In this paper, a 30 GHz wide locking-range (26.2 GHz-35.7 GHz) direct injection-locked frequency divider (ILFD), which operating in the millimeter-wave (MMW) band, is presented. The locking range of the ILFD is extend...In this paper, a 30 GHz wide locking-range (26.2 GHz-35.7 GHz) direct injection-locked frequency divider (ILFD), which operating in the millimeter-wave (MMW) band, is presented. The locking range of the ILFD is extended by using differential injection topology. Besides, varactors are used in RLC resonant tank for extending the frequency tuning range. The post simulation results show that a wide locking-range of 9.5 GHz (30.7%) is achieved. When the VCO output frequency varies from 26.85 GHz to 34.42 GHz, the proposed ILFD can achieve divide-by-two correctly. Designed in 0.13 μm CMOS technology, the ILFD occupies a core area of 0.76 mm2 while drawing 7 mA of current from 2.5 V power supply.展开更多
毫米波频率综合器中的重要模块之一高速可编程多模分频器,它主要用于对VCO的输出信号进行分频从而获得稳定的本振信号,它的性能影响整个毫米波频率综合器性能。本文设计的一种高速、低功耗、分频比可变的分频器具有非常重要的意义[1]。...毫米波频率综合器中的重要模块之一高速可编程多模分频器,它主要用于对VCO的输出信号进行分频从而获得稳定的本振信号,它的性能影响整个毫米波频率综合器性能。本文设计的一种高速、低功耗、分频比可变的分频器具有非常重要的意义[1]。根据26 GHz-41 GHz硅基锁相环频率综合器的系统指标,本文基于TSMC 45nm CMOS工艺,设计实现了一种高速可编程分频器。本文采用注入锁定结构分频结构实现高速预分频,该结构可以实现在0 d Bm的输入功率下实现25 GHz-48 GHz的分频范围、最低功耗为:2.6 m W。基于脉冲吞咽计数器的可编程分频器由8/9双模分频器和可编程脉冲吞咽计数器组成。其中8/9双模分频器由同步4/5分频器和异步二分频构成,工作频率范围10 GHz-27 GHz,最低输入幅度为:300 m V,最低功耗为:1.6 m V。可编程吞咽计数器采用改进型带置数功能的TSPC D触发器,该可编程分频器的最大工作范围:25 GHz;最小功耗为:363μW。本文设计的高速可编程多模分频器,可以实现32-2 062的分频比;当工作于28 GHz时,相位噪声小于-159 dBc/Hz。动态功耗为5.2 m W。展开更多
This paper proposes a direct injection-locked frequency divider(ILFD) with a wide locking range in the Ka-band. A complementary cross-coupled architecture is used to enhance the overdriving voltage of the switch tra...This paper proposes a direct injection-locked frequency divider(ILFD) with a wide locking range in the Ka-band. A complementary cross-coupled architecture is used to enhance the overdriving voltage of the switch transistor so that the divider locking range is extended efficiently. New insights into the locking range and output power are proposed. A new method to analyze and optimize the injection sensitivity is presented and a layout technique to reduce the parasitics of the cross-coupled transistors is applied to decrease the frequency shift and the locking range degradation. The circuit is designed in a standard 90-nm CMOS process. The total locking range of the ILFD is 43.8% at 34.5 GHz with an incident power of –3.5 dBm. The divider IC consumes 3.6 mW of power at the supply voltage of 1.2 V. The chip area including the pads is 0.50.5 mm2.展开更多
This paper describes a divide-by-two injection-locked frequency divider (ILFD) for frequency synthesizers as used in multiband orthogonal frequency division multiplexing (OFDM) ultra-wideband (UWB) systems. By m...This paper describes a divide-by-two injection-locked frequency divider (ILFD) for frequency synthesizers as used in multiband orthogonal frequency division multiplexing (OFDM) ultra-wideband (UWB) systems. By means of dual-injection technique and other conventional tuning techniques, such as DCCA and varactor tuning, the divider demonstrates a wide locking range while consuming much less power. The chip was fabricated in the Jazz 0.18μm RF CMOS process. The measurement results show that the divider achieves a locking range of 4.85 GHz (6.23 to 11.08 GHz) at an input power of 8 dBm. The core circuit without the test buffer consumes only 3.7 mA from a 1.8 V power supply and has a die area of 0.38×0.28 mm^2. The wide locking range combined with low power consumption makes the ILFD suitable for its application in UWB systems.展开更多
We present a 31–45.5 GHz injection-locked frequency divider(ILFD) implemented in a standard 90-nm CMOS process. To reduce parasitic capacitance and increase the operating frequency, an NMOS-only cross-coupled pair is...We present a 31–45.5 GHz injection-locked frequency divider(ILFD) implemented in a standard 90-nm CMOS process. To reduce parasitic capacitance and increase the operating frequency, an NMOS-only cross-coupled pair is adopted to provide negative resistance. Acting as an adjustable resistor, an NMOS transistor with a tunable gate bias voltage is connected to the differential output terminals for locking range extension. Measurements show that the designed ILFD can be fully functional in a wide locking range and provides a good figure-of-merit. Under a 1 V tunable bias voltage, the self-resonant frequency of the divider is 19.11 GHz and the maximum locking range is 37.7% at 38.5 GHz with an input power of 0 d Bm. The power consumption is 2.88 m W under a supply voltage of 1.2 V. The size of the chip including the pads is 0.62 mm×0.42 mm.展开更多
文摘In this paper, a 30 GHz wide locking-range (26.2 GHz-35.7 GHz) direct injection-locked frequency divider (ILFD), which operating in the millimeter-wave (MMW) band, is presented. The locking range of the ILFD is extended by using differential injection topology. Besides, varactors are used in RLC resonant tank for extending the frequency tuning range. The post simulation results show that a wide locking-range of 9.5 GHz (30.7%) is achieved. When the VCO output frequency varies from 26.85 GHz to 34.42 GHz, the proposed ILFD can achieve divide-by-two correctly. Designed in 0.13 μm CMOS technology, the ILFD occupies a core area of 0.76 mm2 while drawing 7 mA of current from 2.5 V power supply.
