction behavior of fractures and caves.Based on the simulation results,we found the interaction rule between hydraulic fractures and fracture-cavity systems:the stress concentration around caves is the main factor that determines the fracture propagation path.Deflection due to stress concentration is usually not conducive to communication,while natural fractures distributed around caves could break the rejection action.Increasing the hydraulic energy in the hydraulic fracture can make fracture propagate directly and reduce the influence of deflection.The steering fracture formed by temporary plugging is beneficial to the communication of fracture-cavity systems in the non-principal stress direction.According to the simulation results of different fracture-cavity characteristics,we raised four optimization communication modes for fracture-cavity carbonate formation to provide references for fracturing optimization design and parameter optimization.
基金Supported by National Natural Science Foundation of China (U21A20105)Science and Technology Innovation Fund of PetroChina (2020D-5007-0208)。
文摘Using the visualized experimental device of temporary plugging in hydraulic fractures, the plugging behaviors of temporary plugging particles with different sizes and concentrations in hydraulic fractures were experimentally analyzed under the conditions of different carrier fluid displacements and viscosities. The results show that the greater the carrier fluid viscosity and displacement, the more difficult it is to form a plugging layer, and that the larger the size and concentration of the temporary plugging particle, the less difficult it is to form a plugging layer. When the ratio of particle size to fracture width is 0.45, the formation of the plugging layer is mainly controlled by the mass concentration of the temporary plugging particle and the viscosity of the carrier fluid, and a stable plugging layer cannot form if the mass concentration of the temporary plugging particle is less than 20 kg/m^(3)or the viscosity of the carrier fluid is greater than 3 mPa·s. When the ratio of particle size to fracture width is 0.60, the formation of the plugging layer is mainly controlled by the mass concentration of the temporary plugging particle, and a stable plugging layer cannot form if the mass concentration of the temporary plugging particle is less than 10 kg/m^(3). When the ratio of particle size to fracture width is 0.75, the formation of the plugging layer is basically not affected by other parameters, and a stable plugging layer can form within the experimental conditions. The formation process of plugging layer includes two stages and four modes. The main controlling factors affecting the formation mode are the ratio of particle size to fracture width, carrier fluid displacement and carrier fluid viscosity.
基金Projects(51879041,51774112,U1810203)supported by the National Natural Science Foundation of ChinaProject(2020M672224)supported by the China Postdoctoral Science FoundationProject(B2020-41)supported by the Doctoral Fund of Henan Polytechnic University,China。
文摘Tight glutenite reservoirs are widely developed in Bohai Bay Basin,East China.They are mostly huge thick and rely on hydraulic fracturing treatment for commercial exploitation.To investigate the propagation behavior of hydraulic fractures in these glutenite reservoirs,the geological feature of reservoirs in Bohai Bay Basin is studied firstly,including the reservoir vertical distribution feature and the heterogeneous lithology.Then,hydraulic fracturing treatments in block Yan 222 are carried out and the fracturing processes are monitored by the microseismic system.Results show the hydraulic fractures generated in the reservoirs are mostly in X shape.The cause of X-shaped hydraulic fractures in this study is mainly ascribed to(I)the reservoir heterogeneity and(II)the stress shadow effect of two close hydraulic fractures propagating in the same orientation,which is confirmed by the following numerical simulation and related research in detail.This study can provide a reference for the research on the fracturing behavior of the deep thick glutenite reservoirs.
基金supported by the National Natural Science Foundation of China(No.52064006,52164001 and 52004072)the Guizhou Provincial Science and Technology Foundation(No.[2020]4Y044,No.[2021]292,No.GCC[2022]005 and[2021]N404)the China Scholarship Council program(202006050112)
文摘Vertical height growth of hydraulic fractures(HFs)can unexpectedly penetrate a stratigraphic interface and propagate into neighboring layers,thereby resulting in low gas-production efficiency and high risk of groundwater contamination or fault reactivation.Understanding of hydraulic fracture behavior at the interface is of pivotal importance for the successful development of layered reservoirs.In this paper,a twodimensional analytical model was developed to examine HF penetration and termination behavior at an orthogonal interface between two dissimilar materials.This model involves changes in the stress singularity ahead of the HF tip,which may alter at the formation interface due to material heterogeneity.Three critical stress conditions were considered to assess possible fracture behavior(i.e.,crossing,slippage,and opening)at the interface.Then,this model was verified by comparing its theoretical predictions to numerical simulations and three independent experiments.Good agreement with the simulation results and experimental data was observed,which shows the validity and reliability of this model.Finally,a parametric study was conducted to investigate the effects of key formation parameters(elastic modulus,Poisson’s ratio,and fracture toughness)between adjacent layers.These results indicate that the variation in the introduced parameters can limit or promote vertical HF growth by redistributing the induced normal and shear stresses at the interface.Among the three studied parameters,Poisson’s ratio has the least influence on the formation interface.When the fracture toughness and elastic modulus of the bounding layer are larger than those of the pay zone layer,the influence of fracture toughness will dominate the HF behavior at the interface;otherwise,the HF behavior will more likely be influenced by elastic modulus.
基金Supported by the National Natural Science Foundation of China (41821002,42174145)PetroChina Science and Technology Major Project (ZD2019-183-004)China University of Petroleum (East China) Graduate Student Innovation Project (YCX2019001)。
文摘The existing acoustic logging methods for evaluating the hydraulic fracturing effectiveness usually use the fracture density to evaluate the fracture volume, and the results often cannot accurately reflect the actual productivity. This paper studies the dynamic fluid flow through hydraulic fractures and its effect on borehole acoustic waves. Firstly, based on the fractal characteristics of fractures observed in hydraulic fracturing experiments, a permeability model of complex fracture network is established. Combining the dynamic fluid flow response of the model with the Biot-Rosenbaum theory that describes the acoustic wave propagation in permeable formations, the influence of hydraulic fractures on the velocity dispersion of borehole Stoneley-wave is then calculated and analyzed, whereby a novel hydraulic fracture fluid transport property evaluation method is proposed. The results show that the Stoneley-wave velocity dispersion characteristics caused by complex fractures can be equivalent to those of the plane fracture model, provided that the average permeability of the complex fracture model is equal to the permeability of the plane fracture. In addition, for fractures under high-permeability(fracture width 10~100 μm, permeability ~100 μm^(2)) and reduced permeability(1~10 μm, ~10 μm^(2), as in fracture closure) conditions, the Stoneley-wave velocity dispersion characteristics are significantly different. The field application shows that this fluid transport property evaluation method is practical to assess the permeability and the connectivity of hydraulic fractures.
基金supported by the National Natural Science Foundation of China(grant No.41572140)the National Major Special Project of Science and Technology of China(grant No.2016ZX05044-001)+1 种基金the Fundamental Research Funds for the Central Universities(grant No.2015XKZD07)the Qing Lan Project
文摘Objective As the most widely used and effective technique in reservoir reconstruction of unconventional natural gas,hydraulic fracturing has been achieved good effect in CBM development.It is important to note that coal seam is both source rock and reservoir,