期刊文献+
共找到131,100篇文章
< 1 2 250 >
每页显示 20 50 100
Origin of the Yueguang gold deposit in Xinhua, Hunan Province, South China: insights from fl uid inclusion and hydrogen–oxygen stable isotope analysis
1
作者 Hongxin Fan Qiang Wang +2 位作者 Yulong Yang Yao Tang Hao Zou 《Acta Geochimica》 EI CAS CSCD 2024年第2期235-254,共20页
The Yueguang gold deposit is located in Fengjia,Xinhua County,Hunan Province,South China.It represents a recently discovered small-scale gold deposit situated in the southwestern region of the Jiangnan Orogenic Belt,w... The Yueguang gold deposit is located in Fengjia,Xinhua County,Hunan Province,South China.It represents a recently discovered small-scale gold deposit situated in the southwestern region of the Jiangnan Orogenic Belt,west of the Baimashan granitic batholith.In order to discern the characteristics of the ore-formingfluids,the underlying mineralization processes,and establish a foundation for the origin of the Yueguang gold depositfluid inclusion micro-thermometry,as well as quartz hydrogen and oxygen isotope analysis,have been carried out on samples obtained from various stages of mineralization.The hydrothermal miner-alization stages within the Yueguang gold deposit can be categorized into three stages:(i)the barren,pre-ore quartz-pyrite stage(Stage Ⅰ),the quartz-pyrite-gold stage(Stage Ⅱ),and the post-ore quartz-carbonate stage(Stage Ⅲ),with the second stage being the main mineralization stage.Thefluid inclusions identified in samples from the main min-eralization stage can predominantly be described with the NaCl–H_(2)O and CO_(2)–NaCl–H_(2)O systems.These inclusions display homogenization temperatures ranging from 158.8 to 334.9℃,and thefluid salinity ranges from 0.3%to 4.0%(wt.%NaCl equiv.).Laser Raman spectroscopy analysis of individual inclusions further reveals the presence of gas-phases such as CO_(2),CH_(4),and N_(2).Isotopic analysis indicatesδ^(18)Ofluid values ranging from 3.95 to 6.7‰ and δDH_(2)O values ranging from-71.9 to-55.7‰.These results indi-cate that the ore-formingfluid of the Yueguang gold deposit belongs to metamorphic hydrothermalfluids of middle-low temperature and low salinity.In the process of ore formation,gold is transported in the form of Au(HS)2-complexes,with gold deposition being driven byfluid immiscibility.Therefore,the Yueguang gold deposit is categorized as an orogenic gold deposit dominated by metamorphic hydrother-malfluid.It may become a new target for gold exploration in the Baimashan region,central Hunan Province. 展开更多
关键词 Hunan province Yueguang gold deposit Fluid inclusions hydrogen–oxygen isotopes Laser Raman Fluid immiscibility Orogenic gold deposit
下载PDF
Boosting Hydrogen Storage Performance of MgH_(2) by Oxygen Vacancy-Rich H-V_(2)O_(5) Nanosheet as an Excited H-Pump 被引量:2
2
作者 Li Ren Yinghui Li +4 位作者 Zi Li Xi Lin Chong Lu Wenjiang Ding Jianxin Zou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期398-416,共19页
MgH_(2) is a promising high-capacity solid-state hydrogen storage material,while its application is greatly hindered by the high desorption temperature and sluggish kinetics.Herein,intertwined 2D oxygen vacancy-rich V... MgH_(2) is a promising high-capacity solid-state hydrogen storage material,while its application is greatly hindered by the high desorption temperature and sluggish kinetics.Herein,intertwined 2D oxygen vacancy-rich V_(2)O_(5) nanosheets(H-V_(2)O_(5))are specifically designed and used as catalysts to improve the hydrogen storage properties of MgH_(2).The as-prepared MgH_(2)-H-V_(2)O_(5) composites exhibit low desorption temperatures(Tonset=185℃)with a hydrogen capacity of 6.54 wt%,fast kinetics(Ea=84.55±1.37 kJ mol^(-1) H_(2) for desorption),and long cycling stability.Impressively,hydrogen absorption can be achieved at a temperature as low as 30℃ with a capacity of 2.38 wt%within 60 min.Moreover,the composites maintain a capacity retention rate of~99%after 100 cycles at 275℃.Experimental studies and theoretical calculations demonstrate that the in-situ formed VH_(2)/V catalysts,unique 2D structure of H-V_(2)O_(5) nanosheets,and abundant oxygen vacancies positively contribute to the improved hydrogen sorption properties.Notably,the existence of oxygen vacancies plays a double role,which could not only directly accelerate the hydrogen ab/de-sorption rate of MgH_(2),but also indirectly affect the activity of the catalytic phase VH_(2)/V,thereby further boosting the hydrogen storage performance of MgH_(2).This work highlights an oxygen vacancy excited“hydrogen pump”effect of VH_(2)/V on the hydrogen sorption of Mg/MgH_(2).The strategy developed here may pave a new way toward the development of oxygen vacancy-rich transition metal oxides catalyzed hydride systems. 展开更多
