The ESA and CAS SMILE mission orbit is highly elliptical and will pass through multiple radiation environments.The Soft X-ray Imager(SXI)instrument aboard has a radiation shutter door designed to close when the surrou...The ESA and CAS SMILE mission orbit is highly elliptical and will pass through multiple radiation environments.The Soft X-ray Imager(SXI)instrument aboard has a radiation shutter door designed to close when the surrounding radiation flux is high.The shutter door will close when passing below an altitude threshold to protect against trapped particles in the Earth’s Van Allen Belts.Therefore,two radiation environments can be approximated based on the shutter door position:open and closed.The instrument background for the CCDs(Charge-Coupled Devices)that form the focal plane array of the SXI were evaluated for the two environments.Due to the correlation of the space environment with the solar cycle,the solar minima and maxima,the background was also evaluated at these two extremes.The results demonstrated that the highest instrument background will occur during solar minima due to the main contributing source being Galactic Cosmic Rays(GCRs).It was also found that the open background was highest for solar minima and that the closed background was highest during solar maxima.This is due to the radiation shutter door acting as a scattering centre and the changes in the energy flux distribution of the GCRs between the two solar extremes.展开更多
There is a certain failure rate in traditional glaucoma surgery because of the lack of depth information in microscope images.In this work,we present a digital microscope-integrated optical coherence tomography(MIOCT)...There is a certain failure rate in traditional glaucoma surgery because of the lack of depth information in microscope images.In this work,we present a digital microscope-integrated optical coherence tomography(MIOCT)system and several custom-made OCT-compatible instruments for glaucoma surgery.Sixteen ophthalmologists were asked to perform trabeculectomy and canaloplasty on live porcine eyes using the system and instruments.After surgery,a subjective feedback survey about the user experience was taken.The experiment results showed that our system can help surgeons easily locate important tissue structures during surgery.The custom-made instruments also solved the shadowing problem in OCT imaging.Surgeons preferred to use the system in their future practice.展开更多
The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a di...The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.展开更多
Our Portable Adaptive Optics(PAO)system designed for high-contrast imaging of exoplanets with current 2-4 m class telescopes achieves a correction speed of nearly 1000 Hz,utilizing a Shack-Hartmann Wave Front Sensor(W...Our Portable Adaptive Optics(PAO)system designed for high-contrast imaging of exoplanets with current 2-4 m class telescopes achieves a correction speed of nearly 1000 Hz,utilizing a Shack-Hartmann Wave Front Sensor(WFS)in a 9×9 sub-aperture configuration.As we look towards adapting the PAO system for larger telescopes,an increase in the number of sub-apertures in the WFS and enhanced precision in wave front detection are imperative.Originally programmed in LabVIEW,our initial PAO software is based on a traditional centroid calculation module for nighttime wave front sensing and lacks adaptive processing of background noise.To address these limitations and to boost the PAO system's performance and accuracy in wave front detection,we propose a compressive neural network(Th-Net)combined with a specialized hybrid parallel programming approach for wave front detection.Our experimental results indicate that this hybrid parallel technique and Th-Net significantly enhance the PAO system's operational speed and wave front detection precision under uneven background noise.This work paves the way so that a duplicable and low-cost PAO system can be used for direct imaging of exoplanets with large telescopes.展开更多
With the development of cutting-edge multi-object spectrographs,fiber positioners located in the focal plane are being scaled down in size,and miniature hollow-cup Permanent Magnet motors are now being considered as a...With the development of cutting-edge multi-object spectrographs,fiber positioners located in the focal plane are being scaled down in size,and miniature hollow-cup Permanent Magnet motors are now being considered as a suitable replacement for Faulhaber Precistep stepper motors.However,the small electrical time constant of such coreless motors poses a challenge,as the problem of severe commutation torque ripple in a fiber positioner running a position loop has been tricky.To overcome this challenge,it is advised to increase the Pulse Width Modulation(PWM)frequency as much as possible to mitigate the effects of the current fluctuation.This must be done while ensuring adequate resolution of the PWM generator.By employing a voltage open-loop field-oriented control based on a modulation frequency of 1 MHz,the drive current only costs 25 m A under a 3.3 V power supply.The sine degree of phase current is immaculate,and the repeat positioning accuracy can reach 2μm.Moreover,it is possible to further shrink the bill of devices and the layout area of the Printed Circuit Board,especially in sizesensitive applications.This device has been developed under the new generation of The Large Sky Area MultiObject Fiber Spectroscopic Telescope.展开更多
