Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role...Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role as both a valuable hydro-power resource and an essential ecological passageway.However,the water resources and security exhibit a high degree of vulnerabil-ity to climate change impacts.This research evaluates climate impacts on the hydrology of the Dulong-Irrawaddy River Basin(DIRB)by using a physical-based hydrologic model.We crafted future climate scenarios using the three latest global climate models(GCMs)from Coupled Model Intercomparison Project 6(CMIP6)under two shared socioeconomic pathways(SSP2-4.5 and SSP5-8.5)for the near(2025-2049),mid(2050-2074),and far future(2075-2099).The regional model using MIKE SHE based on historical hydrologic processes was developed to further project future streamflow,demonstrating reliable performance in streamflow simulations with a val-idation Nash-Sutcliffe Efficiency(NSE)of 0.72.Results showed that climate change projections showed increases in the annual precip-itation and potential evapotranspiration(PET),with precipitation increasing by 11.3%and 26.1%,and PET increasing by 3.2%and 4.9%,respectively,by the end of the century under SSP2-4.5 and SSP5-8.5.These changes are projected to result in increased annual streamflow at all stations,notably at the basin’s outlet(Pyay station)compared to the baseline period(with an increase of 16.1%and 37.0%at the end of the 21st century under SSP2-4.5 and SSP5-8.5,respectively).Seasonal analysis for Pyay station forecasts an in-crease in dry-season streamflow by 31.3%-48.9%and 22.5%-76.3%under SSP2-4.5 and SSP5-8.5,respectively,and an increase in wet-season streamflow by 5.8%-12.6%and 2.8%-33.3%,respectively.Moreover,the magnitude and frequency of flood events are pre-dicted to escalate,potentially impacting hydropower production and food security significantly.This research outlines the hydrological response to future climate change during the 21st century and offers a scientific basis for the water resource management strategies by decision-makers.展开更多
Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This stud...Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This study focused on quantifying subsurface hydrological partitioning,specifically in an alpine mountainous area,and highlighted the important role of lateral flow during this process.Precipitation was usually classified as two parts into the soil:increased soil water content(SWC)and lateral flow out of the soil pit.It was found that 65%–88%precipitation contributed to lateral flow.The second common partitioning class showed an increase in SWC caused by both precipitation and lateral flow into the soil pit.In this case,lateral flow contributed to the SWC increase ranging from 43%to 74%,which was notably larger than the SWC increase caused by precipitation.On alpine meadows,lateral flow from the soil pit occurred when the shallow soil was wetter than the field capacity.This result highlighted the need for three-dimensional simulation between soil layers in Earth system models(ESMs).During evapotranspiration process,significant differences were observed in the classification of subsurface hydrological partitioning among different vegetation types.Due to tangled and aggregated fine roots in the surface soil on alpine meadows,the majority of subsurface responses involved lateral flow,which provided 98%–100%of evapotranspiration(ET).On grassland,there was a high probability(0.87),which ET was entirely provided by lateral flow.The main reason for underestimating transpiration through soil water dynamics in previous research was the neglect of lateral root water uptake.Furthermore,there was a probability of 0.12,which ET was entirely provided by SWC decrease on grassland.In this case,there was a high probability(0.98)that soil water responses only occurred at layer 2(10–20 cm),because grass roots mainly distributed in this soil layer,and grasses often used their deep roots for water uptake during ET.To improve the estimation of soil water dynamics and ET,we established a random forest(RF)model to simulate lateral flow and then corrected the community land model(CLM).RF model demonstrated good performance and led to significant improvements in CLM simulation.These findings enhance our understanding of subsurface hydrological partitioning and emphasize the importance of considering lateral flow in ESMs and hydrological research.展开更多
In this study, we analyse the climate variability in the Upper Benue basin and assess its potential impact on the hydrology regime under two different greenhouse gas emission scenarios. The hydrological regime of the ...In this study, we analyse the climate variability in the Upper Benue basin and assess its potential impact on the hydrology regime under two different greenhouse gas emission scenarios. The hydrological regime of the basin is more vulnerable to climate variability, especially precipitation and temperature. Observed hydroclimatic data (1950-2015) was analysed using a statistical approach. The potential impact of future climate change on the hydrological regime is quantified using the GR2M model and two climate models: HadGEM2-ES and MIROC5 from CMIP5 under RCP 4.5 and RCP 8.5 greenhouse gas emission scenarios. The main result shows that precipitation varies significantly according to the geographical location and time in the Upper Benue basin. The trend analysis of climatic parameters shows a decrease in annual average precipitation across the study area at a rate of -0.568 mm/year which represents about 37 mm/year over the time 1950-2015 compared to the 1961-1990 reference period. An increase of 0.7°C in mean temperature and 14% of PET are also observed according to the same reference period. The two climate models predict a warming of the basin of about 2°C for both RCP 4.5 and 8.5 scenarios and an increase in precipitation between 1% and 10% between 2015 and 2100. Similarly, the average annual flow is projected to increase by about +2% to +10% in the future for both RCP 4.5 and 8.5 scenarios between 2015 and 2100. Therefore, it is primordial to develop adaptation and mitigation measures to manage efficiently the availability of water resources.展开更多
Hydrological modeling plays a crucial role in efficiently managing water resources and understanding the hydrologic behavior of watersheds. This study aims to simulate daily streamflow in the Godavari River Basin in M...Hydrological modeling plays a crucial role in efficiently managing water resources and understanding the hydrologic behavior of watersheds. This study aims to simulate daily streamflow in the Godavari River Basin in Maharashtra using the Soil and Water Assessment Tool (SWAT). SWAT is a process-based hydrological model used to predict water balance components, sediment levels, and nutrient contamination. In this research, we used integrated remote sensing and GIS data, including Digital Elevation Models (DEM), land use and land cover (LULC) maps, soil maps, and observed precipitation and temperature data, as input for developing the SWAT model to assess surface runoff in this large river basin. The Godavari River Basin under study was divided into 25 sub-basins, comprising 151 hydrological response units categorized by unique land cover, soil, and slope characteristics using the SWAT model. The model was calibrated and validated against observed runoff data for two time periods: 2003-2006 and 2007-2010 respectively. Model performance was assessed using the Nash-Sutcliffe efficiency (NSE) and the coefficient of determination (R2). The results show the effectiveness of the SWAT2012 model, with R2 value of 0.84 during calibration and 0.86 during validation. NSE values also ranged from 0.84 during calibration to 0.85 during validation. These findings enhance our understanding of surface runoff dynamics in the Godavari River Basin under study and highlight the suit-ability of the SWAT model for this region.展开更多