关键词 hydrogen storage MgH_(2) V_(2)O_(5)nanosheets oxygen vacancies VH_(2)
下载PDF
Enhancing hydrogen evolution and oxidation kinetics through oxygen insertion into nickel lattice
3
作者 Wanli Liang Xiyu Gong +9 位作者 Jinchang Xu Zixuan Dan Fanyan Xie Hulei Yu Hao-Fan Wang Yanshuo Jin Hongjuan Wang Yonghai Cao Hui Meng Hao Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期529-539,I0012,共12页
Nickel-based materials,including metallic Ni and Ni oxide,have been widely studied in the exploration of non-precious-metal hydrogen electrocatalysts,but neither pure Ni nor NiO is ideal for the hydrogen evolution rea... Nickel-based materials,including metallic Ni and Ni oxide,have been widely studied in the exploration of non-precious-metal hydrogen electrocatalysts,but neither pure Ni nor NiO is ideal for the hydrogen evolution reaction(HER)and hydrogen oxidation reaction(HOR).In this paper,an oxygen insertion strategy was applied on nickel to regulate its hydrogen electrocatalytic performance,and the oxygen-inserted nickel catalyst was successfully obtained with the assistance of tungsten dioxide support(denoted as O-Ni/WO_(2)).The partial insertion of oxygen in Ni maintains the face-centered cubic arrangement of Ni atoms,simultaneously expanding the lattice and increasing the lattice spacing.Consequently,the adsorption strength of^(*)H and^(*)OH on Ni is optimized,thus resulting in superior electrocatalytic performance of0-Ni/WO_(2)in alkaline HER/HOR.The Tafel slope of O-Ni/WO_(2)@NF for HER is 56 mV dec^(-1),and the kinetic current density of O-Ni/WO_(2)for HOR reaches 4.85 mA cm^(-2),which is ahead of most currently reported catalysts.Our proposed strategy of inserting an appropriate amount of anions into the metal lattice could provide more possibilities for the design of high-performance catalysts. 展开更多
关键词 hydrogen evolution hydrogen oxidation NICKEL oxygen insertion Adsorption free energy
下载PDF
Unveiling the chemistry behind the electrolytic production of hydrogen peroxide by oxygenated carbon
4
作者 Pan Xiang Kunshang Yang +6 位作者 Qihao Yang Yang Gao Wenwen Xu Zhiyi Lu Liang Chen Zhiming Wang Ziqi Tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期49-58,共10页
Oxygenated carbon materials exhibit outstanding electrocatalytic performance in the production of hydrogen peroxide(H2O2)through a two-electron oxygen reduction reaction.The nature of the active functional group and u... Oxygenated carbon materials exhibit outstanding electrocatalytic performance in the production of hydrogen peroxide(H2O2)through a two-electron oxygen reduction reaction.The nature of the active functional group and underlying reaction mechanism,however,remain unclear.Here,a comprehensive workflow was established to identify the active sites from the numerous possible structures.The common hydroxyl group at the notched edge demonstrates a key role in the two-electron process.The local chemical environment weakens the binding of OOH intermediate to substrate while enhancing interaction with solution,thereby promoting the H_(2)O_(2)production.With increasing pH,the intramolecular hydrogen bond between OOH intermediate and hydroxyl decreases,facilitating OOH desorption.Furthermore,the rise in selectivity with increasing potential stems from the suppression of the four-electron process.The active site was further validated through experiments.Guided by theoretical understanding,optimal performance was achieved with high selectivity(>95%)and current density(2.06 mA/cm^(2))in experiment. 展开更多
关键词 First-principles calculation oxygen reductionreaction hydrogen peroxide production Fixed-potential method oxygenated carbon materials