The Submillimeter Wave Astronomy Satellite(SWAS)was the first space telescope capable of high spectral resolution observations of terahertz spectral lines.We have investigated the integration ability of its two receiv...The Submillimeter Wave Astronomy Satellite(SWAS)was the first space telescope capable of high spectral resolution observations of terahertz spectral lines.We have investigated the integration ability of its two receivers and spectrometer during five and a half years of on-orbit operation.The CI,O_(2),H_(2)O,and^(13)CO spectra taken toward all observed Galactic sources were analyzed.The present results are based on spectra with a total integration time of up to 2.72×10~4hr(■10~8s).The noise in the spectra is generally consistent with that expected from the radiometer equation,without any sign of approaching a noise floor.This noise performance reflects the extremely stable performance of the passively cooled front end as well as other relevant components in the SWAS instrument throughout its mission lifetime.展开更多
The near-infrared imaging channel constitutes a crucial component of the multichannel high-resolution imaging system of the New Vacuum Solar Telescope(NVST). We have successfully achieved high-resolution, narrowband i...The near-infrared imaging channel constitutes a crucial component of the multichannel high-resolution imaging system of the New Vacuum Solar Telescope(NVST). We have successfully achieved high-resolution, narrowband imaging of the chromosphere using He I 10830 A triplet within this channel, which significantly enhances the imaging observation capabilities of NVST. This paper provides a concise overview of the optical system associated with the near-infrared imaging channel, detailing data processing procedures and presenting several observed images. Leveraging a high-resolution image reconstruction algorithm, we were able to generate a narrowband image near the diffraction limit at 10830 A with a temporal resolution of less than 10 s.展开更多
The 2.5 m wide-field and high-resolution solar telescope(WeHoST)is currently under developing for solar observations.WeHoST aims to achieve high-resolution observations over a super-wide field of view(FOV)of5′×5...The 2.5 m wide-field and high-resolution solar telescope(WeHoST)is currently under developing for solar observations.WeHoST aims to achieve high-resolution observations over a super-wide field of view(FOV)of5′×5′,and a desired resolution of 0.3″.To meet the scientific requirements of WeHoST,the ground-layer adaptive optics(GLAO)with a specially designed wave front sensing system is as the primary consideration.We introduce the GLAO configuration,particularly the wave front sensing scheme.Utilizing analytic method,we simulate the performance of both classical AO and GLAO systems,optimize the wave front sensing system,and evaluate GLAO performance in terms of PSF uniformity and correction improvement across whole FOV.The results indicate that,the classical AO will achieve diffraction-limited resolution;the suggested GLAO configuration will uniformly improve the seeing across the full 5′×5′FOV,reducing the FWHM across the axis FOV to less than0.3″(λ≥705 nm,r0≥11 cm),which is more than two times improvement.The specially designed wave front sensor schedule offers new potential for WeHoST’s GLAO,particularly the multi-FOV GLAO and the flexibility to select the detected area.These capabilities will significantly enhance the scientific output of the telescope.展开更多
We tested a new model of CMOS detector manufactured by the Gpixel Inc,for potential space astronomical application.In laboratory,we obtain some bias images under the typical application environment.In these bias image...We tested a new model of CMOS detector manufactured by the Gpixel Inc,for potential space astronomical application.In laboratory,we obtain some bias images under the typical application environment.In these bias images,clear random row noise pattern is observed.The row noise also contains some characteristic spatial frequencies.We quantitatively estimated the impact of this feature to photometric measurements,by making simulated images.We compared different bias noise types under strict parameter control.The result shows the row noise will significantly deteriorate the photometric accuracy.It effectively increases the readout noise by a factor of2-10.However,if it is properly removed,the image quality and photometric accuracy will be significantly improved.展开更多
Radiation pattern captures the electromagnetic performance of reflector antennas,which is significantly affected by the deformation of the primary reflector due to gravity and the displacement of the secondary reflect...Radiation pattern captures the electromagnetic performance of reflector antennas,which is significantly affected by the deformation of the primary reflector due to gravity and the displacement of the secondary reflector.During the design process of large reflector antennas,a substantial amount of time is often dedicated to iteratively adjusting structural parameters and validating electromagnetic performance.To improve the efficiency of the design process,we first propose an approximate calculation method of optical path difference(OPD)for the deformation of the primary reflector under gravity and the displacement of the secondary reflector.Then an OPD fitting function based on the modified Zernike polynomials is