Based on nonimaging design method, uniform illuminance systems with LED source were developed to create a uniform illuminated circular region with a desired size in a screen at a prescribed place. By using ray-tracing...Based on nonimaging design method, uniform illuminance systems with LED source were developed to create a uniform illuminated circular region with a desired size in a screen at a prescribed place. By using ray-tracing software based on Monte-Carlo method, the simulation results show that in the illuminated region the luminous uniformity is higher than 90%.展开更多
A new approach has been proposed to improve the performance of the in-telligent lighting system by estimating personal illuminance and desired color temperature at the workplace. We are considering the problem of usin...A new approach has been proposed to improve the performance of the in-telligent lighting system by estimating personal illuminance and desired color temperature at the workplace. We are considering the problem of using the sensing devices manually for the intelligent lighting system. The lighting control system has not become useful without sensing devices to measure the provided illuminance and color temperature. In this paper, we have used the property of light for the color temperature to estimate the level of color temperature for each user at the workplace. The new method will give personal illuminance for each user at the workplace and decrease the power consumption of the environment as well. As a result, the proposed method of the intelligent lighting system has realized the target of illuminance and color temperature for each user at the workplace by adapting dimming levels using illuminance sensing information for each user. Thus, the energy of the workplace has reduced by using a distributed luminance to realize the target for each user.展开更多
With urbanization and the rapid development of social economy,China’s rail transit industry has developed rapidly in recent years.In order to alleviate the pressure of road network,subways provide convenience as they...With urbanization and the rapid development of social economy,China’s rail transit industry has developed rapidly in recent years.In order to alleviate the pressure of road network,subways provide convenience as they are fast and space-saving.Subway stations are major energy consumers of urban power grid due to their large traffic volume and long operation time.On the premise of ensuring operation safety,reducing the energy consumption of subway helps in energy conservation and emission reduction as proposed in the 13th Five-Year Plan.According to the statistics of the energy-saving evaluation report of rail transit engineering,the lighting system accounts for 20%-30%of the total power consumption of the subway station.Due to the single lighting control mode of the lighting system in the subway station,the actual station illumination cannot be reported and adjusted in time,resulting in the waste of lighting energy and high power consumption of the system.Through in-depth research on the intelligent lighting system of subway station,this paper improves the system control,and finally summarizes the optimization scheme of subway station lighting design which can effectively save the power consumption of lighting system.The main contents of this paper are as follows:The research results of this paper can provide effective measures for energy saving of electric lighting in subway stations and reduce electric energy consumption;on the other hand,as an integral part of building lighting energy-saving system,it also has certain guiding significance for the research of building lighting energy-saving.展开更多
Strict requirement of a coherent spectrum in coherent diffractive imaging(CDI)architectures poses a significant obstacle to achieving efficient photon utilization across the full spectrum.To date,nearly all broadband ...Strict requirement of a coherent spectrum in coherent diffractive imaging(CDI)architectures poses a significant obstacle to achieving efficient photon utilization across the full spectrum.To date,nearly all broadband computational imaging experiments have relied on accurate spectroscopic measurements,as broad spectra are incompatible with conventional CDI systems.This paper presents an advanced approach to broaden the scope of CDI to ultra-broadband illumination with unknown probe spectrum,effectively addresses the key challenges encountered by existing state-ofthe-art broadband diffractive imaging frameworks.This advancement eliminates the necessity for prior knowledge of probe spectrum and relaxes constraints on non-dispersive samples,resulting in a significant extension in spectral bandwidth,achieving a nearly fourfold improvement in bandlimit compared to the existing benchmark.Our method not only monochromatizes a broadband diffraction pattern from unknown illumination spectrum,but also determines the compressive sampled profile of spectrum of the diffracted radiation.This superiority is experimentally validated using both CDI and ptychography techniques on an ultra-broadband supercontinuum with relative bandwidth exceeding 40%,revealing a significantly enhanced coherence and improved reconstruction with high fidelity under ultra-broadband illumination.展开更多
Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditiona...Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.展开更多
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ...This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.展开更多
Semantic segmentation of driving scene images is crucial for autonomous driving.While deep learning technology has significantly improved daytime image semantic segmentation,nighttime images pose challenges due to fac...Semantic segmentation of driving scene images is crucial for autonomous driving.While deep learning technology has significantly improved daytime image semantic segmentation,nighttime images pose challenges due to factors like poor lighting and overexposure,making it difficult to recognize small objects.To address this,we propose an Image Adaptive Enhancement(IAEN)module comprising a parameter predictor(Edip),multiple image processing filters(Mdif),and a Detail Processing Module(DPM).Edip combines image processing filters to predict parameters like exposure and hue,optimizing image quality.We adopt a novel image encoder to enhance parameter prediction accuracy by enabling Edip to handle features at different scales.DPM strengthens overlooked image details,extending the IAEN module’s functionality.After the segmentation network,we integrate a Depth Guided Filter(DGF)to refine segmentation outputs.The entire network is trained end-to-end,with segmentation results guiding parameter prediction optimization,promoting self-learning and network improvement.This lightweight and efficient network architecture is particularly suitable for addressing challenges in nighttime image segmentation.Extensive experiments validate significant performance improvements of our approach on the ACDC-night and Nightcity datasets.展开更多