下载PDF
Engineering oxygen vacancies on Tb-doped ceria supported Pt catalyst for hydrogen production through steam reforming of long-chain hydrocarbon fuels
5
作者 Zhourong Xiao Changxuan Zhang +5 位作者 Peng Li Desong Wang Xiangwen Zhang Li Wang Jijun Zou Guozhu Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期181-192,共12页
Steam reforming of long-chain hydrocarbon fuels for hydrogen production has received great attention for thermal management of the hypersonic vehicle and fuel-cell application.In this work,Pt catalysts supported on Ce... Steam reforming of long-chain hydrocarbon fuels for hydrogen production has received great attention for thermal management of the hypersonic vehicle and fuel-cell application.In this work,Pt catalysts supported on CeO_(2)and Tb-doped CeO_(2)were prepared by a precipitation method.The physical structure and chemical properties of the as-prepared catalysts were characterized by powder X-ray diffraction,scanning electron microscopy,transmission electron microscopy,Raman spectroscopy,H_(2)temperature programmed reduction,and X-ray photoelectron spectroscopy.The results show that Tb-doped CeO_(2)supported Pt possesses abundant surface oxygen vacancies,good inhibition of ceria sintering,and strong metal-support interaction compared with CeO_(2)supported Pt.The catalytic performance of hydrogen production via steam reforming of long-chain hydrocarbon fuels(n-dodecane)was tested.Compared with 2Pt/CeO_(2),2Pt/Ce_(0.9)Tb_(0.1)O_(2),and 2Pt/Ce_(0.5)Tb_(0.5)O_(2),the 2Pt/Ce_(0.7)Tb_(0.3)O_(2)has higher activity and stability for hydrogen production,on which the conversion of n-dodecane was maintained at about 53.2%after 600 min reaction under 700℃at liquid space velocity of 9 ml·g^(-1)·h^(-1).2Pt/CeO_(2)rapidly deactivated,the conversion of n-dodecane was reduced to only 41.6%after 600 min. 展开更多
关键词 Steam reforming N-DODECANE hydrogen production Pt-based catalyst oxygen vacancy CeO_(2)
下载PDF
Increased Oxygen Vacancies in CuO-ZnO Snowflake-like Composites Drive the Hydrogenation of CO_(2) to Methanol
6
作者 San Xiaoguang Wu Wanmeng +4 位作者 Zhang Lei Meng Dan Chang Xiangshuang Tan Jianen Qi Jian 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期22-33,共12页
Cu/ZnO is widely used in the hydrogenation of carbon dioxide (CO_(2)) to methanol (CH_(3)OH) to improve the lowconversion rate and selectivity generally observed. In this work, a series of In, Zr, Co, and Ni-doped CuO... Cu/ZnO is widely used in the hydrogenation of carbon dioxide (CO_(2)) to methanol (CH_(3)OH) to improve the lowconversion rate and selectivity generally observed. In this work, a series of In, Zr, Co, and Ni-doped CuO-ZnO catalysts wassynthesized via a hydrothermal method. By introducing a second metal element, the activity and dispersion of the activesites can be adjusted and the synergy between the metal and the carrier can be enhanced, forming an abundance of oxygenvacancies. Oxygen vacancies not only adsorb CO_(2) but also activate the intermediates in methanol synthesis, playing a keyrole in the entire reaction. Co3O4-CuO-ZnO had the best catalytic performance (a CO_(2) conversion rate of 9.17%;a CH_(3)OHselectivity of 92.77%). This study describes a typical strategy for multi-component doping to construct a catalyst with anabundance of oxygen vacancies, allowing more effective catalysis to synthesize CH_(3)OH from CO_(2). 展开更多
关键词 CuO-ZnO catalyst CO_(2)hydrogenation to CH_(3)OH doping oxygen vacancy SYNERGY
下载PDF
NH_(4)Cl-assisted synthesis of TaON nanoparticle applied to photocatalytic hydrogen and oxygen evolution from water
7
作者 Yao Xu Kaiwei Liu +5 位作者 Jifang Zhang Boyang Zhang Jiaming Zhang Ke Shi Haifeng Wang Guijun Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期541-550,共10页