proposed to capture the phase difference of radiation over the aperture plane,based on which the radiation pattern will be obtained quickly by the aperture field integration method.Numerical experiments demonstrate the effectiveness of the proposed quick calculation method for analyzing the radiation pattern of a 10.4 m submillimeter telescope antenna at its highest operating frequency of 856 GHz.In comparison with the numerical simulation method based on GRASP(which is an antenna electromagnetic analysis tool combining physical optics(PO)and physical theory of diffraction(PTD)),the quick calculation method reduces the time for radiation pattern analysis from more than one hour to less than two minutes.Furthermore,the quick calculation method exhibits excellent accuracy for the figure of merit(FOM)of the radiation pattern.Therefore,the proposed quick calculation method can obtain the radiation pattern with high speed and accuracy.Compared to the time-consuming numerical simulation method(PO and PTD),it can be employed for quick analysis of the radiation pattern for the lateral displacement of the secondary reflector and the deformation of the primary reflector under gravity in the design process of a reflector antenna.展开更多
The image quality of a large field survey telescope with a fast focal ratio of the primary mirror is high sensitivity to the optical elements’misalignments and the primary mirror’s deformations.To maintain good opti...The image quality of a large field survey telescope with a fast focal ratio of the primary mirror is high sensitivity to the optical elements’misalignments and the primary mirror’s deformations.To maintain good optical performance,the perturbations need to be aligned,and the tomographic reconstruction of these perturbations can be derived from wavefront sensing with multi-field points for alignment.This work undertakes a comprehensive examination related to the implementation and optimization of a multi-field split curvature wavefront sensing system,including defocus distance,signal pre-processing,deblending of overlapped doughnuts,field-dependent correction,and distorted coordinate correction.We also conduct experiments to demonstrate the application and performance of a multi-field split curvature wavefront sensing system in Mephisto.In the context of the decentering of the secondary mirror,the coefficient of determination(R)attains a high value of 0.993,indicating a robust linearity between the coma coefficients and the decentering of the secondary mirror.A comparative analysis of the simulated and experimental results shows that the difference between them is less than 0.1λ.展开更多
This paper presents the design,calibration,and survey strategy of the Fast Radio Burst(FRB)digital backend and its real-time data processing pipeline employed in the Tianlai Cylinder Pathfinder Array.The array,consist...This paper presents the design,calibration,and survey strategy of the Fast Radio Burst(FRB)digital backend and its real-time data processing pipeline employed in the Tianlai Cylinder Pathfinder Array.The array,consisting of three parallel cylindrical reflectors and equipped with 96 dual-polarization feeds,is a radio interferometer array designed for conducting drift scans of the northern celestial semi-sphere.The FRB digital backend enables the formation of 96 digital beams,effectively covering an area of approximately 40 square degrees with the 3 dB beam.Our pipeline demonstrates the capability to conduct an automatic search of FRBs,detecting at quasi-realtime and classifying FRB candidates automatically.The current FRB searching pipeline has an overall recall rate of88%.During the commissioning phase,we successfully detected signals emitted by four well-known pulsars:PSR B0329+54,B2021+51,B0823+26,and B2020+28.We report the first discovery of an FRB by our array,designated as FRB 20220414A.We also investigate the optimal arrangement for the digitally formed beams to achieve maximum detection rate by numerical simulation.展开更多
In this study,we conducted simulations to find the geometric aberrations expected for images taken by the Main Survey Camera of the Chinese Space Station Telescope(CSST)due to its motion.As anticipated by previous wor...In this study,we conducted simulations to find the geometric aberrations expected for images taken by the Main Survey Camera of the Chinese Space Station Telescope(CSST)due to its motion.As anticipated by previous work,our findings indicate that the geometric distortion of light impacts the focal plane's apparent scale,with a more pronounced influence as the size of the focal plane increases.Our models suggest that the effect consistently influences the pixel scale in both the vertical and parallel directions.The apparent scale variation follows a sinusoidal distribution throughout one orbital period.Simulations reveal that the effect is particularly pronounced in the center of the Galaxy and gradually diminishes along the direction of ecliptic latitude.At low ecliptic latitudes,the total aberration leads to about a 0.94 pixel offset(a 20 minute exposure)and a 0.26 pixel offset(a 300 s exposure)at the edge of the field of view.Appropriate processings for the geometric effect during the CSST pre-and post-observation phases are presented.展开更多