AIM:To evaluate the efficacy and safety of Usights UC100 illuminated microcatheter in microcatheter-assisted trabeculotomy(MAT).METHODS:Totally 10 eyes of 10 patients with primary open angle glaucoma(POAG)who underwen...AIM:To evaluate the efficacy and safety of Usights UC100 illuminated microcatheter in microcatheter-assisted trabeculotomy(MAT).METHODS:Totally 10 eyes of 10 patients with primary open angle glaucoma(POAG)who underwent MAT facilitated by Usights UC100(5 eyes)or iTrack(5 eyes)were reviewed.The success of this surgery was defined as intraocular pressure(IOP)<22 mm Hg with>30%reduction,without oral glaucoma medications,or additional glaucoma surgery.RESULTS:The mean pre-operative IOP was 25.38±10.22 mm Hg in the Usights UC100 group and 19.98±3.87 mm Hg in the iTrack group.MAT was achieved in all eyes in both groups.The success rates for the Usights UC100 group and iTrack groups were in all and 4 eyes,respectively.Both microcatheters produced a statistically significant reduction in IOP,and eyes using Usights UC100 achieved a lower IOP than the iTrack group at 3mo followup(12.58±1.52 and 14.84±1.89 mm Hg,respectively),but no statistical significance was there.No severe side effects were observed in either group.CONCLUSION:MAT using Usights UC100 or iTrack both achieve significant pressure reduction in cases of POAG,and Usights UC100 is as safe as iTrack.展开更多
The relationship between the observed order of reaction of photodegradation of nitrofurazone solution and the illuminance of incident light as well as the concentration of the solution was studied, In the studies, the...The relationship between the observed order of reaction of photodegradation of nitrofurazone solution and the illuminance of incident light as well as the concentration of the solution was studied, In the studies, the solutions of three concentrations were exposed to light with three different illuminance values, respectively, The results indicated that the observed order of reaction was increased with the decrease of concentration, when the illuminance was kept constant, and with the increase of illuminance when the concentration was kept constant. The observed order of reaction of photodegradation of nitrofurazone solution depended on both the concentration of the drug and the illuminance of the incident light.展开更多
In lighting design,mean room surface exitance(MRSE)has been known as an indicator of the adequacy of illumination in an indoor space.Recent studies have suggested an exponential model relating MRSE and the observer’s...In lighting design,mean room surface exitance(MRSE)has been known as an indicator of the adequacy of illumination in an indoor space.Recent studies have suggested an exponential model relating MRSE and the observer’s retinal response.This is particularly applicable in a room with homogenous room surface reflectance and a constant total corneal illuminance,which is the total illuminance received at the eye.However,accuracy of the exponential model is yet to be assessed in detail.Furthermore,the implication on interior lighting design is also yet to be quantified.This study thus aims to assess the accuracy of the exponential model and to optimise the output variables.Random computations using Monte Carlo simulation are performed for various input variables,followed with sensitivity and uncertainty analyses and optimisation.Prediction errors of the exponential model are found between-10%and 6%.The MRSE is highly influenced by surface reflectance,whereas the total corneal illuminance is influenced by the source luminous flux.Optimum design parameters are obtained by minimising the ratio between total corneal illuminance and MRSE.Overall,this study provides guidelines in lighting design practice for enhancing room spatial brightness while minimising energy use.展开更多
We report a comprehensive numerical study of super resolution (SR) structured illumination microscopy (SIM) utilizing the classic Heintzmann-Cremer SIM process and algorithm. In particular, we investigated the impact ...We report a comprehensive numerical study of super resolution (SR) structured illumination microscopy (SIM) utilizing the classic Heintzmann-Cremer SIM process and algorithm. In particular, we investigated the impact of the diffraction limit of the underlying imaging system on the optimal SIM grating frequency that can be used to obtain the highest SR enhancement with non-continuous spatial frequency support. Besides confirming the previous theoretical and experimental work that SR-SIM can achieve an enhancement close to 3 times the diffraction limit with grating pattern illuminations, we also observe and report a series of more subtle effects of SR-SIM with non-continuous spatial frequency support. Our simulations show that when the SIM grating frequency exceeds twice that of the diffraction limit, the higher SIM grating frequency can help achieve a higher SR enhancement for the underlying imaging systems whose diffraction limit is low, though this enhancement is obtained at the cost of losing resolution at some lower resolution targets. Our simulations also show that, for underlying imaging systems with high diffraction limits, however, SR-SIM grating frequencies above twice the diffraction limits tend to bring no significant extra enhancement. Furthermore, we observed that there exists a limit grating frequency above which the SR enhancement effect is lost, and the reconstructed images essentially have the same resolution as the one obtained directly from the underlying imaging system without using the SIM process.展开更多