Oxynitride semiconductors are promising photocatalyst materials for visible light-driven water splitting,while the synthesis of well crystalized oxynitride still remains challenge.In present work,narrow-bandgap TaON n... Oxynitride semiconductors are promising photocatalyst materials for visible light-driven water splitting,while the synthesis of well crystalized oxynitride still remains challenge.In present work,narrow-bandgap TaON nanoparticles are synthesized via heating a vacuum-sealed mixture of KTaO_(3),Ta and NH_(4)Cl.This method possesses multiple advantages in terms of lower calcination parameter,higher N conversion efficiency and superior photocatalytic activity in comparison with the traditional thermal ammonolysis using NH_(3) gas as a nitrogen source.Through the analysis of intermediates produced upon the elevation of heating temperature,a gas-solid-phase reaction between TaCl_(5) and Ta_(2)O_(5) is demonstrated as the final step,which is conducive to decreasing thermal energy barrier and accelerating nitridation process.Precise control of preparation conditions,including calcination temperature and duration,allows for the regulation of surface O/N ratio of TaON particles to unity,resulting in optimized photocat-alytic activity.Photoelectrochemical assessment and intensity modulated photocurrent spectroscopy provide convincing evidence for improved charge transfer effciency of photoexcited holes at TaON surface.A Z-scheme overall water splitting is accomplished by employing the TaON as an effective oxygen evolution photocatalyst,SrTiO_(3):Rh as a hydrogen evolution photocatalyst,and reduced graphene oxide(rGO)as a solid-state electron mediator.This work presents a promising strategy for the synthesis of high-quality oxynitride materials in application to photocatalytic water splitting. 展开更多
关键词 TAON Oxynitride synthesis PHOTOCATALYST Water splitting hydrogen Z-scheme
下载PDF
Ethane Chemical Looping Oxidative Dehydrogenation to Ethylene over Co_(2)O_(3)(Fe_(2)O_(3),NiO)/LaCoO_(3) Oxygen Carriers
8
作者 Liang Hao Meng Jinhong +1 位作者 Sun Jie Wei Dongkai 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第3期33-41,共9页
Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides w... Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides were prepared via citrate gel and impregnation methods,and used as oxygen carriers for CL-ODH.X-ray diffraction results indicated that all oxygen carriers had a perovskite structure even after eight redox cycles.Under a reaction temperature of 650°C,a reaction pressure of 0.1 MPa,and a weight hourly space velocity(WHSV)of 7500 mL/(g·h),ethane conversion over Co_(2)O_(3)/LaCoO_(3) reached 100%and ethylene selectivity reached 60%,both of which were better than corresponding values attained over Fe_(2)O_(3)/LaCoO_(3) and NiO/LaCoO_(3).Ethylene selectivity remained stable for 80 cycles over Co_(2)O_(3)/LaCoO_(3),then decreased gradually after 80 cycles.X-ray photoelectron spectroscopy results and evaluation results indicated that lattice oxygen and O_(2)2-had a direct relationship with ethane conversion and ethylene selectivity.Co_(2)O_(3)/LaCoO_(3) exhibited a strong capacity to release and absorb oxygen,mainly due to interaction between Co_(2)O_(3) and LaCoO_(3). 展开更多
关键词 chemical looping oxidative dehydrogenation ETHANE ETHYLENE oxygen carrier PEROVSKITE
下载PDF
Facet Engineering of Advanced Electrocatalysts Toward Hydrogen/Oxygen Evolution Reactions 被引量:10
9
作者 Changshui Wang Qian Zhang +7 位作者 Bing Yan Bo You Jiaojiao Zheng Li Feng Chunmei Zhang Shaohua Jiang Wei Chen Shuijian He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期97-137,共41页
The electrocatalytic water splitting technology can generate highpurity hydrogen without emitting carbon dioxide,which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality... The electrocatalytic water splitting technology can generate highpurity hydrogen without emitting carbon dioxide,which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality.Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency.Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface.Owing to the anisotropy,crystal planes with different orientations usually feature facet-dependent physical and chemical properties,leading to differences in the adsorption energies of oxygen or hydrogen intermediates,and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).In this review,a brief introduction of the basic concepts,fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided.The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes.Subsequently,three strategies of selective capping agent,selective etching agent,and coordination modulation to tune crystal planes are comprehensively summarized.Then,we present an overview of significant contributions of facet-engineered catalysts toward HER,OER,and overall water splitting.In particular,we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity.Finally,the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed. 展开更多