The coherent muon-to-electron transition(COMET)experiment is a leading experiment for the coherent conversion of μ^(-)N→e^(-)N using a high-intensity pulsed muon beamline,produced using innovative slow-extraction te...The coherent muon-to-electron transition(COMET)experiment is a leading experiment for the coherent conversion of μ^(-)N→e^(-)N using a high-intensity pulsed muon beamline,produced using innovative slow-extraction techniques.Therefore,it is critical to measure the muon beam characteristics.We set up a muon beam monitor(MBM),where scintillating fibers woven in a cross shape were coupled to silicon photomultipliers to measure the spatial profile and timing structure of the extracted muon beam for the COMET.The MBM detector was tested successfully with a proton beamline at the China Spallation Neutron Source and took data with good performance in the commissioning run.The development of the MBM,including its mechanical structure,electronic readout,and beam measurement results,are discussed.展开更多
AIM:To investigate a novel phacoemulsification system“EVA NEXUS”(D.O.R.C.,Dutch Opthalmic Research Center)in comparison to the existing system“EVA”in clinical use.And to compare both phacoemulsification systems in...AIM:To investigate a novel phacoemulsification system“EVA NEXUS”(D.O.R.C.,Dutch Opthalmic Research Center)in comparison to the existing system“EVA”in clinical use.And to compare both phacoemulsification systems in terms of efficiency,safety and postoperative inflammatory activity.METHODS:In this study standardized cataract surgery was performed on both eyes of the study participant,using the“EVA system”(control group,n=20)on one eye and the“EVA NEXUS system”(intervention group,n=20)on the other eye.Only patients with cataract LOCS Grading 1-3 and no accompanying eye diseases were included in this study.A total of 20 patients were included in this study,with each treatment arm including 20 eyes.During surgery a 0.1 mL aqueous humor sample was collected 1min after phacoemulsification to measure the total prostaglanin E2 concentrations using an enzyme-linked immunosorbent assay.The endothelial cell count,visual and refractive outcomes,and anterior chamber flare were evaluated preoperatively,and 1d,1wk,and 3mo postoperatively.RESULTS:There were no statistically significant differences between both groups regarding intraoperative safety parameters including effective phacoemulsification time(P=0.904),balanced saline solution flow(P=0.701)and total surgery time(P=0.565).Postoperative prostaglandin E2 levels,anterior chamber flare as well as endothelial cell loss tended to be lower in the NEXUS-Group,however not being statistically significant(P=0.718;0.164;0.486).Both systems provided similar clinical outcomes,regarding best corrected visual acuity and refractive parameters,showing no statistically significant differences between both groups.CONCLUSION:Both systems show a high level of safety and efficency with similar results in terms of safety parameters including postoperative inflammatory activity and endothelial cell loss as well as visual and refractive outcomes.Although statistically not significant,the EVA NEXUS system tends to cause less postoperative inflammation with lower prostaglandin E2 levels and lower anterior chamber flare values.展开更多
In spite of the importance of studying the cosmic generation of heavy elements through the r-process,the detection of a kilonova resulting from the merger of a neutron star binary is still a challenging task.In this p...In spite of the importance of studying the cosmic generation of heavy elements through the r-process,the detection of a kilonova resulting from the merger of a neutron star binary is still a challenging task.In this paper,we show that the Visible Telescope(VT)onboard the ongoing SVOM space mission is powerful for identifying kilonova candidates associated with short gamma-ray bursts up to a distance of 600 Mpc.A significant color variation,turning blue and then turning red,is revealed by calculating the light curves in both red and blue channels of VT by a linear combination of an afterglow and an associated kilonova.The maximum color variation is as high as~0.5-1 mag,which is far larger than the small photometry error of~0.2 mag of VT for a point source with a brightness of 23 mag.Up to a distance of 600 Mpc,~1-2 kilonova candidates per year are predicted to be identified by VT.展开更多
On March 3,2024,the prototype permeability logging instrument independently developed in China successfully completed its first downhole test in Ren 91 standard well in PetroChina Huabei Oilfield.In the open hole sect...On March 3,2024,the prototype permeability logging instrument independently developed in China successfully completed its first downhole test in Ren 91 standard well in PetroChina Huabei Oilfield.In the open hole section at a depth of 3925 metres and at a temperature of 148℃,the device collected high-quality permeability logging data.This marks a key technological breakthrough from 0 to 1 in permeability logging,and lays the foundation for the next step in developing a complete set of permeability logging equipment.展开更多