The lighting environment is one of the indoor environmental factors that may influence creativity.The combined effects of illumination(300 lx vs.2000 lx)and color temperature(3000 K vs.6000 K)on mood and creativity we...The lighting environment is one of the indoor environmental factors that may influence creativity.The combined effects of illumination(300 lx vs.2000 lx)and color temperature(3000 K vs.6000 K)on mood and creativity were investigated in 24 participants.During exposure,participants completed questionnaires to assess their mood and lighting perceptions,performed creative and analytical tasks,and collected saliva samples for analysis of melatonin concentration.An interactive effect of illuminance and color temperature on the mood was observed.The participants performed better on the performance of Flexibility,Fluency and Originality in the verbal creative task when they expressed higher positive mood(at 2000 lx,6000 K and 300 lx,3000 K)and performed better on the performance of Resistance to closure in the figural creative task when they reported the lowest positive mood(at 2000 lx,3000 K).Analytical thinking,including calculation and echoic memory skills,was facilitated at the lighting setting(300 lx,6000 K)that induced the least affective intensity.No significant difference in melatonin concentration was observed.This evidence implies that the affective state of the occupants was influenced by light and that their creative performance was altered accordingly.These findings will help to elaborate a design guideline on the lighting environment according to the specific needs of different tasks.展开更多
A 300 μm×300 μm light emitting diode(LED) chip is divided into nine 80 μm×80 μm units with 30 μm spacing between adjacent ones. After arraying, the total saturation light output power and the maximum in...A 300 μm×300 μm light emitting diode(LED) chip is divided into nine 80 μm×80 μm units with 30 μm spacing between adjacent ones. After arraying, the total saturation light output power and the maximum injection current are enhanced by 5.19 times and nearly 7 times, respectively. In addition, the test results demonstrate that the illuminance uniformity on the receiving surface reaches the optimum when the spacing between the arrays is equal to the maximum flat condition. The larger the number of arrays, the greater the area with uniform illuminance on the receiving surface.展开更多
Structured illumination microscopy(SIM)is one of the most widely applied wide field super resolution imaging techniques with high temporal resolution and low phototoxicity.The spatial resolution of SIM is typically li...Structured illumination microscopy(SIM)is one of the most widely applied wide field super resolution imaging techniques with high temporal resolution and low phototoxicity.The spatial resolution of SIM is typically limited to two times of the diffraction limit and the depth of field is small.In this work,we propose and experimentally demonstrate a low cost,easy to implement,novel technique called speckle structured illumination endoscopy(SSIE)to enhance the resolution of a wide field endoscope with large depth of field.Here,speckle patterns are used to excite objects on the sample which is then followed by a blind-SIM algorithm for super resolution image reconstruction.Our approach is insensitive to the 3D morphology of the specimen,or the deformation of illuminations used.It greatly simplifies the experimental setup as there are no calibration protocols and no stringent control of illumination patterns nor focusing optics.We demonstrate that the SSIE can enhance the resolution 2–4.5 times that of a standard white light endoscopic(WLE)system.The SSIE presents a unique route to super resolution in endoscopic imaging at wide field of view and depth of field,which might be beneficial to the practice of clinical endoscopy.展开更多
Fluorescence imaging through the second near-infrared window(NIR-Ⅱ,1000–1700 nm) allows in-depth imaging.However, current imaging systems use wide-field illumination and can only provide low-contrast 2D information,...Fluorescence imaging through the second near-infrared window(NIR-Ⅱ,1000–1700 nm) allows in-depth imaging.However, current imaging systems use wide-field illumination and can only provide low-contrast 2D information, without depth resolution. Here, we systematically apply a light-sheet illumination, a time-gated detection, and a deep-learning algorithm to yield high-contrast high-resolution volumetric images. To achieve a large Fo V(field of view) and minimize the scattering effect, we generate a light sheet as thin as 100.5 μm with a Rayleigh length of 8 mm to yield an axial resolution of 220 μm. To further suppress the background, we time-gate to only detect long lifetime luminescence achieving a high contrast of up to 0.45 Icontrast. To enhance the resolution, we develop an algorithm based on profile protrusions detection and a deep neural network and distinguish vasculature from a low-contrast area of 0.07 Icontrast to resolve the 100μm small vessels. The system can rapidly scan a volume of view of 75 × 55 × 20 mm3and collect 750 images within 6mins. By adding a scattering-based modality to acquire the 3D surface profile of the mice skin, we reveal the whole volumetric vasculature network with clear depth resolution within more than 1 mm from the skin. High-contrast large-scale 3D animal imaging helps us expand a new dimension in NIR-Ⅱ imaging.展开更多
We propose a method of complex-amplitude Fourier single-pixel imaging(CFSI)with coherent structured illumination to acquire both the amplitude and phase of an object.In the proposed method,an object is illustrated by ...We propose a method of complex-amplitude Fourier single-pixel imaging(CFSI)with coherent structured illumination to acquire both the amplitude and phase of an object.In the proposed method,an object is illustrated by a series of coherent structured light fields,which are generated by a phase-only spatial light modulator,the complex Fourier spectrum of the object can be acquired sequentially by a single-pixel photodetector.Then the desired complex-amplitude image can be retrieved directly by applying an inverse Fourier transform.We experimentally implemented this CFSI with several different types of objects.The experimental results show that the proposed method provides a promising complex-amplitude imaging approach with high quality and a stable configuration.Thus,it might find broad applications in optical metrology and biomedical science.展开更多