关键词 Crystal facet engineering ANISOTROPY oxygen evolution reaction hydrogen evolution reaction Theoretical simulations
下载PDF
Co-Ru alloy nanoparticles decorated onto two-dimensional nitrogen doped carbon nanosheets towards hydrogen/oxygen evolution reaction and oxygen reduction reaction 被引量:2
10
作者 Huizhen Wang Pengfei Yang +9 位作者 Xiaoyuan Sun Weiping Xiao Xinping Wang Minge Tian Guangrui Xu Zhenjiang Li Yubing Zhang Fusheng Liu Lei Wang Zexing Wu 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期286-294,I0008,共10页
Constructing highly-efficient electrocatalysts toward hydrogen evolution reaction(HER)/oxygen evolution reaction(OER)/oxygen reduction reaction(ORR)with excellent stability is quite important for the development of re... Constructing highly-efficient electrocatalysts toward hydrogen evolution reaction(HER)/oxygen evolution reaction(OER)/oxygen reduction reaction(ORR)with excellent stability is quite important for the development of renewable energy-related applications.Herein,Co-Ru based compounds supported on nitrogen doped two-dimensional(2D)carbon nanosheets(NCN)are developed via one step pyrolysis procedure(Co-Ru/NCN)for HER/ORR and following low-temperature oxidation process(Co-Ru@RuO_(x)/NCN)for OER.The specific 2D morphology guarantees abundant active sites exposure.Furthermore,the synergistic effects arising from the interaction between Co and Ru are crucial in enhancing the catalytic performance.Thus,the resulting Co-Ru/NCN shows remarkable electrocatalytic performance for HER(70 mV at 10 mA cm^(-2))in 1 M KOH and ORR(half-wave potential E_(1/2)=0.81 V)in 0.1 M KOH.Especially,the Co-Ru@RuO_(x)/NCN obtained by oxidation exhibits splendid OER performance in both acid(230 mV at 10 mA cm^(-2))and alkaline media(270 mV at 10 mA cm^(-2))coupled with excellent stability.Consequently,the fabricated two-electrode water-splitting device exhibits excellent performance in both acidic and alkaline environments.This research provides a promising avenue for the advancement of multifunctional nanomaterials. 展开更多
关键词 ELECTROCATALYST 2D Carbon nanosheet hydrogen/oxygen evolution reaction oxygen reduction reaction WATER-SPLITTING
下载PDF
Adjusting oxygen vacancies in perovskite LaCoO_(3)by electrochemical activation to enhance the hydrogen evolution reaction activity in alkaline condition 被引量:1
11
作者 Chengrong Wu Yan Sun +4 位作者 Xiaojian Wen Jia-Ye Zhang Liang Qiao Jun Cheng Kelvin H.L.Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期226-232,I0006,共8页
Developing highly-active,earth-abundant non-precious-metal catalysts for hydrogen evolution reaction(HER)in alkaline solution would be beneficial to sustainable energy storage.Perovskite oxides are generally regarded ... Developing highly-active,earth-abundant non-precious-metal catalysts for hydrogen evolution reaction(HER)in alkaline solution would be beneficial to sustainable energy storage.Perovskite oxides are generally regarded as low-active HER catalysts,due to their inapposite hydrogen adsorption and water dissociation.Here,we report a detailed study on perovskite LaCoO_(3)epitaxial thin films as a model catalyst to significantly enhance the HER performance via an electrochemical activation process.As a result,the overpotential for the activation films to achieve a current density of 0.36 m A/cm^(2)is 238 m V,reduced by more than 200 m V in comparison with that of original samples.Structural characterization revealed the activation process dramatically increases the concentration of oxygen vacancies(Vo)on the surface of LaCoO_(3).We established the relationship between the electronic structure induced by Vo and the enhanced HER activity.Further theoretical calculations revealed that the Vo optimizes the hydrogen adsorption and dissociation of water on the surface of LaCoO_(3)thin films,thus improving the HER catalytic activity.This work may promote a deepened understanding of perovskite oxides for HER mechanism by Vo adjusting and a new avenue for designing highly active electrochemical catalysts in alkaline solution. 展开更多