Hydrological process factors are a reflection of the physical mechanism of basin hydrology,which can provide important basis for the use and protection of water resources.Taking Heihe River Mountain Basin as the study...Hydrological process factors are a reflection of the physical mechanism of basin hydrology,which can provide important basis for the use and protection of water resources.Taking Heihe River Mountain Basin as the study area,the hydrological simulation was made based on SWAT-GIS integrated model platform.The calculation methods of hydrological process factors using SWAT model were described based on the simulation results of runoff from 1990 to 2000.Hydrological process factors in the study area were analyzed by using GIS technology.The spatial and temporal characteristics of precipitation,runoff,infiltration,evapotranspiration and snowmelt in the basin were calculated and analyzed.展开更多
Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation proced...Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation procedure for hydrologic forecasting.Free from the disadvantages of previous models,the model can be parallel to operate information flexibly and rapidly.It excels in the ability of nonlinear mapping and can learn and adjust by itself,which gives the model a possibility to describe the complex nonlinear hydrologic process.By using directly a training process based on a set of previous data, the model can forecast the time series of stream flow.Moreover,two practical examples were used to test the performance of the time series neural network model.Results confirm that the model is efficient and feasible.展开更多
[Objective] This study aimed to study on influence of rainfall runoff on non-point pollution and to reduce the pollution through control of the contamination produced from rainfall runoff. [Method] In order to explore...[Objective] This study aimed to study on influence of rainfall runoff on non-point pollution and to reduce the pollution through control of the contamination produced from rainfall runoff. [Method] In order to explore effective methods to decrease non-point pollution, we conducted analysis on hydrological process of rainfall runoff, interaction mechanism between the process and non-point pollutants, the influence on non-point pollution and hydrological model application in the research. [Result] It was proved that rainfall runoff was the main factor of non-point pollution. Control from source strengthened clearing and controlling of non-point pollutants on the ground. Growing plants in slope effectively reduced the scour and erosion of rainfall runoff on soil. The study became simple thanks for the hydrological process. [Conclusion] The research indicated that non-point pollution would be effectively reduced through control of rainfall runoff.展开更多
The commonly used discretization approaches for distributed hydrological models can be broadly categorized into four types,based on the nature of the discrete components:Regular Mesh,Triangular Irregular Networks(TINs...The commonly used discretization approaches for distributed hydrological models can be broadly categorized into four types,based on the nature of the discrete components:Regular Mesh,Triangular Irregular Networks(TINs),Representative Elementary Watershed(REWs) and Hydrologic Response Units(HRUs).In this paper,a new discretization approach for landforms that have similar hydrologic properties is developed and discussed here for the Integrated Hydrologic Model(IHM),a combining simulation of surface and groundwater processes,accounting for the interaction between the systems.The approach used in the IHM is to disaggregate basin parameters into discrete landforms that have similar hydrologic properties.These landforms may be impervious areas,related areas,areas with high or low clay or organic fractions,areas with significantly different depths-to-water-table,and areas with different types of land cover or different land uses.Incorporating discrete landforms within basins allows significant distributed parameter analysis,but requires an efficient computational structure.The IHM integration represents a new approach interpreting fluxes across the model interface and storages near the interface for transfer to the appropriate model component,accounting for the disparate discretization while rigidly maintaining mass conservation.The discretization approaches employed in IHM will provide some ideas and insights which are helpful to those researchers who have been working on the integrated models for surface-groundwater interaction.展开更多
The purpose of this study is to explore nonhydrological mass transfer in China's Mainland.For this purpose,gravity recovery and climate experiment(GRACE)data were obtained to study the spatial distribution of time...The purpose of this study is to explore nonhydrological mass transfer in China's Mainland.For this purpose,gravity recovery and climate experiment(GRACE)data were obtained to study the spatial distribution of time variant gravity signals in China's Mainland.Then,from auxiliary hydrological data processed according to the current hydrological model,a new more comprehensive hydrological model of China's Mainland was constructed.Finally,the time variant signals of this new hydrological model were removed from the time variant gravity field computed from GRACE data,thus obtaining a description of the nonhydrological mass transfer of China's Mainland.The physical sources and mechanisms of the resulting mass transfer are then discussed.The improved,more realistic,hydrological model used here was created by selecting the hydrological components with the best correlations in existing hydrological models,by use of correlation calculation,analysis,and comparison.This improved model includes water in soils and deeper strata,in the vegetation canopy,in lakes,snow,and glaciers,and in other water components(mainly reservoir storage,swamps,and rivers).The spatial distribution of the transfer signals due to nonhydrological mass in China's Mainland was obtained by subtracting the combined hydrological model from the GRACE time-variable gravity field.The results show that the nonhydrological signals in China's Mainland collected in GRACE data were mainly positive signals,and were distributed in the Bohai Rim and the northern and eastern parts of the Tibetan Plateau.The above nonhydrological mass transfer signals have been studied further and are discussed.The results show that the nonhydrological mass migration signals in the Bohai Rim region originate primarily from sea level change and marine sediment accumulation.The mass accumulation from Indian plate collision in the Tibetan Plateau appears to be the main reason for the increase in the residual gravity field in that region.展开更多