The thermal gradient is an important factor that causes degradation to the image quality of telescopes. In order to ensure the accurate alignment of the primary focus unit and the primary mirror, the hexapod platform(...The thermal gradient is an important factor that causes degradation to the image quality of telescopes. In order to ensure the accurate alignment of the primary focus unit and the primary mirror, the hexapod platform(as a corrector) is investigated in this paper. First, a ground-based telescope with 2.5 m aperture and 3.5 deg field of view is described. The telescope is under construction, and it is expected to be finished in 2023. Second, the hexapod platform with flexure hinges utilized to adjust the primary focus unit is proposed, which is applied as a corrector.Then, the inverse kinematics of the platform is established and an open-loop control system is built based on it.Finally, the cryogenic performance test for the hexapod platform is performed. The experimental results show that the resolution and repeatability of the translation for the hexapod platform can be achieved at the micrometer level.The resolution and repeatability of the rotation can be achieved at the arc-second level. Therefore, the cryogenic performance of the hexapod platform can meet the optical imaging requirements of the wide-field ground-based telescope. The kinematic analysis and cryogenic performance tests in the paper provide a technical reference for the precise alignment of the primary focus unit and the primary mirror, which can improve the imaging quality of the telescope.展开更多
The China Space Station Telescope(CSST)is a two-meter space telescope with multiple back-end instruments.The Fine Guidance Sensor(FGS)is an essential subsystem of the CSST Precision Image Stability System to ensure th...The China Space Station Telescope(CSST)is a two-meter space telescope with multiple back-end instruments.The Fine Guidance Sensor(FGS)is an essential subsystem of the CSST Precision Image Stability System to ensure the required absolute pointing accuracy and line-of-sight stabilization.In this study,we construct the Main Guide Star Catalog for FGS.To accomplish this,we utilize the information about the FGS and object information from the Gaia Data Release 3.We provide an FGS instrument magnitude and exclude variables,binaries,and high proper motion stars from the catalog to ensure uniform FGS guidance capabilities.Subsequently,we generate a HEALPix index,which provides a hierarchical tessellation of the celestial sphere,and employ the Voronoi algorithm to achieve a homogeneous distribution of stars across the catalog.This distribution ensures adequate coverage and sampling of the sky.The performance of the CSST guide star catalog was assessed by simulating the field of view of the FGS according to the CSST mock survey strategy catalog.The analysis of the results indicates that this catalog provides adequate coverage and accuracy.The catalog's performance meets the FGS requirements,ensuring the functioning of the FGS and its guidance capabilities.展开更多
Leighton Chajnantor Telescope(LCT), i.e., the former Caltech Submillimeter Observatory telescope, will be refurbished at the new site in Chajnantor Plateau, Chile in 2023. The environment of LCT will change significan...Leighton Chajnantor Telescope(LCT), i.e., the former Caltech Submillimeter Observatory telescope, will be refurbished at the new site in Chajnantor Plateau, Chile in 2023. The environment of LCT will change significantly after its relocation, and the telescope will be exposed to large wind disturbances directly because its enclosure will be completely open during observation. The wind disturbance is expected to be a challenge for LCT's pointing control since the existing control method cannot reject this disturbance very well. Therefore, it is very necessary to develop a new pointing control method with good capability of disturbance rejection. In this research, a disturbance observer—based composite position controller(DOB-CPC) is designed, in which an H∞feedback controller is employed to compress the disturbance, and a feedforward linear quadratic regulator is employed to compensate the disturbance precisely based on the estimated disturbance signal. Moreover, a controller switching policy is adopted, which applies the proportional controller to the transient process to achieve a quick response and applies the DOB-CPC to the steady state to achieve a small position error. Numerical experiments are conducted to verify the good performance of the proposed pointing controller(i.e., DOB-CPC) for rejecting the disturbance acting on LCT.展开更多
文摘The ESA and CAS SMILE mission orbit is highly elliptical and will pass through multiple radiation environments.The Soft X-ray Imager(SXI)instrument aboard has a radiation shutter door designed to close when the surrounding radiation flux is high.The shutter door will close when passing below an altitude threshold to protect against trapped particles in the Earth’s Van Allen Belts.Therefore,two radiation environments can be approximated based on the shutter door position:open and closed.The instrument background for the CCDs(Charge-Coupled Devices)that form the focal plane array of the SXI were evaluated for the two environments.Due to the correlation of the space environment with the solar cycle,the solar minima and maxima,the background was also evaluated at these two extremes.The results demonstrated that the highest instrument background will occur during solar minima due to the main contributing source being Galactic Cosmic Rays(GCRs).It was also found that the open background was highest for solar minima and that the closed background was highest during solar maxima.This is due to the radiation shutter door acting as a scattering centre and the changes in the energy flux distribution of the GCRs between the two solar extremes.
