Coal-fired Integrated Gasification Combined Cycle (IGCC) and Integrated coal Gasification Fuel-cell Com- bined cycle (IGFC) are being developed as high-efficiency electric power generation technology. However, the...Coal-fired Integrated Gasification Combined Cycle (IGCC) and Integrated coal Gasification Fuel-cell Com- bined cycle (IGFC) are being developed as high-efficiency electric power generation technology. However, the highest theoretical gross thermal efficiency of the conventional IGCC]IGFC is still below 52~. In order to obtain higher power generation efficiency, an advanced IGCC (A-IGCC) or advanced IGFC (A-IGFC) sys- tem making use of the exergy recuperation concept by recycling waste heat from gas turbine or fuel cells for steam gasification of coal and biomass was proposed in our laboratory, Corresponding to this system, a novel high-density triple-bed combined circulating fluidized bed (TBCFB) gasifier, composed of a downer pyrolyzer, a bubbling fluidized bed char gasifier, and a riser combustor, was proposed to replace traditional gasifiers such as the entrained flow bed gasifier. The new system is expected to more effectively utilize the waste heat from gas turbines or fuel cells and the heat produced by the combustion of the unreacted char in the riser combustor for pyrolysis and gasification of coal and biomass. In this short review, the advantages and future challenges in the development of high-density TBCFB gasifier are presented and discussed.展开更多
Coal has been the main energy source in China for a long period.Therefore,the energy industry must improve coal power generation efficiency and achieve near-zero CO_(2) emissions.Integrated gasification fuel cell(IGFC...Coal has been the main energy source in China for a long period.Therefore,the energy industry must improve coal power generation efficiency and achieve near-zero CO_(2) emissions.Integrated gasification fuel cell(IGFC)systems that combine coal gasification and high-temperature fuel cells,such as solid oxide fuel cells or molten carbonate fuel cells(MCFCs),are proving to be promising for efficient and clean power generation,compared with traditional coal-fired power plants.In 2017,with the support of National Key R&D Program of China,a consortium led by the China Energy Group and including 12 institutions was formed to develop the advanced IGFC technology with near-zero CO_(2) emissions.The objectives of this project include understanding the performance of an IGFC power generation system under different operating conditions,designing master system principles for engineering optimization,developing key technologies and intellectual property portfolios,setting up supply chains for key materials and equipment,and operating the first megawatt IGFC demonstration system with near-zero CO_(2) emission,in early 2022.In this paper,the main developments and projections pertaining to the IGFC project are highlighted.展开更多
Changes are needed to improve the efficiency and lower the CO_(2)emissions of traditional coal-fired power generation,which is the main source of global CO_(2)emissions.The integrated gasification fuel cell(IGFC)proce...Changes are needed to improve the efficiency and lower the CO_(2)emissions of traditional coal-fired power generation,which is the main source of global CO_(2)emissions.The integrated gasification fuel cell(IGFC)process,which combines coal gasification and high-temperature fuel cells,was proposed in 2017 to improve the efficiency of coal-based power generation and reduce CO_(2)emissions.Supported by the National Key R&D Program of China,the IGFC for nearzero CO_(2)emissions program was enacted with the goal of achieving near-zero CO_(2)emissions based on(1)catalytic combustion of the flue gas from solid oxide fuel cell(SOFC)stacks and(2)CO_(2)conversion using solid oxide electrolysis cells(SOECs).In this work,we investigated a kW-level catalytic combustion burner and SOEC stack,evaluated the electrochemical performance of the SOEC stack in H2O electrolysis and H2O/CO_(2)co-electrolysis,and established a multiscale and multi-physical coupling simulation model of SOFCs and SOECs.The process developed in this work paves the way for the demonstration and deployment of IGFC technology in the future.展开更多
Coal-fired power generation is the main source of CO_(2)emission in China.To solve the problems of declined efficiency and increased costs caused by CO_(2)capture in coal-fired power systems,an integrated gasification...Coal-fired power generation is the main source of CO_(2)emission in China.To solve the problems of declined efficiency and increased costs caused by CO_(2)capture in coal-fired power systems,an integrated gasification fuel cell(IGFC)power generation technology was developed.The interaction mechanisms among coal gasification and purification,fuel cell and other components were further studied for IGFCs.Towards the direction of coal gasification and purification,we studied gasification reaction characteristics of ultrafine coal particles,ash melting characteristics and their effects on coal gasification reactions,the formation mechanism of pollutants.We further develop an elevated temperature/pressure swing adsorption rig for simultaneous H_(2)S and CO_(2)removals.The results show the validity of the Miura-Maki model to describe the gasification of Shenhua bituminous coal with a good fit between the predicted DTG curves and experimental data.The designed 8–6–1 cycle procedure can effectively remove CO_(2)and H_(2)S simultaneously with removal rate over 99.9%.In addition,transition metal oxides used as mercury removal adsorbents in coal gasified syngas were shown with great potential.The techniques presented in this paper can improve the gasification efficiency and reduce the formation of pollutants in IGFCs.展开更多