Use of a non-zero hydrologic response unit(HRU) threshold is an effective way of reducing unmanageable HRU numbers and simplifying computational cost in the Soil and Water Assessment Tool(SWAT) hydrologic modelling. H...Use of a non-zero hydrologic response unit(HRU) threshold is an effective way of reducing unmanageable HRU numbers and simplifying computational cost in the Soil and Water Assessment Tool(SWAT) hydrologic modelling. However, being less representative of watershed heterogeneity and increasing the level of model output uncertainty are inevitable when minor HRU combinations are disproportionately eliminated. This study examined 20 scenarios by running the model with various HRU threshold settings to understand the mechanism of HRU threshold effects on watershed representation as well as streamflow predictions and identify the appropriate HRU thresholds. Findings show that HRU numbers decrease sharply with increasing HRU thresholds. Among different HRU threshold scenarios, the composition of land-use, soil, and slope all contribute to notable variations which are directly related to the model input parameters and consequently affect the streamflow predictions. Results indicate that saturated hydraulic conductivity, average slope of the HRU, and curve number are the three key factors affecting stream discharge when changing the HRU thresholds. It is also found that HRU thresholds have little effect on monthly model performance, while evaluation statistics for daily discharges are more sensitive than monthly results. For daily streamflow predictions, thresholds of 5%/5%/5%(land-use/soil/slope) are the optimum HRU threshold level for the watershed to allow full consideration of model accuracy and efficiency in the present work. Besides, the results provide strategies for selecting appropriate HRU thresholds based on the modelling goal.展开更多
Whether mining activity results in reduced flow of surface water in the Peace River Watershed of Florida has been the subject of much debate. With increased dependence of downstream users on surface water flow of the ...Whether mining activity results in reduced flow of surface water in the Peace River Watershed of Florida has been the subject of much debate. With increased dependence of downstream users on surface water flow of the Peace River as a source of drinking water for four coastal counties in Southwest Florida and problems of water security, the debate has been intensified. It is possible to assess relationships of mining with streamflow in the upper reaches of the Peace River Basin using hydrologic modeling and identify mined sub-basins. In this work, land-use change impacts were simulated by the Hydrological Simulation Program--Fortran (HSPF) model based on geographical information system (GIS) tools, to compare pre- and post-mining streamflows at a study site of the Peace River in west-central Florida. The purpose of this study was to determine if land-use changes caused by mining have negatively impacted streamflow in the Peace River. Changes of land use were identified before and after mining activities. A coupled volume-water depth-discharge (V-h-Q) model based on stage/storage and stage/discharge was applied using HSPF for the pre-mining and post-mining models, respectively. Daily simulated post-mining hydrographs from HSPF were plotted with the calibrated pre-mining results and streamflow hydrographs from the 18 gauging stations, to compare timing of peaks, low fows and flow trends. Analyses of percent ex- ceedances of flow frequency curves of the streams indicated that most streams had similar distributions for mined (reclaimed) and pre- mining periods. In the streamflow change analysis, streamflows actually increased in mining-affected basins at nearly half the stations. Streamflows at other stations diminished. Overall from this comprehensive study, there were declines in streamflow at most gauging stations on the mainstem of the Peace River and its tributaries. The results of this study suggest that regional planning is urgently needed to propose reclamation schemes that enhance regional hydrology.展开更多
High-quality rainfall information is critical for accurate simulation of runoff and water cycle processes on the land surface. In situ monitoring of rainfall has a very limited utility at the regional and global scale...High-quality rainfall information is critical for accurate simulation of runoff and water cycle processes on the land surface. In situ monitoring of rainfall has a very limited utility at the regional and global scale because of the high temporal and spatial variability of rainfall. As a step toward overcoming this problem, microwave remote sensing observations can be used to retrieve the temporal and spatial rainfall coverage because of their global availability and frequency of measurement. This paper addresses the question of whether remote sensing rainfall estimates over a catchment can be used for water balance computations in the distributed hydrological model. The TRMM 3B42V6 rainfall product was introduced into the hydrological cycle simulation of the Yangtze River Basin in South China. A tool was developed to interpolate the rain gauge observations at the same temporal and spatial resolution as the TRMM data and then evaluate the precision of TRMM 3B42V6 data from 1998 to 2006. It shows that the TRMM 3B42V6 rainfall product was reliable and had good precision in application to the Yangtze River Basin. The TRMM 3B42V6 data slightly overestimated rainfall during the wet season and underestimated rainfall during the dry season in the Yangtze River Basin. Results suggest that the TRMM 3B42V6 rainfall product can be used as an alternative data source for large-scale distributed hydrological models.展开更多
The study on the coupling relationship and hydrology mechanism between ecosystem and hydrological process in a basin has recently become the international research frontier in hydrology.Runoff separation is still an i...The study on the coupling relationship and hydrology mechanism between ecosystem and hydrological process in a basin has recently become the international research frontier in hydrology.Runoff separation is still an important subject and possibly cutting edge process in hydrology.This paper summarizes the progress of national and international research,and comments on the advantages and disadvantages of recent,diverse base flow separation methods.This paper also presents research on hydrological process and eco-hydrological function in different landscape zones,combining isotopic technology with hydrochemical methods.Based on the runoff separation of different water bodies,this paper probes into the coupling relationship and hydrology mechanism between ecosystem pattern and eco-hydrological process,and makes analysis on water conservation,regulation and storage mechanism,and eco-hydrological function in different landscape zones.This report also examines future trends in research on hydrological process and eco-hydrological function in mountainous areas.展开更多
Both Ecosystem-based Adaptation (EbA) and Payment for Ecosystem Services (PES) have a wide range of strategies that include different economic instruments for nature conservation. Although the generation and maintenan...Both Ecosystem-based Adaptation (EbA) and Payment for Ecosystem Services (PES) have a wide range of strategies that include different economic instruments for nature conservation. Although the generation and maintenance of payment for hydrologic ecosystem services (Water-PES) is expanding in Brazil, there are difficulties in the implementation of projects. Due to the complexity and non-linearity of the hydrological processes, also affecting both EbA and Water-PES goals, monitoring quali-quantitative aspects of streams have been here addressed as a useful management tool. This study presents the Hydrological Monitoring Plan (HMP) of the Water Producer/PCJ project, operating between 2009-2014, in order to: 1) evaluate the impact of project actions under water quali-quantitative aspects;and 2) promote the incorporation of HMP’s elements in water resources management. HMP of the Water Producer/PCJ project has been implemented following the conditions for efficiency (baseline, long-term scale compatible with the actions of the project, in the experimental and reference watersheds). In addition, HMP is being implemented from upstream to downstream in catchments with areas ranging from 17 to 130 km<sup>2</sup>. This proposal favors the quantification and valuation of hydrologic services that could be assessed by ecohydrologic monitoring and modeling. Thus, we look forward to the consolidation of the Brazilian information system of water resources, the reduction of modeling uncertainties and integrated assessment of the consequences of land-use/land-cover change that strongly impact goals of EbA and Water-PES initiatives.展开更多