The Orchidaceae,which is one of the most interesting families of angiosperms,contains a large number of rare species.Despite their acknowledged importance,little attention has been paid to the study of orchids distrib...The Orchidaceae,which is one of the most interesting families of angiosperms,contains a large number of rare species.Despite their acknowledged importance,little attention has been paid to the study of orchids distributed in northern territories.In this study,we determined the syntaxonomical diversity and ecological parameters of orchid habitats in two of Europe's largest protected areas,the Pechoro-Ilychsky Reserve and the Yugyd Va National Park(northeastern European Russia),and then compared our findings to those in other parts of orchid distribution ranges.For this purpose,we studied 345 descriptions of plant communities(releves) containing species from Orchidaceae and defined habitat parameters using Ellenberg indicator values with the community weight mean approach,nonmetric multidimensional scaling(NMS),and relative niche width.We found that orchids were distributed in eight habitat types and 97 plant associations.The largest number of orchid species is found in forest communities.Half of the orchid species under study occur in the mires and rock habitats with open vegetation.Several orchids consistently occur in areas disturbed by human activity.In addition,our study indicates that the main drivers of orchid distribution across the vegetation types are light and soil nitrogen.Our analysis of the ecological parameters of orchid habitats indicates that some orchid species can be classified as habitat specialists that are confined to a relatively narrow ecological niche in the Urals(e.g.,Goodyera repens,Cypripedium guttatum and Dactylorhiza maculata).Several other species(e.g.Neottia cordata and Dactylorhiza fuchsia) grow under diverse ecological parameters.展开更多
The miniaturized femtosecond laser in near infrared-Ⅱregion is the core equipment of threephoton microscopy.In this paper,we design a compact and robust illumination source that emits dual-color linearly polarized li...The miniaturized femtosecond laser in near infrared-Ⅱregion is the core equipment of threephoton microscopy.In this paper,we design a compact and robust illumination source that emits dual-color linearly polarized light for three-photon microscopy.Based on an all-polarizationmaintaining passive mode-locked fiber laser,we shift the center wavelength of the pulses to the 1.7m band utilizing cascade Raman effect,thereby generate dual-wavelength pulses.To enhance clarity,the two wavelengths are separated through the graded-index multimode fiber.Then we obtain the dual-pulse sequences with 1639.4 nm and 1683.7 nm wavelengths,920 fs pulse duration,and 23.75 MHz pulse repetition rate.The average power of the signal is 53.64mW,corresponding to a single pulse energy of 2.25 nJ.This illumination source can be further amplified and compressed for three-photon fluorescence imaging,especially dual-color three-photon fluorescence imaging,making it an ideal option for biomedical applications.展开更多
Structured illumination microscopy(SIM)is suitable for biological samples because of its relatively low-peak illumination intensity requirement and high imaging speed.The system resolution is affected by two typical d...Structured illumination microscopy(SIM)is suitable for biological samples because of its relatively low-peak illumination intensity requirement and high imaging speed.The system resolution is affected by two typical detection modes:Point detection and area detection.However,a systematic analysis of the imaging performance of the different detection modes of the system has rarely been conducted.In this study,we compared laser point scanning point detection(PS-PD)and point scanning area detection(PS-AD)imaging in nonconfocal microscopy through theoretical analysis and simulated imaging.The results revealed that the imaging resolutions of PSPD and PS-AD depend on excitation and emission point spread functions(PSFs),respectively.Especially,we combined the second harmonic generation(SHG)of point detection(P-SHG)and area detection(A-SHG)with SIM to realize a nonlinear SIM-imaging technique that improves the imaging resolution.Moreover,we analytically and experimentally compared the nonlinear SIM performance of P-SHG with that of A-SHG.展开更多
Objective and Impact Statement:We developed a generalized computational approach to design uniform,high-intensity excitation light for low-cost,quantitative fluorescence imaging of in vitro,ex vivo,and in vivo samples...Objective and Impact Statement:We developed a generalized computational approach to design uniform,high-intensity excitation light for low-cost,quantitative fluorescence imaging of in vitro,ex vivo,and in vivo samples with a single device.Introduction:Fluorescence imaging is a ubiquitous tool for biomedical applications.Researchers extensively modify existing systems for tissue imaging,increasing the time and effort needed for translational research and thick tissue imaging.These modifications are applicationspecific,requiring new designs to scale across sample types.Methods:We implemented a computational model to simulate light propagation from multiple sources.Using a global optimization algorithm and a custom cost function,we determined the spatial positioning of optical fibers to generate 2 illumination profiles.These results were implemented to image core needle biopsies,preclinical mammary tumors,or tumor-derived organoids.Samples were stained with molecular probes and imaged with uniform and nonuniform illumination.Results:Simulation results were faithfully translated to benchtop systems.We demonstrated that uniform illumination increased the reliability of intraimage analysis compared to nonuniform illumination and was concordant with traditional histological findings.The computational approach was used to optimize the illumination geometry for the purposes of imaging 3 different fluorophores through a mammary window chamber model.Illumination specifically designed for intravital tumor imaging generated higher image contrast compared to the case in which illumination originally optimized for biopsy images was used.Conclusion:We demonstrate the significance of using a computationally designed illumination for in vitro,ex vivo,and in vivo fluorescence imaging.Applicationspecific illumination increased the reliability of intraimage analysis and enhanced the local contrast of biological features.This approach is generalizable across light sources,biological applications,and detectors.展开更多
文摘Based on nonimaging design method, uniform illuminance systems with LED source were developed to create a uniform illuminated circular region with a desired size in a screen at a prescribed place. By using ray-tracing software based on Monte-Carlo method, the simulation results show that in the illuminated region the luminous uniformity is higher than 90%.