Abstract Here,we provide a status update of an integrated gasification fuel cell(IGFC)power-generation system being developed at the National Institute of Clean-and-Low-Carbon in China at the megawatt thermal(MWth)sca...Abstract Here,we provide a status update of an integrated gasification fuel cell(IGFC)power-generation system being developed at the National Institute of Clean-and-Low-Carbon in China at the megawatt thermal(MWth)scale.This system is designed to use coal as fuel to produce syngas as a first step,similar to that employed for the integrated gasification combined cycle.Subsequently,the solid-oxide fuel-cell(SOFC)system is used to convert chemical energy to electricity directly through an electrochemical reaction without combustion.This system leads to higher efficiency as compared with that from a traditional coal-fired power plant.The unreacted fuel in the SOFC system is transported to an oxygencombustor to be converted to steam and carbon dioxide(CO_(2)).Through a heat-recovery system,the steam is condensed and removed,and CO_(2) is enriched and captured for sequestration or utilization.Comprehensive economic analyses for a typical IGFC system was performed and the results were compared with those for a supercritical pulverized coal-fired power plant.The SOFC stacks selected for IGFC development were tested and qualified under hydrogen and simulated coal syngas fuel.Experimental results using SOFC stacks and thermodynamic analyses indicated that the control of hydrogen/CO ratio of syngas and steam/CO ratio is important to avoid carbon deposition with the fuel pipe.A 20-kW SOFC unit is under development with design power output of 20 kW and DC efficiency of 50.41%.A 100 kW-level subsystem will consist of 6920-kW power-generation units,and the MWth IGFC system will consist of 59100 kWlevel subsystems.展开更多
As the demand for green energy with high efficiency and low carbon dioxide(CO2)emissions has increased,solid oxide fuel cells(SOFCs)have been intensively developed in recent years.Integrated gasification fuel cells(IG...As the demand for green energy with high efficiency and low carbon dioxide(CO2)emissions has increased,solid oxide fuel cells(SOFCs)have been intensively developed in recent years.Integrated gasification fuel cells(IGFCs)in particular show potential for large-scale power generation to further increase system efficiency.Thus,for commercial application of IGFCs,it is important to design reliable multi-stacks for large systems that show long-term stability and practical fuel gas for application to industrial equipment.In this work,a test rig(of a 5 kW SOFC system,with syngas from industrial gasifiers as fuel)was fabricated and subjected to long-term tests under high fuel utilization to investigate its performance.The maximum steady output power of the system was 5700 W using hydrogen and 5660 W using syngas and the maximum steady electrical efficiency was 61.24%while the fuel utilization efficiency was 89.25%.The test lasted for more than 500 h as the fuel utilization efficiency was larger than 83%.The performances of each stack tower were almost identical at both the initial stage and after long-term operation.After 500 h operation,the performances of the stack towers decreased only slightly under lower current and showed almost no change under high current.These results demonstrate the reliability of the multi-stack design and the prospect of this SOFC power-generation system for further enlarging its application in a MWth demonstration.展开更多
基金supported by the New Energy and Industrial Technology Development Organization(NEDO)
文摘Coal-fired Integrated Gasification Combined Cycle (IGCC) and Integrated coal Gasification Fuel-cell Com- bined cycle (IGFC) are being developed as high-efficiency electric power generation technology. However, the highest theoretical gross thermal efficiency of the conventional IGCC]IGFC is still below 52~. In order to obtain higher power generation efficiency, an advanced IGCC (A-IGCC) or advanced IGFC (A-IGFC) sys- tem making use of the exergy recuperation concept by recycling waste heat from gas turbine or fuel cells for steam gasification of coal and biomass was proposed in our laboratory, Corresponding to this system, a novel high-density triple-bed combined circulating fluidized bed (TBCFB) gasifier, composed of a downer pyrolyzer, a bubbling fluidized bed char gasifier, and a riser combustor, was proposed to replace traditional gasifiers such as the entrained flow bed gasifier. The new system is expected to more effectively utilize the waste heat from gas turbines or fuel cells and the heat produced by the combustion of the unreacted char in the riser combustor for pyrolysis and gasification of coal and biomass. In this short review, the advantages and future challenges in the development of high-density TBCFB gasifier are presented and discussed.
基金This work was financially supported by the National Key R&D Program of China(2017YFB0601900).
文摘Coal has been the main energy source in China for a long period.Therefore,the energy industry must improve coal power generation efficiency and achieve near-zero CO_(2) emissions.Integrated gasification fuel cell(IGFC)systems that combine coal gasification and high-temperature fuel cells,such as solid oxide fuel cells or molten carbonate fuel cells(MCFCs),are proving to be promising for efficient and clean power generation,compared with traditional coal-fired power plants.In 2017,with the support of National Key R&D Program of China,a consortium led by the China Energy Group and including 12 institutions was formed to develop the advanced IGFC technology with near-zero CO_(2) emissions.The objectives of this project include understanding the performance of an IGFC power generation system under different operating conditions,designing master system principles for engineering optimization,developing key technologies and intellectual property portfolios,setting up supply chains for key materials and equipment,and operating the first megawatt IGFC demonstration system with near-zero CO_(2) emission,in early 2022.In this paper,the main developments and projections pertaining to the IGFC project are highlighted.