Floods have caused significant human and economic losses in the Cazones River Basin, located on the Gulf of Mexico. Despite this knowledge, steps towards the design and implementation of an early warning system for th...Floods have caused significant human and economic losses in the Cazones River Basin, located on the Gulf of Mexico. Despite this knowledge, steps towards the design and implementation of an early warning system for the Cazones are still a pending task. In this study we contributed by establishing a hydrological scheme for forecasting mean daily discharges in the Cazones Basin. For these purposes, we calibrated, validated and compared the HyMod model (HM) which is physics-based, and an autoregressive-based model coupled with the Discrete Kalman Filter (ARX-DKF). The ability of both models to accurately predict discharges proved satisfactory results during the validation period with RMSE<sub>HYMOD</sub> = 2.77 [mm/day];and RMSE<sub>ARX-DKF</sub> = [2.38 mm/day]. Further analysis based on a Streamflow Assimilation Ratio (SAR) revealed that both models underestimate the discharges in a similar proportion. This evaluation also showed that, under the most common conditions, the simpler stochastic model (ARX-DKF) performs better;however, under extreme hydrological conditions the deterministic HM model reveals a better performance. These results are discussed under the context of future applications and additional requirements needed to implement an early warning hydrologic system for the Cazones Basin.展开更多
Light absorbing particles(LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric...Light absorbing particles(LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance(a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice(LAPSI) has been identified as one of major forcings affecting climate change, e.g.in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, and climatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.展开更多
Based on 1961-2000 NCEP/NCAR monthly mean reanalysis datasets, vapor transfer and hydrological budget over the Tibetan Plateau are investigated. The Plateau is a vapor sink all the year round. In summer, ...Based on 1961-2000 NCEP/NCAR monthly mean reanalysis datasets, vapor transfer and hydrological budget over the Tibetan Plateau are investigated. The Plateau is a vapor sink all the year round. In summer, vapor is convergent in lower levels (from surface to 500 hPa) and divergent in upper levels (from 400 to 300 hPa), with 450 hPa referred to as level of non-divergence. Two levels have different hydrologic budget signatures: the budget is negative at the upper levels from February to November, i.e., vapor transfers from the upper levels over the plateau; as to the lower, the negative (positive) budget occurs during the winter (summer) half year. Evidence also indicates that Tibetan Plateau is a 'vapor transition belt', vapor from the south and the west is transferred from lower to upper levels there in summer, which will affect surrounding regions, including eastern China, especially, the middle and lower reaches of the Yangtze. Vapor transfer exerts significant influence on precipitation in summertime months. Vapor transferred from the upper layers helps humidify eastern China, with coefficient -0.3 of the upper budget to the precipitation over the middle and lower reaches of the Yangtze (MLRY); also, vapor transferred from east side (27.5 o -32.5 o N) of the upper level has remarkable relationship with precipitation, the coefficient being 0.41. The convergence of the lower level vapor has great effects on the local precipitation over the plateau, with coefficient reaching 0.44, and the vapor passage affects the advance and retreat of the rainbelt. In general, atmospheric hydrologic budget and vapor transfer over the plateau have noticeable effects on precipitation of the target region as well as the ambient areas.展开更多
The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydr...The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases, (2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods) for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales. Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change.展开更多
Analysis of sensitivity of bioretention cell design elements to their hydrologic performances is meaningful in offering theoretical guidelines for proper design. Hydrologic performance of bioretention cells was facili...Analysis of sensitivity of bioretention cell design elements to their hydrologic performances is meaningful in offering theoretical guidelines for proper design. Hydrologic performance of bioretention cells was facilitated with consideration of four metrics: the overflow ratio, groundwater recharge ratio, ponding time, and runoff coefficients. The storm water management model (SWMM) and the bioretention infiltration model RECARGA were applied to generating runoff and outflow time series for calculation of hydrologic performance metrics. Using a parking lot to build a bioretention cell, as an example, the Morris method was used to conduct global sensitivity analysis for two groups of bioretention samples, one without underdrain and the other with underdrain. Results show that the surface area is the most sensitive element to most of the hydrologic metrics, while the gravel depth is the least sensitive element whether bioretention cells are installed with underdrain or not. The saturated infiltration rate of planting soil and the saturated infiltration rate of native soil are the other two most sensitive elements for bioretention cells without underdrain, while the saturated infiltration rate of native soil and underdrain size are the two most sensitive design elements for bioretention cells with underdrain.展开更多
Considering a detailed hydrologic model in the land surface scheme helps to improve the simulation of regional hydro-climatology. A hydrologic model, which includes spatial heterogeneities in precipitation and infiltr...Considering a detailed hydrologic model in the land surface scheme helps to improve the simulation of regional hydro-climatology. A hydrologic model, which includes spatial heterogeneities in precipitation and infiltration, is constructed and incorporated into the land surface scheme BATS. Via the coupled-model (i.e., a regional climate model) simulations, the following major conclusions are obtained: the simulation of surface hydrology is sensitive to the inclusion of heterogeneities in precipitation and infiltration; the runoff ratio is increased after considering the infiltration heterogeneity, a result which is more consistent with the observations of surface moisture balance over humid areas; the introduction of the parameterization of infiltration heterogeneity can have a greater influence on the regional hydro-climatology than the precipitation heterogeneity; and the consideration of the impermeable fraction for the region reveals some features that are closer to the trend of aridification over northern China.展开更多