文摘A new approach has been proposed to improve the performance of the in-telligent lighting system by estimating personal illuminance and desired color temperature at the workplace. We are considering the problem of using the sensing devices manually for the intelligent lighting system. The lighting control system has not become useful without sensing devices to measure the provided illuminance and color temperature. In this paper, we have used the property of light for the color temperature to estimate the level of color temperature for each user at the workplace. The new method will give personal illuminance for each user at the workplace and decrease the power consumption of the environment as well. As a result, the proposed method of the intelligent lighting system has realized the target of illuminance and color temperature for each user at the workplace by adapting dimming levels using illuminance sensing information for each user. Thus, the energy of the workplace has reduced by using a distributed luminance to realize the target for each user.
文摘With urbanization and the rapid development of social economy,China’s rail transit industry has developed rapidly in recent years.In order to alleviate the pressure of road network,subways provide convenience as they are fast and space-saving.Subway stations are major energy consumers of urban power grid due to their large traffic volume and long operation time.On the premise of ensuring operation safety,reducing the energy consumption of subway helps in energy conservation and emission reduction as proposed in the 13th Five-Year Plan.According to the statistics of the energy-saving evaluation report of rail transit engineering,the lighting system accounts for 20%-30%of the total power consumption of the subway station.Due to the single lighting control mode of the lighting system in the subway station,the actual station illumination cannot be reported and adjusted in time,resulting in the waste of lighting energy and high power consumption of the system.Through in-depth research on the intelligent lighting system of subway station,this paper improves the system control,and finally summarizes the optimization scheme of subway station lighting design which can effectively save the power consumption of lighting system.The main contents of this paper are as follows:The research results of this paper can provide effective measures for energy saving of electric lighting in subway stations and reduce electric energy consumption;on the other hand,as an integral part of building lighting energy-saving system,it also has certain guiding significance for the research of building lighting energy-saving.
基金the technical support from the Experiment Centre for Advanced Manufacturing and Technology in School of Mechanical Science&Engineering of HUSTsupported by the Natural Science Foundation of China(52130504)+4 种基金Key Research and Development Program of Hubei Province(2021BAA013)Innovation Project of Optics Valley Laboratory(OVL2023PY003)Natural Science Foundation of Hubei Province(2021CFB322)Fundamental Research Funds for the Central Universities(2021XXJS113)Guangdong Basic and Applied Basic Research Foundation(2023A1515030149).
文摘Strict requirement of a coherent spectrum in coherent diffractive imaging(CDI)architectures poses a significant obstacle to achieving efficient photon utilization across the full spectrum.To date,nearly all broadband computational imaging experiments have relied on accurate spectroscopic measurements,as broad spectra are incompatible with conventional CDI systems.This paper presents an advanced approach to broaden the scope of CDI to ultra-broadband illumination with unknown probe spectrum,effectively addresses the key challenges encountered by existing state-ofthe-art broadband diffractive imaging frameworks.This advancement eliminates the necessity for prior knowledge of probe spectrum and relaxes constraints on non-dispersive samples,resulting in a significant extension in spectral bandwidth,achieving a nearly fourfold improvement in bandlimit compared to the existing benchmark.Our method not only monochromatizes a broadband diffraction pattern from unknown illumination spectrum,but also determines the compressive sampled profile of spectrum of the diffracted radiation.This superiority is experimentally validated using both CDI and ptychography techniques on an ultra-broadband supercontinuum with relative bandwidth exceeding 40%,revealing a significantly enhanced coherence and improved reconstruction with high fidelity under ultra-broadband illumination.
基金funded by the National Natural Science Foundation of China(62125504,61827825,and 31901059)Zhejiang Provincial Ten Thousand Plan for Young Top Talents(2020R52001)Open Project Program of Wuhan National Laboratory for Optoelectronics(2021WNLOKF007).
文摘Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.
基金The National Natural Science Foundation of China (32371993)The Natural Science Research Key Project of Anhui Provincial University(2022AH040125&2023AH040135)The Key Research and Development Plan of Anhui Province (202204c06020022&2023n06020057)。
文摘This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.
基金This work is supported in part by The National Natural Science Foundation of China(Grant Number 61971078),which provided domain expertise and computational power that greatly assisted the activityThis work was financially supported by Chongqing Municipal Education Commission Grants for-Major Science and Technology Project(Grant Number gzlcx20243175).
文摘Semantic segmentation of driving scene images is crucial for autonomous driving.While deep learning technology has significantly improved daytime image semantic segmentation,nighttime images pose challenges due to factors like poor lighting and overexposure,making it difficult to recognize small objects.To address this,we propose an Image Adaptive Enhancement(IAEN)module comprising a parameter predictor(Edip),multiple image processing filters(Mdif),and a Detail Processing Module(DPM).Edip combines image processing filters to predict parameters like exposure and hue,optimizing image quality.We adopt a novel image encoder to enhance parameter prediction accuracy by enabling Edip to handle features at different scales.DPM strengthens overlooked image details,extending the IAEN module’s functionality.After the segmentation network,we integrate a Depth Guided Filter(DGF)to refine segmentation outputs.The entire network is trained end-to-end,with segmentation results guiding parameter prediction optimization,promoting self-learning and network improvement.This lightweight and efficient network architecture is particularly suitable for addressing challenges in nighttime image segmentation.Extensive experiments validate significant performance improvements of our approach on the ACDC-night and Nightcity datasets.