基金This work was financially supported by the National Key R&D Program of China(2017YFB0601904).
文摘Changes are needed to improve the efficiency and lower the CO_(2)emissions of traditional coal-fired power generation,which is the main source of global CO_(2)emissions.The integrated gasification fuel cell(IGFC)process,which combines coal gasification and high-temperature fuel cells,was proposed in 2017 to improve the efficiency of coal-based power generation and reduce CO_(2)emissions.Supported by the National Key R&D Program of China,the IGFC for nearzero CO_(2)emissions program was enacted with the goal of achieving near-zero CO_(2)emissions based on(1)catalytic combustion of the flue gas from solid oxide fuel cell(SOFC)stacks and(2)CO_(2)conversion using solid oxide electrolysis cells(SOECs).In this work,we investigated a kW-level catalytic combustion burner and SOEC stack,evaluated the electrochemical performance of the SOEC stack in H2O electrolysis and H2O/CO_(2)co-electrolysis,and established a multiscale and multi-physical coupling simulation model of SOFCs and SOECs.The process developed in this work paves the way for the demonstration and deployment of IGFC technology in the future.
基金This work was financially supported by National Key R&D Program of China(2017YFB0601900).
文摘Coal-fired power generation is the main source of CO_(2)emission in China.To solve the problems of declined efficiency and increased costs caused by CO_(2)capture in coal-fired power systems,an integrated gasification fuel cell(IGFC)power generation technology was developed.The interaction mechanisms among coal gasification and purification,fuel cell and other components were further studied for IGFCs.Towards the direction of coal gasification and purification,we studied gasification reaction characteristics of ultrafine coal particles,ash melting characteristics and their effects on coal gasification reactions,the formation mechanism of pollutants.We further develop an elevated temperature/pressure swing adsorption rig for simultaneous H_(2)S and CO_(2)removals.The results show the validity of the Miura-Maki model to describe the gasification of Shenhua bituminous coal with a good fit between the predicted DTG curves and experimental data.The designed 8–6–1 cycle procedure can effectively remove CO_(2)and H_(2)S simultaneously with removal rate over 99.9%.In addition,transition metal oxides used as mercury removal adsorbents in coal gasified syngas were shown with great potential.The techniques presented in this paper can improve the gasification efficiency and reduce the formation of pollutants in IGFCs.
基金The authors thank the Ministry of Science and Technology of the People’s Republic of China for financial support under contract of 2017YEB061900。
文摘Abstract Here,we provide a status update of an integrated gasification fuel cell(IGFC)power-generation system being developed at the National Institute of Clean-and-Low-Carbon in China at the megawatt thermal(MWth)scale.This system is designed to use coal as fuel to produce syngas as a first step,similar to that employed for the integrated gasification combined cycle.Subsequently,the solid-oxide fuel-cell(SOFC)system is used to convert chemical energy to electricity directly through an electrochemical reaction without combustion.This system leads to higher efficiency as compared with that from a traditional coal-fired power plant.The unreacted fuel in the SOFC system is transported to an oxygencombustor to be converted to steam and carbon dioxide(CO_(2)).Through a heat-recovery system,the steam is condensed and removed,and CO_(2) is enriched and captured for sequestration or utilization.Comprehensive economic analyses for a typical IGFC system was performed and the results were compared with those for a supercritical pulverized coal-fired power plant.The SOFC stacks selected for IGFC development were tested and qualified under hydrogen and simulated coal syngas fuel.Experimental results using SOFC stacks and thermodynamic analyses indicated that the control of hydrogen/CO ratio of syngas and steam/CO ratio is important to avoid carbon deposition with the fuel pipe.A 20-kW SOFC unit is under development with design power output of 20 kW and DC efficiency of 50.41%.A 100 kW-level subsystem will consist of 6920-kW power-generation units,and the MWth IGFC system will consist of 59100 kWlevel subsystems.
基金This work was supported by the National Key R&D Program of China(2017YFB0601900).
文摘As the demand for green energy with high efficiency and low carbon dioxide(CO2)emissions has increased,solid oxide fuel cells(SOFCs)have been intensively developed in recent years.Integrated gasification fuel cells(IGFCs)in particular show potential for large-scale power generation to further increase system efficiency.Thus,for commercial application of IGFCs,it is important to design reliable multi-stacks for large systems that show long-term stability and practical fuel gas for application to industrial equipment.In this work,a test rig(of a 5 kW SOFC system,with syngas from industrial gasifiers as fuel)was fabricated and subjected to long-term tests under high fuel utilization to investigate its performance.The maximum steady output power of the system was 5700 W using hydrogen and 5660 W using syngas and the maximum steady electrical efficiency was 61.24%while the fuel utilization efficiency was 89.25%.The test lasted for more than 500 h as the fuel utilization efficiency was larger than 83%.The performances of each stack tower were almost identical at both the initial stage and after long-term operation.After 500 h operation,the performances of the stack towers decreased only slightly under lower current and showed almost no change under high current.These results demonstrate the reliability of the multi-stack design and the prospect of this SOFC power-generation system for further enlarging its application in a MWth demonstration.