基金Under the auspices of the Yunnan Scientist Workstation on International River Research of Daming He(No.KXJGZS-2019-005)National Natural Science Foundation of China(No.42201040)+1 种基金National Key Research and Development Project of China(No.2016YFA0601601)China Postdoctoral Science Foundation(No.2023M733006)。
文摘Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role as both a valuable hydro-power resource and an essential ecological passageway.However,the water resources and security exhibit a high degree of vulnerabil-ity to climate change impacts.This research evaluates climate impacts on the hydrology of the Dulong-Irrawaddy River Basin(DIRB)by using a physical-based hydrologic model.We crafted future climate scenarios using the three latest global climate models(GCMs)from Coupled Model Intercomparison Project 6(CMIP6)under two shared socioeconomic pathways(SSP2-4.5 and SSP5-8.5)for the near(2025-2049),mid(2050-2074),and far future(2075-2099).The regional model using MIKE SHE based on historical hydrologic processes was developed to further project future streamflow,demonstrating reliable performance in streamflow simulations with a val-idation Nash-Sutcliffe Efficiency(NSE)of 0.72.Results showed that climate change projections showed increases in the annual precip-itation and potential evapotranspiration(PET),with precipitation increasing by 11.3%and 26.1%,and PET increasing by 3.2%and 4.9%,respectively,by the end of the century under SSP2-4.5 and SSP5-8.5.These changes are projected to result in increased annual streamflow at all stations,notably at the basin’s outlet(Pyay station)compared to the baseline period(with an increase of 16.1%and 37.0%at the end of the 21st century under SSP2-4.5 and SSP5-8.5,respectively).Seasonal analysis for Pyay station forecasts an in-crease in dry-season streamflow by 31.3%-48.9%and 22.5%-76.3%under SSP2-4.5 and SSP5-8.5,respectively,and an increase in wet-season streamflow by 5.8%-12.6%and 2.8%-33.3%,respectively.Moreover,the magnitude and frequency of flood events are pre-dicted to escalate,potentially impacting hydropower production and food security significantly.This research outlines the hydrological response to future climate change during the 21st century and offers a scientific basis for the water resource management strategies by decision-makers.
基金funded by the National Natural Science Foundation of China(42371022,42030501,41877148).
文摘Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This study focused on quantifying subsurface hydrological partitioning,specifically in an alpine mountainous area,and highlighted the important role of lateral flow during this process.Precipitation was usually classified as two parts into the soil:increased soil water content(SWC)and lateral flow out of the soil pit.It was found that 65%–88%precipitation contributed to lateral flow.The second common partitioning class showed an increase in SWC caused by both precipitation and lateral flow into the soil pit.In this case,lateral flow contributed to the SWC increase ranging from 43%to 74%,which was notably larger than the SWC increase caused by precipitation.On alpine meadows,lateral flow from the soil pit occurred when the shallow soil was wetter than the field capacity.This result highlighted the need for three-dimensional simulation between soil layers in Earth system models(ESMs).During evapotranspiration process,significant differences were observed in the classification of subsurface hydrological partitioning among different vegetation types.Due to tangled and aggregated fine roots in the surface soil on alpine meadows,the majority of subsurface responses involved lateral flow,which provided 98%–100%of evapotranspiration(ET).On grassland,there was a high probability(0.87),which ET was entirely provided by lateral flow.The main reason for underestimating transpiration through soil water dynamics in previous research was the neglect of lateral root water uptake.Furthermore,there was a probability of 0.12,which ET was entirely provided by SWC decrease on grassland.In this case,there was a high probability(0.98)that soil water responses only occurred at layer 2(10–20 cm),because grass roots mainly distributed in this soil layer,and grasses often used their deep roots for water uptake during ET.To improve the estimation of soil water dynamics and ET,we established a random forest(RF)model to simulate lateral flow and then corrected the community land model(CLM).RF model demonstrated good performance and led to significant improvements in CLM simulation.These findings enhance our understanding of subsurface hydrological partitioning and emphasize the importance of considering lateral flow in ESMs and hydrological research.
文摘In this study, we analyse the climate variability in the Upper Benue basin and assess its potential impact on the hydrology regime under two different greenhouse gas emission scenarios. The hydrological regime of the basin is more vulnerable to climate variability, especially precipitation and temperature. Observed hydroclimatic data (1950-2015) was analysed using a statistical approach. The potential impact of future climate change on the hydrological regime is quantified using the GR2M model and two climate models: HadGEM2-ES and MIROC5 from CMIP5 under RCP 4.5 and RCP 8.5 greenhouse gas emission scenarios. The main result shows that precipitation varies significantly according to the geographical location and time in the Upper Benue basin. The trend analysis of climatic parameters shows a decrease in annual average precipitation across the study area at a rate of -0.568 mm/year which represents about 37 mm/year over the time 1950-2015 compared to the 1961-1990 reference period. An increase of 0.7°C in mean temperature and 14% of PET are also observed according to the same reference period. The two climate models predict a warming of the basin of about 2°C for both RCP 4.5 and 8.5 scenarios and an increase in precipitation between 1% and 10% between 2015 and 2100. Similarly, the average annual flow is projected to increase by about +2% to +10% in the future for both RCP 4.5 and 8.5 scenarios between 2015 and 2100. Therefore, it is primordial to develop adaptation and mitigation measures to manage efficiently the availability of water resources.
文摘Hydrological modeling plays a crucial role in efficiently managing water resources and understanding the hydrologic behavior of watersheds. This study aims to simulate daily streamflow in the Godavari River Basin in Maharashtra using the Soil and Water Assessment Tool (SWAT). SWAT is a process-based hydrological model used to predict water balance components, sediment levels, and nutrient contamination. In this research, we used integrated remote sensing and GIS data, including Digital Elevation Models (DEM), land use and land cover (LULC) maps, soil maps, and observed precipitation and temperature data, as input for developing the SWAT model to assess surface runoff in this large river basin. The Godavari River Basin under study was divided into 25 sub-basins, comprising 151 hydrological response units categorized by unique land cover, soil, and slope characteristics using the SWAT model. The model was calibrated and validated against observed runoff data for two time periods: 2003-2006 and 2007-2010 respectively. Model performance was assessed using the Nash-Sutcliffe efficiency (NSE) and the coefficient of determination (R2). The results show the effectiveness of the SWAT2012 model, with R2 value of 0.84 during calibration and 0.86 during validation. NSE values also ranged from 0.84 during calibration to 0.85 during validation. These findings enhance our understanding of surface runoff dynamics in the Godavari River Basin under study and highlight the suit-ability of the SWAT model for this region.