基金Supported by the Clinical Medicine Plus X-Young Scholars Project,Peking University(No.PKU2020LCXQ023)National Natural Science Foundation of China(No.82101107).
文摘AIM:To evaluate the efficacy and safety of Usights UC100 illuminated microcatheter in microcatheter-assisted trabeculotomy(MAT).METHODS:Totally 10 eyes of 10 patients with primary open angle glaucoma(POAG)who underwent MAT facilitated by Usights UC100(5 eyes)or iTrack(5 eyes)were reviewed.The success of this surgery was defined as intraocular pressure(IOP)<22 mm Hg with>30%reduction,without oral glaucoma medications,or additional glaucoma surgery.RESULTS:The mean pre-operative IOP was 25.38±10.22 mm Hg in the Usights UC100 group and 19.98±3.87 mm Hg in the iTrack group.MAT was achieved in all eyes in both groups.The success rates for the Usights UC100 group and iTrack groups were in all and 4 eyes,respectively.Both microcatheters produced a statistically significant reduction in IOP,and eyes using Usights UC100 achieved a lower IOP than the iTrack group at 3mo followup(12.58±1.52 and 14.84±1.89 mm Hg,respectively),but no statistical significance was there.No severe side effects were observed in either group.CONCLUSION:MAT using Usights UC100 or iTrack both achieve significant pressure reduction in cases of POAG,and Usights UC100 is as safe as iTrack.
基金Project supported by the National Natural Science Foundation of China (No. 39770882).
文摘The relationship between the observed order of reaction of photodegradation of nitrofurazone solution and the illuminance of incident light as well as the concentration of the solution was studied, In the studies, the solutions of three concentrations were exposed to light with three different illuminance values, respectively, The results indicated that the observed order of reaction was increased with the decrease of concentration, when the illuminance was kept constant, and with the increase of illuminance when the concentration was kept constant. The observed order of reaction of photodegradation of nitrofurazone solution depended on both the concentration of the drug and the illuminance of the incident light.
基金funded by the Ministry of Education,Culture,Research,and Technology of the Republic of Indonesia,under grant number 317/UN40.LP/PT.01.03/2021,under LPPM Universitas Pendidikan Indonesia(UPI).
文摘In lighting design,mean room surface exitance(MRSE)has been known as an indicator of the adequacy of illumination in an indoor space.Recent studies have suggested an exponential model relating MRSE and the observer’s retinal response.This is particularly applicable in a room with homogenous room surface reflectance and a constant total corneal illuminance,which is the total illuminance received at the eye.However,accuracy of the exponential model is yet to be assessed in detail.Furthermore,the implication on interior lighting design is also yet to be quantified.This study thus aims to assess the accuracy of the exponential model and to optimise the output variables.Random computations using Monte Carlo simulation are performed for various input variables,followed with sensitivity and uncertainty analyses and optimisation.Prediction errors of the exponential model are found between-10%and 6%.The MRSE is highly influenced by surface reflectance,whereas the total corneal illuminance is influenced by the source luminous flux.Optimum design parameters are obtained by minimising the ratio between total corneal illuminance and MRSE.Overall,this study provides guidelines in lighting design practice for enhancing room spatial brightness while minimising energy use.
文摘We report a comprehensive numerical study of super resolution (SR) structured illumination microscopy (SIM) utilizing the classic Heintzmann-Cremer SIM process and algorithm. In particular, we investigated the impact of the diffraction limit of the underlying imaging system on the optimal SIM grating frequency that can be used to obtain the highest SR enhancement with non-continuous spatial frequency support. Besides confirming the previous theoretical and experimental work that SR-SIM can achieve an enhancement close to 3 times the diffraction limit with grating pattern illuminations, we also observe and report a series of more subtle effects of SR-SIM with non-continuous spatial frequency support. Our simulations show that when the SIM grating frequency exceeds twice that of the diffraction limit, the higher SIM grating frequency can help achieve a higher SR enhancement for the underlying imaging systems whose diffraction limit is low, though this enhancement is obtained at the cost of losing resolution at some lower resolution targets. Our simulations also show that, for underlying imaging systems with high diffraction limits, however, SR-SIM grating frequencies above twice the diffraction limits tend to bring no significant extra enhancement. Furthermore, we observed that there exists a limit grating frequency above which the SR enhancement effect is lost, and the reconstructed images essentially have the same resolution as the one obtained directly from the underlying imaging system without using the SIM process.
基金supported by the National Natural Science Foundation of China(No.51878405 and No.51778359).