关键词 hydrogen evolution reaction Perovskite oxides Activation process oxygen vacancies
下载PDF
Chemical looping oxidative propane dehydrogenation controlled by oxygen bulk diffusion over FeVO_(4)oxygen carrier pellets 被引量:1
12
作者 Hongbo Song Wei Wang +5 位作者 Jiachen Sun Xianhui Wang Xianhua Zhang Sai Chen Chunlei Pei Zhi-Jian Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期409-420,共12页
The oxygen distribution and evolution within the oxygen carrier exert significant influence on chemical looping processes.This paper describes the influence of oxygen bulk diffusion within FeVO4 oxygen carrier pellets... The oxygen distribution and evolution within the oxygen carrier exert significant influence on chemical looping processes.This paper describes the influence of oxygen bulk diffusion within FeVO4 oxygen carrier pellets on the chemical looping oxidative propane dehydrogenation(CL-ODH).During CL-ODH,the oxygen concentration at the pellet surface initially decreased and then maintained stable before the final decrease.At the stage with the stable surface oxygen concentration,the reaction showed a stable C3H6 formation rate and high C3H6 selectivity.Therefore,based on Fick’s second law,the oxygen distribution and evolution in the oxygen carrier at this stage were further analyzed.It was found that main reactions of selective oxidation and over-oxidation were controlled by the oxygen bulk diffusion.C3H8 conversion rate kept decreasing during this stage due to the decrease of the oxygen flux caused by the decline of oxygen gradient within the oxygen carrier,while C3H6 selectivity increased due to the decrease of overoxidation.In addition,reaction rates could increase with the propane partial pressure due to the increase of the oxygen gradient within the oxygen carrier until the bulk transfer reached its limit at higher propane partial pressure.This study provides fundamental insights for the diffusion-controlled chemical looping reactions. 展开更多
关键词 Chemical looping DIFFUSION Reaction kinetics oxygen carriers OXIDATION
下载PDF
Strategies for Sustainable Production of Hydrogen Peroxide via Oxygen Reduction Reaction:From Catalyst Design to Device Setup 被引量:1
13
作者 Yuhui Tian Daijie Deng +4 位作者 Li Xu Meng Li Hao Chen Zhenzhen Wu Shanqing Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期225-269,共45页
An environmentally benign,sustainable,and cost-effective supply of H_(2)O_(2)as a rapidly expanding consumption raw material is highly desired for chemical industries,medical treatment,and household disinfection.The e... An environmentally benign,sustainable,and cost-effective supply of H_(2)O_(2)as a rapidly expanding consumption raw material is highly desired for chemical industries,medical treatment,and household disinfection.The electrocatalytic production route via electrochemical oxygen reduction reaction(ORR)offers a sustainable avenue for the onsite production of H_(2)O_(2)from O2 and H2O.The most crucial and innovative part of such technology lies in the availability of suitable electrocatalysts that promote two-electron(2e^(–))ORR.In recent years,tremendous progress has been achieved in designing efficient,robust,and cost-effective catalyst materials,including noble metals and their alloys,metalfree carbon-based materials,single-atom catalysts,and molecular catalysts.Meanwhile,innovative cell designs have significantly advanced electrochemical applications at the industrial level.This review summarizes fundamental basics and recent advances in H_(2)O_(2)production via 2e^(–)-ORR,including catalyst design,mechanistic explorations,theoretical computations,experimental evaluations,and electrochemical cell designs.Perspectives on addressing remaining challenges are also presented with an emphasis on the large-scale synthesis of H_(2)O_(2)via the electrochemical route. 展开更多
关键词 hydrogen peroxide Electrochemical synthesis ELECTROCATALYSTS Sustainable technologies