基金Supported by National Natural Science Foundation of China(40972207)National S&T Major Project(2009ZX05039-004)~~
文摘Hydrological process factors are a reflection of the physical mechanism of basin hydrology,which can provide important basis for the use and protection of water resources.Taking Heihe River Mountain Basin as the study area,the hydrological simulation was made based on SWAT-GIS integrated model platform.The calculation methods of hydrological process factors using SWAT model were described based on the simulation results of runoff from 1990 to 2000.Hydrological process factors in the study area were analyzed by using GIS technology.The spatial and temporal characteristics of precipitation,runoff,infiltration,evapotranspiration and snowmelt in the basin were calculated and analyzed.
文摘Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation procedure for hydrologic forecasting.Free from the disadvantages of previous models,the model can be parallel to operate information flexibly and rapidly.It excels in the ability of nonlinear mapping and can learn and adjust by itself,which gives the model a possibility to describe the complex nonlinear hydrologic process.By using directly a training process based on a set of previous data, the model can forecast the time series of stream flow.Moreover,two practical examples were used to test the performance of the time series neural network model.Results confirm that the model is efficient and feasible.
基金Supported by Major Special Fund of National Technology Program of China(2008ZX07421-002,2008ZX07421-004)the National High Technology Research and Development Program of China(2008AA06A412)Project Studied and Developed by Ministry of Housing and Urban-Rural Construction(2009-K7-4)~~
文摘[Objective] This study aimed to study on influence of rainfall runoff on non-point pollution and to reduce the pollution through control of the contamination produced from rainfall runoff. [Method] In order to explore effective methods to decrease non-point pollution, we conducted analysis on hydrological process of rainfall runoff, interaction mechanism between the process and non-point pollutants, the influence on non-point pollution and hydrological model application in the research. [Result] It was proved that rainfall runoff was the main factor of non-point pollution. Control from source strengthened clearing and controlling of non-point pollutants on the ground. Growing plants in slope effectively reduced the scour and erosion of rainfall runoff on soil. The study became simple thanks for the hydrological process. [Conclusion] The research indicated that non-point pollution would be effectively reduced through control of rainfall runoff.
基金Under the auspices of National Natural Science Foundation of China(No.40901026)Beijing Municipal Science & Technology New Star Project Funds(No.2010B046)+1 种基金Beijing Municipal Natural Science Foundation(No.8123041)Southwest Florida Water Management District(SFWMD) Project
文摘The commonly used discretization approaches for distributed hydrological models can be broadly categorized into four types,based on the nature of the discrete components:Regular Mesh,Triangular Irregular Networks(TINs),Representative Elementary Watershed(REWs) and Hydrologic Response Units(HRUs).In this paper,a new discretization approach for landforms that have similar hydrologic properties is developed and discussed here for the Integrated Hydrologic Model(IHM),a combining simulation of surface and groundwater processes,accounting for the interaction between the systems.The approach used in the IHM is to disaggregate basin parameters into discrete landforms that have similar hydrologic properties.These landforms may be impervious areas,related areas,areas with high or low clay or organic fractions,areas with significantly different depths-to-water-table,and areas with different types of land cover or different land uses.Incorporating discrete landforms within basins allows significant distributed parameter analysis,but requires an efficient computational structure.The IHM integration represents a new approach interpreting fluxes across the model interface and storages near the interface for transfer to the appropriate model component,accounting for the disparate discretization while rigidly maintaining mass conservation.The discretization approaches employed in IHM will provide some ideas and insights which are helpful to those researchers who have been working on the integrated models for surface-groundwater interaction.
基金supported by the National Natural Science Foundation of China(41974093,41774088,42174097)the Frontier Science of Chinese Academy of Sciences(qyzdy-sswsys003)+1 种基金China Postdoctoral Science Foundation(2020T130641 and 2020M670424)Fundamental Research Funds for the Central Universities.
文摘The purpose of this study is to explore nonhydrological mass transfer in China's Mainland.For this purpose,gravity recovery and climate experiment(GRACE)data were obtained to study the spatial distribution of time variant gravity signals in China's Mainland.Then,from auxiliary hydrological data processed according to the current hydrological model,a new more comprehensive hydrological model of China's Mainland was constructed.Finally,the time variant signals of this new hydrological model were removed from the time variant gravity field computed from GRACE data,thus obtaining a description of the nonhydrological mass transfer of China's Mainland.The physical sources and mechanisms of the resulting mass transfer are then discussed.The improved,more realistic,hydrological model used here was created by selecting the hydrological components with the best correlations in existing hydrological models,by use of correlation calculation,analysis,and comparison.This improved model includes water in soils and deeper strata,in the vegetation canopy,in lakes,snow,and glaciers,and in other water components(mainly reservoir storage,swamps,and rivers).The spatial distribution of the transfer signals due to nonhydrological mass in China's Mainland was obtained by subtracting the combined hydrological model from the GRACE time-variable gravity field.The results show that the nonhydrological signals in China's Mainland collected in GRACE data were mainly positive signals,and were distributed in the Bohai Rim and the northern and eastern parts of the Tibetan Plateau.The above nonhydrological mass transfer signals have been studied further and are discussed.The results show that the nonhydrological mass migration signals in the Bohai Rim region originate primarily from sea level change and marine sediment accumulation.The mass accumulation from Indian plate collision in the Tibetan Plateau appears to be the main reason for the increase in the residual gravity field in that region.