文摘The lighting environment is one of the indoor environmental factors that may influence creativity.The combined effects of illumination(300 lx vs.2000 lx)and color temperature(3000 K vs.6000 K)on mood and creativity were investigated in 24 participants.During exposure,participants completed questionnaires to assess their mood and lighting perceptions,performed creative and analytical tasks,and collected saliva samples for analysis of melatonin concentration.An interactive effect of illuminance and color temperature on the mood was observed.The participants performed better on the performance of Flexibility,Fluency and Originality in the verbal creative task when they expressed higher positive mood(at 2000 lx,6000 K and 300 lx,3000 K)and performed better on the performance of Resistance to closure in the figural creative task when they reported the lowest positive mood(at 2000 lx,3000 K).Analytical thinking,including calculation and echoic memory skills,was facilitated at the lighting setting(300 lx,6000 K)that induced the least affective intensity.No significant difference in melatonin concentration was observed.This evidence implies that the affective state of the occupants was influenced by light and that their creative performance was altered accordingly.These findings will help to elaborate a design guideline on the lighting environment according to the specific needs of different tasks.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.61204055)
文摘A 300 μm×300 μm light emitting diode(LED) chip is divided into nine 80 μm×80 μm units with 30 μm spacing between adjacent ones. After arraying, the total saturation light output power and the maximum injection current are enhanced by 5.19 times and nearly 7 times, respectively. In addition, the test results demonstrate that the illuminance uniformity on the receiving surface reaches the optimum when the spacing between the arrays is equal to the maximum flat condition. The larger the number of arrays, the greater the area with uniform illuminance on the receiving surface.
基金partially supported by the Gordon and Betty Moore Foundation Grant No.5722
文摘Structured illumination microscopy(SIM)is one of the most widely applied wide field super resolution imaging techniques with high temporal resolution and low phototoxicity.The spatial resolution of SIM is typically limited to two times of the diffraction limit and the depth of field is small.In this work,we propose and experimentally demonstrate a low cost,easy to implement,novel technique called speckle structured illumination endoscopy(SSIE)to enhance the resolution of a wide field endoscope with large depth of field.Here,speckle patterns are used to excite objects on the sample which is then followed by a blind-SIM algorithm for super resolution image reconstruction.Our approach is insensitive to the 3D morphology of the specimen,or the deformation of illuminations used.It greatly simplifies the experimental setup as there are no calibration protocols and no stringent control of illumination patterns nor focusing optics.We demonstrate that the SSIE can enhance the resolution 2–4.5 times that of a standard white light endoscopic(WLE)system.The SSIE presents a unique route to super resolution in endoscopic imaging at wide field of view and depth of field,which might be beneficial to the practice of clinical endoscopy.
基金Technology Program(KQTD20170810110913065,20200925174735005)National Natural Science Foundation of China(62005116,51720105015)Guangdong Provincial Key Laboratory of Advanced Biomaterials(2022B1212010003).
文摘Fluorescence imaging through the second near-infrared window(NIR-Ⅱ,1000–1700 nm) allows in-depth imaging.However, current imaging systems use wide-field illumination and can only provide low-contrast 2D information, without depth resolution. Here, we systematically apply a light-sheet illumination, a time-gated detection, and a deep-learning algorithm to yield high-contrast high-resolution volumetric images. To achieve a large Fo V(field of view) and minimize the scattering effect, we generate a light sheet as thin as 100.5 μm with a Rayleigh length of 8 mm to yield an axial resolution of 220 μm. To further suppress the background, we time-gate to only detect long lifetime luminescence achieving a high contrast of up to 0.45 Icontrast. To enhance the resolution, we develop an algorithm based on profile protrusions detection and a deep neural network and distinguish vasculature from a low-contrast area of 0.07 Icontrast to resolve the 100μm small vessels. The system can rapidly scan a volume of view of 75 × 55 × 20 mm3and collect 750 images within 6mins. By adding a scattering-based modality to acquire the 3D surface profile of the mice skin, we reveal the whole volumetric vasculature network with clear depth resolution within more than 1 mm from the skin. High-contrast large-scale 3D animal imaging helps us expand a new dimension in NIR-Ⅱ imaging.
基金Project supported by the Natural Science Foundation of Hebei Province,China(Grant Nos.A2022201039 and F2019201446)the MultiYear Research Grant of University of Macao,China(Grant No.MYRG2020-00082-IAPME)+2 种基金the Science and Technology Development Fund from Macao SAR(FDCT),China(Grant No.0062/2020/AMJ)the Advanced Talents Incubation Program of the Hebei University(Grant No.8012605)the National Natural Science Foundation of China(Grant Nos.11204062,61774053,and 11674273)。
文摘We propose a method of complex-amplitude Fourier single-pixel imaging(CFSI)with coherent structured illumination to acquire both the amplitude and phase of an object.In the proposed method,an object is illustrated by a series of coherent structured light fields,which are generated by a phase-only spatial light modulator,the complex Fourier spectrum of the object can be acquired sequentially by a single-pixel photodetector.Then the desired complex-amplitude image can be retrieved directly by applying an inverse Fourier transform.We experimentally implemented this CFSI with several different types of objects.The experimental results show that the proposed method provides a promising complex-amplitude imaging approach with high quality and a stable configuration.Thus,it might find broad applications in optical metrology and biomedical science.