下载PDF
Oxygen‑Coordinated Single Mn Sites for Efficient Electrocatalytic Nitrate Reduction to Ammonia 被引量:2
14
作者 Shengbo Zhang Yuankang Zha +8 位作者 Yixing Ye Ke Li Yue Lin Lirong Zheng Guozhong Wang Yunxia Zhang Huajie Yin Tongfei Shi Haimin Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期147-159,共13页
Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites... Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites. 展开更多
关键词 Atomically dispersed oxygen coordination Nitrate reduction reaction In situ spectroscopic studies hydrogen evolution reaction
下载PDF
Phase separation-hydrogen etching-derived Cu-decorated Cu-Mn bimetallic oxides with oxygen vacancies boosting superior sodium-ion storage kinetics 被引量:1
15
作者 Lin Yan Lingshuo Zong +6 位作者 Qi Sun Junpeng Guo Zhenyang Yu Zhijun Qiao Jiuhui Han Zhenyu Cui Jianli Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期163-173,I0005,共12页
Understanding the crystal phase evolution of bimetallic oxide anodes is the main concern to profoundly reveal the conversion reaction kinetics and sodium-ion storage mechanisms.Herein,an integrated selfsupporting anod... Understanding the crystal phase evolution of bimetallic oxide anodes is the main concern to profoundly reveal the conversion reaction kinetics and sodium-ion storage mechanisms.Herein,an integrated selfsupporting anode of the Cu-decorated Cu-Mn bimetallic oxides with oxygen vacancies(Ov-BMO-Cu)are in-situ generated by phase separation and hydrogen etching using nanoporous Cu-Mn alloy as selfsacrificial templates.On this basis,we have elucidated the relationship between the phase evolution,oxygen vacancies and sodium-ion storage mechanisms,further demonstrating the evolution of oxygen vacancies and the inhibition effect of manganese oxides as an“anchor”on grain aggregation of copper oxides.The kinetic analyses confirm that the expanded lattice space and increased oxygen vacancies of cycled Ov-BMO-Cu synergistically guarantee effective sodium-ion diffusion and storage mechanisms.Therefore,the Ov-BMO-Cu electrode exhibits higher reversible capacities of 4.04 mA h cm^(-2)at 0.2 mA cm^(-2)after 100 cycles and 2.20 m A h cm^(-2)at 1.0 mA cm^(-2)after 500 cycles.Besides,the presodiated Ov-BMO-Cu anode delivers a considerable reversible capacity of 0.79 m A h cm^(-2)at 1.0 mA cm^(-2)after 60 cycles in full cells with Na_(3)V_(2)(PO_(4))_(3)cathode,confirming its outstanding practicality.Thus,this work is expected to provide enlightenment for designing high-capacity bimetallic oxide anodes. 展开更多
关键词 Sodium-ion storage mechanism Bimetallic oxide anode material Crystal phase evolution oxygen vacancies Kinetic analyses
下载PDF
Efficient hydrogen peroxide production enabled by exploring layered metal telluride as two electron oxygen reduction reaction electrocatalyst
16
作者 Yingming Wang Hongyuan Yang +6 位作者 Zhiwei Liu Kui Yin Zhaowu Wang Hui Huang Yang Liu Zhenhui Kang Ziliang Chen 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期247-255,I0007,共10页
It is of great interest to develop the novel transition metal-based electrocatalysts with high selectivity and activity for two electron oxygen reduction reaction(2e^(-) ORR).Herein,the nickel ditelluride(NiTe_(2)) wi... It is of great interest to develop the novel transition metal-based electrocatalysts with high selectivity and activity for two electron oxygen reduction reaction(2e^(-) ORR).Herein,the nickel ditelluride(NiTe_(2)) with layered structure was explored as the 2e^(-) ORR electrocatalyst,which not only showed the highest 2e^(-) selectivity more than 97%,but also delivered a slight activity decay after 5000 cycles in alkaline media.Moreover,when NiTe_(2) was assembled as the electrocatalyst in H-type electrolyzer,the on-site yield of H_(2)O_(2) could reach up to 672 mmol h^(-1)g^(-1) under 0.45 V vs.RHE.Further in situ Raman spectra,theoretical calculation and post microstructural analysis synergistically unveiled that such a good 2e^(-) ORR performance could be credited to the intrinsic layered crystal structure,the high compositional stability,as well as the electron modulation on the active site Ni atoms by neighboring Te atoms,leading to the exposure of active sites as well as the optimized adsorption free energy of Ni to –OOH.More inspiringly,such telluride electrocatalyst has also been demonstrated to exhibit high activity and selectivity towards 2e^(-) ORR in neutral media. 展开更多