基金Under the auspices of National Natural Science Foundation of China(No.31901153)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23070103)。
文摘Use of a non-zero hydrologic response unit(HRU) threshold is an effective way of reducing unmanageable HRU numbers and simplifying computational cost in the Soil and Water Assessment Tool(SWAT) hydrologic modelling. However, being less representative of watershed heterogeneity and increasing the level of model output uncertainty are inevitable when minor HRU combinations are disproportionately eliminated. This study examined 20 scenarios by running the model with various HRU threshold settings to understand the mechanism of HRU threshold effects on watershed representation as well as streamflow predictions and identify the appropriate HRU thresholds. Findings show that HRU numbers decrease sharply with increasing HRU thresholds. Among different HRU threshold scenarios, the composition of land-use, soil, and slope all contribute to notable variations which are directly related to the model input parameters and consequently affect the streamflow predictions. Results indicate that saturated hydraulic conductivity, average slope of the HRU, and curve number are the three key factors affecting stream discharge when changing the HRU thresholds. It is also found that HRU thresholds have little effect on monthly model performance, while evaluation statistics for daily discharges are more sensitive than monthly results. For daily streamflow predictions, thresholds of 5%/5%/5%(land-use/soil/slope) are the optimum HRU threshold level for the watershed to allow full consideration of model accuracy and efficiency in the present work. Besides, the results provide strategies for selecting appropriate HRU thresholds based on the modelling goal.
基金National Natural Science Foundation of China(No.41271004)Beijing Municipal Science &Technology New Star Project Funds(No.2010B046)
文摘Whether mining activity results in reduced flow of surface water in the Peace River Watershed of Florida has been the subject of much debate. With increased dependence of downstream users on surface water flow of the Peace River as a source of drinking water for four coastal counties in Southwest Florida and problems of water security, the debate has been intensified. It is possible to assess relationships of mining with streamflow in the upper reaches of the Peace River Basin using hydrologic modeling and identify mined sub-basins. In this work, land-use change impacts were simulated by the Hydrological Simulation Program--Fortran (HSPF) model based on geographical information system (GIS) tools, to compare pre- and post-mining streamflows at a study site of the Peace River in west-central Florida. The purpose of this study was to determine if land-use changes caused by mining have negatively impacted streamflow in the Peace River. Changes of land use were identified before and after mining activities. A coupled volume-water depth-discharge (V-h-Q) model based on stage/storage and stage/discharge was applied using HSPF for the pre-mining and post-mining models, respectively. Daily simulated post-mining hydrographs from HSPF were plotted with the calibrated pre-mining results and streamflow hydrographs from the 18 gauging stations, to compare timing of peaks, low fows and flow trends. Analyses of percent ex- ceedances of flow frequency curves of the streams indicated that most streams had similar distributions for mined (reclaimed) and pre- mining periods. In the streamflow change analysis, streamflows actually increased in mining-affected basins at nearly half the stations. Streamflows at other stations diminished. Overall from this comprehensive study, there were declines in streamflow at most gauging stations on the mainstem of the Peace River and its tributaries. The results of this study suggest that regional planning is urgently needed to propose reclamation schemes that enhance regional hydrology.
基金supported by the National Basic Research Program of China (the 973 Program,Grant No.2010CB951101)the National Natural Science Foundation of China (Grants No. 50979022 and 50679018)+2 种基金the Program for Changjiang Scholars and Innovative Research Teams in Universities (Grant No. IRT0717)the Special Fund of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering of Hohai University (Grant No. 1069-50986312)the Open Fund Approval of the State Key Laboratory of Hydraulics and Mountain River Engineering of Sichuan University (Grant No. SKLH-OF-0807)
文摘High-quality rainfall information is critical for accurate simulation of runoff and water cycle processes on the land surface. In situ monitoring of rainfall has a very limited utility at the regional and global scale because of the high temporal and spatial variability of rainfall. As a step toward overcoming this problem, microwave remote sensing observations can be used to retrieve the temporal and spatial rainfall coverage because of their global availability and frequency of measurement. This paper addresses the question of whether remote sensing rainfall estimates over a catchment can be used for water balance computations in the distributed hydrological model. The TRMM 3B42V6 rainfall product was introduced into the hydrological cycle simulation of the Yangtze River Basin in South China. A tool was developed to interpolate the rain gauge observations at the same temporal and spatial resolution as the TRMM data and then evaluate the precision of TRMM 3B42V6 data from 1998 to 2006. It shows that the TRMM 3B42V6 rainfall product was reliable and had good precision in application to the Yangtze River Basin. The TRMM 3B42V6 data slightly overestimated rainfall during the wet season and underestimated rainfall during the dry season in the Yangtze River Basin. Results suggest that the TRMM 3B42V6 rainfall product can be used as an alternative data source for large-scale distributed hydrological models.
基金supported by the West Action Program of Chinese Academy of Sciences (KZCX2-XB2-04-03)the Chinese National Natural Science Fund (40801021)+1 种基金the West Light Foundation of West Doctor of CASthe China Postdoctoral Science Foundation (200801244, 20070420135)
文摘The study on the coupling relationship and hydrology mechanism between ecosystem and hydrological process in a basin has recently become the international research frontier in hydrology.Runoff separation is still an important subject and possibly cutting edge process in hydrology.This paper summarizes the progress of national and international research,and comments on the advantages and disadvantages of recent,diverse base flow separation methods.This paper also presents research on hydrological process and eco-hydrological function in different landscape zones,combining isotopic technology with hydrochemical methods.Based on the runoff separation of different water bodies,this paper probes into the coupling relationship and hydrology mechanism between ecosystem pattern and eco-hydrological process,and makes analysis on water conservation,regulation and storage mechanism,and eco-hydrological function in different landscape zones.This report also examines future trends in research on hydrological process and eco-hydrological function in mountainous areas.
文摘Both Ecosystem-based Adaptation (EbA) and Payment for Ecosystem Services (PES) have a wide range of strategies that include different economic instruments for nature conservation. Although the generation and maintenance of payment for hydrologic ecosystem services (Water-PES) is expanding in Brazil, there are difficulties in the implementation of projects. Due to the complexity and non-linearity of the hydrological processes, also affecting both EbA and Water-PES goals, monitoring quali-quantitative aspects of streams have been here addressed as a useful management tool. This study presents the Hydrological Monitoring Plan (HMP) of the Water Producer/PCJ project, operating between 2009-2014, in order to: 1) evaluate the impact of project actions under water quali-quantitative aspects;and 2) promote the incorporation of HMP’s elements in water resources management. HMP of the Water Producer/PCJ project has been implemented following the conditions for efficiency (baseline, long-term scale compatible with the actions of the project, in the experimental and reference watersheds). In addition, HMP is being implemented from upstream to downstream in catchments with areas ranging from 17 to 130 km<sup>2</sup>. This proposal favors the quantification and valuation of hydrologic services that could be assessed by ecohydrologic monitoring and modeling. Thus, we look forward to the consolidation of the Brazilian information system of water resources, the reduction of modeling uncertainties and integrated assessment of the consequences of land-use/land-cover change that strongly impact goals of EbA and Water-PES initiatives.