文摘毫米波频率综合器中的重要模块之一高速可编程多模分频器,它主要用于对VCO的输出信号进行分频从而获得稳定的本振信号,它的性能影响整个毫米波频率综合器性能。本文设计的一种高速、低功耗、分频比可变的分频器具有非常重要的意义[1]。根据26 GHz-41 GHz硅基锁相环频率综合器的系统指标,本文基于TSMC 45nm CMOS工艺,设计实现了一种高速可编程分频器。本文采用注入锁定结构分频结构实现高速预分频,该结构可以实现在0 d Bm的输入功率下实现25 GHz-48 GHz的分频范围、最低功耗为:2.6 m W。基于脉冲吞咽计数器的可编程分频器由8/9双模分频器和可编程脉冲吞咽计数器组成。其中8/9双模分频器由同步4/5分频器和异步二分频构成,工作频率范围10 GHz-27 GHz,最低输入幅度为:300 m V,最低功耗为:1.6 m V。可编程吞咽计数器采用改进型带置数功能的TSPC D触发器,该可编程分频器的最大工作范围:25 GHz;最小功耗为:363μW。本文设计的高速可编程多模分频器,可以实现32-2 062的分频比;当工作于28 GHz时,相位噪声小于-159 dBc/Hz。动态功耗为5.2 m W。
基金Project supported by the National Basic Research Program(No.2010CB327404)the National High Technology Researchand Development Program of China(No.2011AA10305)+1 种基金the International Cooperation Projects in Science and Technology(No.2011DFA11310)the National Natural Science Foundation of China(Nos.60901012,61106024)
文摘This paper proposes a direct injection-locked frequency divider(ILFD) with a wide locking range in the Ka-band. A complementary cross-coupled architecture is used to enhance the overdriving voltage of the switch transistor so that the divider locking range is extended efficiently. New insights into the locking range and output power are proposed. A new method to analyze and optimize the injection sensitivity is presented and a layout technique to reduce the parasitics of the cross-coupled transistors is applied to decrease the frequency shift and the locking range degradation. The circuit is designed in a standard 90-nm CMOS process. The total locking range of the ILFD is 43.8% at 34.5 GHz with an incident power of –3.5 dBm. The divider IC consumes 3.6 mW of power at the supply voltage of 1.2 V. The chip area including the pads is 0.50.5 mm2.
基金supported by the National Program of the 11th 5-Year-Plan(No.51308020403)the IC Design Program of the Shanghai Science Committee(No.08706200700)
文摘This paper describes a divide-by-two injection-locked frequency divider (ILFD) for frequency synthesizers as used in multiband orthogonal frequency division multiplexing (OFDM) ultra-wideband (UWB) systems. By means of dual-injection technique and other conventional tuning techniques, such as DCCA and varactor tuning, the divider demonstrates a wide locking range while consuming much less power. The chip was fabricated in the Jazz 0.18μm RF CMOS process. The measurement results show that the divider achieves a locking range of 4.85 GHz (6.23 to 11.08 GHz) at an input power of 8 dBm. The core circuit without the test buffer consumes only 3.7 mA from a 1.8 V power supply and has a die area of 0.38×0.28 mm^2. The wide locking range combined with low power consumption makes the ILFD suitable for its application in UWB systems.
基金Project supported by the National Basic Research Program(973)of China(No.2010CB327404)the National High-Tech R&D Program(863)of China(No.2011AA10305)the National Natural Science Foundation of China(Nos.60901012 and 61106024)
文摘We present a 31–45.5 GHz injection-locked frequency divider(ILFD) implemented in a standard 90-nm CMOS process. To reduce parasitic capacitance and increase the operating frequency, an NMOS-only cross-coupled pair is adopted to provide negative resistance. Acting as an adjustable resistor, an NMOS transistor with a tunable gate bias voltage is connected to the differential output terminals for locking range extension. Measurements show that the designed ILFD can be fully functional in a wide locking range and provides a good figure-of-merit. Under a 1 V tunable bias voltage, the self-resonant frequency of the divider is 19.11 GHz and the maximum locking range is 37.7% at 38.5 GHz with an input power of 0 d Bm. The power consumption is 2.88 m W under a supply voltage of 1.2 V. The size of the chip including the pads is 0.62 mm×0.42 mm.