IEEE 802.11ah is a new Wi-Fi standard for sub-1Ghz communications,aiming to address the challenges of the Internet of Things(IoT).Significant changes in the legacy 802.11 standards have been proposed to improve the ne...IEEE 802.11ah is a new Wi-Fi standard for sub-1Ghz communications,aiming to address the challenges of the Internet of Things(IoT).Significant changes in the legacy 802.11 standards have been proposed to improve the network performance in high contention scenarios,the most important of which is the Restricted Access Window(RAW)mechanism.This mechanism promises to increase the throughput and energy efficiency by dividing stations into different groups.Under this scheme,only the stations belonging to the same group may access the channel,which reduces the collision probability in dense scenarios.However,the standard does not define the RAW grouping strategy.In this paper,we develop a new mathematical model based on the renewal theory,which allows for tracking the number of transmissions within the limited RAW slot contention period defined by the standard.We then analyze and evaluate the performance of RAW mechanism.We also introduce a grouping scheme to organize the stations and channel access time into different groups within the RAW.Furthermore,we propose an algorithm to derive the RAW configuration parameters of a throughput maximizing grouping scheme.We additionally explore the impact of channel errors on the contention within the time-limited RAW slot and the overall RAW optimal configuration.The presented analytical framework can be applied to many other Wi-Fi standards that integrate periodic channel reservations.Extensive simulations using the MATLAB software validate the analytical model and prove the effectiveness of the proposed RAW configuration scheme.展开更多
车到车(vehicle to vehicle,V2V)通信因其复杂恶劣的信道环境,对系统的信道估计性能提出了更高的要求.针对IEEE 802.11p协议中导频过少无法准确跟踪频率选择性衰落信道的问题,提出了一种基于交错导频辅助的信道估计与跟踪方法.该方法将...车到车(vehicle to vehicle,V2V)通信因其复杂恶劣的信道环境,对系统的信道估计性能提出了更高的要求.针对IEEE 802.11p协议中导频过少无法准确跟踪频率选择性衰落信道的问题,提出了一种基于交错导频辅助的信道估计与跟踪方法.该方法将相邻符号的导频交错排布,利用相邻符号间信道的高度相关性,对前后时刻导频位置的信道估计结果进行插值运算,对V2V信道进行实时跟踪,在不改变IEEE 802.11p数据传输效率的前提下,其误码率性能在空旷高速的通信场景下明显优于基于原导频辅助的信道估计与跟踪方法.在所提出的交错导频框架下,针对不同V2V通信场景的特点选择合适的信道估计方案,可以较大程度地提高IEEE 802.11p的系统性能.展开更多
基金supported by the Spanish Ministry of Science,Education and Universities,the European Regional Development Fund and the State Research Agency,Grant No.RTI2018-098156-B-C52.
文摘IEEE 802.11ah is a new Wi-Fi standard for sub-1Ghz communications,aiming to address the challenges of the Internet of Things(IoT).Significant changes in the legacy 802.11 standards have been proposed to improve the network performance in high contention scenarios,the most important of which is the Restricted Access Window(RAW)mechanism.This mechanism promises to increase the throughput and energy efficiency by dividing stations into different groups.Under this scheme,only the stations belonging to the same group may access the channel,which reduces the collision probability in dense scenarios.However,the standard does not define the RAW grouping strategy.In this paper,we develop a new mathematical model based on the renewal theory,which allows for tracking the number of transmissions within the limited RAW slot contention period defined by the standard.We then analyze and evaluate the performance of RAW mechanism.We also introduce a grouping scheme to organize the stations and channel access time into different groups within the RAW.Furthermore,we propose an algorithm to derive the RAW configuration parameters of a throughput maximizing grouping scheme.We additionally explore the impact of channel errors on the contention within the time-limited RAW slot and the overall RAW optimal configuration.The presented analytical framework can be applied to many other Wi-Fi standards that integrate periodic channel reservations.Extensive simulations using the MATLAB software validate the analytical model and prove the effectiveness of the proposed RAW configuration scheme.