文摘Floods have caused significant human and economic losses in the Cazones River Basin, located on the Gulf of Mexico. Despite this knowledge, steps towards the design and implementation of an early warning system for the Cazones are still a pending task. In this study we contributed by establishing a hydrological scheme for forecasting mean daily discharges in the Cazones Basin. For these purposes, we calibrated, validated and compared the HyMod model (HM) which is physics-based, and an autoregressive-based model coupled with the Discrete Kalman Filter (ARX-DKF). The ability of both models to accurately predict discharges proved satisfactory results during the validation period with RMSE<sub>HYMOD</sub> = 2.77 [mm/day];and RMSE<sub>ARX-DKF</sub> = [2.38 mm/day]. Further analysis based on a Streamflow Assimilation Ratio (SAR) revealed that both models underestimate the discharges in a similar proportion. This evaluation also showed that, under the most common conditions, the simpler stochastic model (ARX-DKF) performs better;however, under extreme hydrological conditions the deterministic HM model reveals a better performance. These results are discussed under the context of future applications and additional requirements needed to implement an early warning hydrologic system for the Cazones Basin.
基金supported by the U.S.Department of Energy, Office of Science, Biological and Environmental Research, as part of the Earth System Modeling ProgramThe NASA Modeling, Analysis, and Prediction (MAP) Program by the Science Mission Directorate at NASA Headquarters supported the work contributed by Teppei J.YASUNARI and William K.M.LAU+2 种基金The NASA GEOS-5 simulation was implemented in the system for NASA Center for Climate Simulation (NCCS).M.G.Flanner was partially supported by NSF 1253154support from the China Scholarship FundThe Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC06-76RLO1830
文摘Light absorbing particles(LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance(a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice(LAPSI) has been identified as one of major forcings affecting climate change, e.g.in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, and climatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.
基金The Key Project of the Ministry of Science and Technology No.2001CCB00400 China Climbing Project B-TIPEX
文摘Based on 1961-2000 NCEP/NCAR monthly mean reanalysis datasets, vapor transfer and hydrological budget over the Tibetan Plateau are investigated. The Plateau is a vapor sink all the year round. In summer, vapor is convergent in lower levels (from surface to 500 hPa) and divergent in upper levels (from 400 to 300 hPa), with 450 hPa referred to as level of non-divergence. Two levels have different hydrologic budget signatures: the budget is negative at the upper levels from February to November, i.e., vapor transfers from the upper levels over the plateau; as to the lower, the negative (positive) budget occurs during the winter (summer) half year. Evidence also indicates that Tibetan Plateau is a 'vapor transition belt', vapor from the south and the west is transferred from lower to upper levels there in summer, which will affect surrounding regions, including eastern China, especially, the middle and lower reaches of the Yangtze. Vapor transfer exerts significant influence on precipitation in summertime months. Vapor transferred from the upper layers helps humidify eastern China, with coefficient -0.3 of the upper budget to the precipitation over the middle and lower reaches of the Yangtze (MLRY); also, vapor transferred from east side (27.5 o -32.5 o N) of the upper level has remarkable relationship with precipitation, the coefficient being 0.41. The convergence of the lower level vapor has great effects on the local precipitation over the plateau, with coefficient reaching 0.44, and the vapor passage affects the advance and retreat of the rainbelt. In general, atmospheric hydrologic budget and vapor transfer over the plateau have noticeable effects on precipitation of the target region as well as the ambient areas.
文摘The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases, (2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods) for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales. Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change.
文摘Analysis of sensitivity of bioretention cell design elements to their hydrologic performances is meaningful in offering theoretical guidelines for proper design. Hydrologic performance of bioretention cells was facilitated with consideration of four metrics: the overflow ratio, groundwater recharge ratio, ponding time, and runoff coefficients. The storm water management model (SWMM) and the bioretention infiltration model RECARGA were applied to generating runoff and outflow time series for calculation of hydrologic performance metrics. Using a parking lot to build a bioretention cell, as an example, the Morris method was used to conduct global sensitivity analysis for two groups of bioretention samples, one without underdrain and the other with underdrain. Results show that the surface area is the most sensitive element to most of the hydrologic metrics, while the gravel depth is the least sensitive element whether bioretention cells are installed with underdrain or not. The saturated infiltration rate of planting soil and the saturated infiltration rate of native soil are the other two most sensitive elements for bioretention cells without underdrain, while the saturated infiltration rate of native soil and underdrain size are the two most sensitive design elements for bioretention cells with underdrain.
基金This work was jointly supported by the National Natural Science Foundation of China under Grant No. 40205012, and 40201048, the Chinese NKBRSF Project G1999043400 and the Foundation of the China Ministry of Education (Grant No. 20010284027). The computat
文摘Considering a detailed hydrologic model in the land surface scheme helps to improve the simulation of regional hydro-climatology. A hydrologic model, which includes spatial heterogeneities in precipitation and infiltration, is constructed and incorporated into the land surface scheme BATS. Via the coupled-model (i.e., a regional climate model) simulations, the following major conclusions are obtained: the simulation of surface hydrology is sensitive to the inclusion of heterogeneities in precipitation and infiltration; the runoff ratio is increased after considering the infiltration heterogeneity, a result which is more consistent with the observations of surface moisture balance over humid areas; the introduction of the parameterization of infiltration heterogeneity can have a greater influence on the regional hydro-climatology than the precipitation heterogeneity; and the consideration of the impermeable fraction for the region reveals some features that are closer to the trend of aridification over northern China.