基金supported by the state task of the Institute of Biology Komi SC RAS [No.122040600026-9]。
文摘The Orchidaceae,which is one of the most interesting families of angiosperms,contains a large number of rare species.Despite their acknowledged importance,little attention has been paid to the study of orchids distributed in northern territories.In this study,we determined the syntaxonomical diversity and ecological parameters of orchid habitats in two of Europe's largest protected areas,the Pechoro-Ilychsky Reserve and the Yugyd Va National Park(northeastern European Russia),and then compared our findings to those in other parts of orchid distribution ranges.For this purpose,we studied 345 descriptions of plant communities(releves) containing species from Orchidaceae and defined habitat parameters using Ellenberg indicator values with the community weight mean approach,nonmetric multidimensional scaling(NMS),and relative niche width.We found that orchids were distributed in eight habitat types and 97 plant associations.The largest number of orchid species is found in forest communities.Half of the orchid species under study occur in the mires and rock habitats with open vegetation.Several orchids consistently occur in areas disturbed by human activity.In addition,our study indicates that the main drivers of orchid distribution across the vegetation types are light and soil nitrogen.Our analysis of the ecological parameters of orchid habitats indicates that some orchid species can be classified as habitat specialists that are confined to a relatively narrow ecological niche in the Urals(e.g.,Goodyera repens,Cypripedium guttatum and Dactylorhiza maculata).Several other species(e.g.Neottia cordata and Dactylorhiza fuchsia) grow under diverse ecological parameters.
基金supported by the Fundamental Re-search Funds for the Central Universities(HYGJXM202309).
文摘The miniaturized femtosecond laser in near infrared-Ⅱregion is the core equipment of threephoton microscopy.In this paper,we design a compact and robust illumination source that emits dual-color linearly polarized light for three-photon microscopy.Based on an all-polarizationmaintaining passive mode-locked fiber laser,we shift the center wavelength of the pulses to the 1.7m band utilizing cascade Raman effect,thereby generate dual-wavelength pulses.To enhance clarity,the two wavelengths are separated through the graded-index multimode fiber.Then we obtain the dual-pulse sequences with 1639.4 nm and 1683.7 nm wavelengths,920 fs pulse duration,and 23.75 MHz pulse repetition rate.The average power of the signal is 53.64mW,corresponding to a single pulse energy of 2.25 nJ.This illumination source can be further amplified and compressed for three-photon fluorescence imaging,especially dual-color three-photon fluorescence imaging,making it an ideal option for biomedical applications.
基金supported by the National Natural Science Foundation of China (62275168,62275164,61905145)Guangdong Natural Science Foundation and Province Project (2021A1515011916)+1 种基金Shenzhen Science and Technology R&D and Innovation Foundation (JCYJ20200109105608771)the Science and Technology Planning Project of Shenzhen Municipality (ZDSYS20210623092006020).
文摘Structured illumination microscopy(SIM)is suitable for biological samples because of its relatively low-peak illumination intensity requirement and high imaging speed.The system resolution is affected by two typical detection modes:Point detection and area detection.However,a systematic analysis of the imaging performance of the different detection modes of the system has rarely been conducted.In this study,we compared laser point scanning point detection(PS-PD)and point scanning area detection(PS-AD)imaging in nonconfocal microscopy through theoretical analysis and simulated imaging.The results revealed that the imaging resolutions of PSPD and PS-AD depend on excitation and emission point spread functions(PSFs),respectively.Especially,we combined the second harmonic generation(SHG)of point detection(P-SHG)and area detection(A-SHG)with SIM to realize a nonlinear SIM-imaging technique that improves the imaging resolution.Moreover,we analytically and experimentally compared the nonlinear SIM performance of P-SHG with that of A-SHG.
基金This work was supported by generous funding from the National Institutes of Health grant(5R01EB028148-02)(N.R.)the Department of Defense National Defense Science and Engineering Graduate Fellowship Program(R.J.D.)the Doctoral Scholarship by Duke Global Health Institute(R.W.)。
文摘Objective and Impact Statement:We developed a generalized computational approach to design uniform,high-intensity excitation light for low-cost,quantitative fluorescence imaging of in vitro,ex vivo,and in vivo samples with a single device.Introduction:Fluorescence imaging is a ubiquitous tool for biomedical applications.Researchers extensively modify existing systems for tissue imaging,increasing the time and effort needed for translational research and thick tissue imaging.These modifications are applicationspecific,requiring new designs to scale across sample types.Methods:We implemented a computational model to simulate light propagation from multiple sources.Using a global optimization algorithm and a custom cost function,we determined the spatial positioning of optical fibers to generate 2 illumination profiles.These results were implemented to image core needle biopsies,preclinical mammary tumors,or tumor-derived organoids.Samples were stained with molecular probes and imaged with uniform and nonuniform illumination.Results:Simulation results were faithfully translated to benchtop systems.We demonstrated that uniform illumination increased the reliability of intraimage analysis compared to nonuniform illumination and was concordant with traditional histological findings.The computational approach was used to optimize the illumination geometry for the purposes of imaging 3 different fluorophores through a mammary window chamber model.Illumination specifically designed for intravital tumor imaging generated higher image contrast compared to the case in which illumination originally optimized for biopsy images was used.Conclusion:We demonstrate the significance of using a computationally designed illumination for in vitro,ex vivo,and in vivo fluorescence imaging.Applicationspecific illumination increased the reliability of intraimage analysis and enhanced the local contrast of biological features.This approach is generalizable across light sources,biological applications,and detectors.