关键词 Transition metal telluride oxygen reduction reaction Charge polarization Activity and selectivity hydrogen peroxide
下载PDF
Hybrid model for BOF oxygen blowing time prediction based on oxygen balance mechanism and deep neural network 被引量:1
17
作者 Xin Shao Qing Liu +3 位作者 Zicheng Xin Jiangshan Zhang Tao Zhou Shaoshuai Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期106-117,共12页
The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based ... The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error±300 m^(3)is 96.67%;determination coefficient (R^(2)) and root mean square error (RMSE) are0.6984 and 150.03 m^(3), respectively. The oxygen blow time prediction hit ratio within the error±0.6 min is 89.50%;R2and RMSE are0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter. 展开更多
关键词 basic oxygen furnace oxygen consumption oxygen blowing time oxygen balance mechanism deep neural network hybrid model
下载PDF
Integration of morphology and electronic structure modulation on cobalt phosphide nanosheets to boost photocatalytic hydrogen evolution from ammonia borane hydrolysis 被引量:2
18
作者 Chao Wan Yu Liang +5 位作者 Liu Zhou Jindou Huang Jiapei Wang Fengqiu Chen Xiaoli Zhan Dang-guo Cheng 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期333-343,共11页
The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for ... The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond. 展开更多
关键词 Ammonia borane hydrogen generation HYDROLYSIS Cobalt phosphide nanosheets PHOTOCATALYSIS
下载PDF
Strong synergy between physical and chemical properties:Insight into optimization of atomically dispersed oxygen reduction catalysts 被引量:4
19
作者 Yifan Zhang Linsheng Liu +4 位作者 Yuxuan Li Xueqin Mu Shichun Mu Suli Liu Zhihui Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期36-49,共14页
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz... Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered. 展开更多
关键词 Atomically dispersed catalysts Coordination environment Electronic orbitals Inter-site distance effect oxygen reduction reaction
下载PDF
Geochemistry and origins of hydrogen-containing natural gases in deep Songliao Basin,China:Insights from continental scientific drilling 被引量:2
20
作者 Shuang-Biao Han Chao-Han Xiang +3 位作者 Xin Du Lin-Feng Xie Jie Huang Cheng-Shan Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期741-751,共11页
The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantl... The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantly,but the origin analysis of different gas types has previously been weak.Based on the geochemical parameters of gas samples from different depths and the analysis of geological settings,this research covers the diverse origins of natural gas in different strata.The gas components are mainly methane with a small amount of C_(2+),and non-hydrocarbon gases,including nitrogen(N_(2)),hydrogen(H_(2)),carbon dioxide(CO_(2)),and helium(He).At greater depth,the carbon isotope of methane becomes heavier,and the hydrogen isotope points to a lacustrine sedimentary environment.With increasing depth,the origins of N_(2)and CO_(2)change gradually from a mixture of organic and inorganic to inorganic.The origins of hydrogen gas are complex and include organic sources,water radiolysis,water-rock(Fe^(2+)-containing minerals)reactions,and mantle-derived.The shales of Denglouku and Shahezi Formations,as source rocks,provide the premise for generation and occurrence of organic gas.Furthermore,the deep faults and fluid activities in Basement Formation control the generation and migration of mantle-derived gas.The discovery of a high content of H_(2)in study area not only reveals the organic and inorganic association of natural-gas generation,but also provides a scientific basis for the exploration of deep hydrogen-rich gas. 展开更多
关键词 Gas compositions Stable isotopes Gas origins hydrogen gas Songliao Basin
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部