基金support of the foundations:National Key R&D Program of China,Grant Nos.2022YFC2404201CAS Project for Young Scientists in Basic Research,Grant Nos.YSBR-067+2 种基金The Gusu Innovation and Entrepreneurship Leading Talents in Suzhou City,Grant Nos.ZXL2021425Jiangsu Science and Technology Plan Program,Grant Nos.BK20220263National Key R&D Program of China,Grant Nos.2021YFF0700503.
文摘There is a certain failure rate in traditional glaucoma surgery because of the lack of depth information in microscope images.In this work,we present a digital microscope-integrated optical coherence tomography(MIOCT)system and several custom-made OCT-compatible instruments for glaucoma surgery.Sixteen ophthalmologists were asked to perform trabeculectomy and canaloplasty on live porcine eyes using the system and instruments.After surgery,a subjective feedback survey about the user experience was taken.The experiment results showed that our system can help surgeons easily locate important tissue structures during surgery.The custom-made instruments also solved the shadowing problem in OCT imaging.Surgeons preferred to use the system in their future practice.
基金This work is supported by“the Fundamental Research Funds for the Central Universities”,111 project No.B20019Shanghai Natural Science Foundation,grant No.19ZR1466800.
文摘The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.
文摘Our Portable Adaptive Optics(PAO)system designed for high-contrast imaging of exoplanets with current 2-4 m class telescopes achieves a correction speed of nearly 1000 Hz,utilizing a Shack-Hartmann Wave Front Sensor(WFS)in a 9×9 sub-aperture configuration.As we look towards adapting the PAO system for larger telescopes,an increase in the number of sub-apertures in the WFS and enhanced precision in wave front detection are imperative.Originally programmed in LabVIEW,our initial PAO software is based on a traditional centroid calculation module for nighttime wave front sensing and lacks adaptive processing of background noise.To address these limitations and to boost the PAO system's performance and accuracy in wave front detection,we propose a compressive neural network(Th-Net)combined with a specialized hybrid parallel programming approach for wave front detection.Our experimental results indicate that this hybrid parallel technique and Th-Net significantly enhance the PAO system's operational speed and wave front detection precision under uneven background noise.This work paves the way so that a duplicable and low-cost PAO system can be used for direct imaging of exoplanets with large telescopes.
文摘With the development of cutting-edge multi-object spectrographs,fiber positioners located in the focal plane are being scaled down in size,and miniature hollow-cup Permanent Magnet motors are now being considered as a suitable replacement for Faulhaber Precistep stepper motors.However,the small electrical time constant of such coreless motors poses a challenge,as the problem of severe commutation torque ripple in a fiber positioner running a position loop has been tricky.To overcome this challenge,it is advised to increase the Pulse Width Modulation(PWM)frequency as much as possible to mitigate the effects of the current fluctuation.This must be done while ensuring adequate resolution of the PWM generator.By employing a voltage open-loop field-oriented control based on a modulation frequency of 1 MHz,the drive current only costs 25 m A under a 3.3 V power supply.The sine degree of phase current is immaculate,and the repeat positioning accuracy can reach 2μm.Moreover,it is possible to further shrink the bill of devices and the layout area of the Printed Circuit Board,especially in sizesensitive applications.This device has been developed under the new generation of The Large Sky Area MultiObject Fiber Spectroscopic Telescope.
文摘The Submillimeter Wave Astronomy Satellite(SWAS)was the first space telescope capable of high spectral resolution observations of terahertz spectral lines.We have investigated the integration ability of its two receivers and spectrometer during five and a half years of on-orbit operation.The CI,O_(2),H_(2)O,and^(13)CO spectra taken toward all observed Galactic sources were analyzed.The present results are based on spectra with a total integration time of up to 2.72×10~4hr(■10~8s).The noise in the spectra is generally consistent with that expected from the radiometer equation,without any sign of approaching a noise floor.This noise performance reflects the extremely stable performance of the passively cooled front end as well as other relevant components in the SWAS instrument throughout its mission lifetime.
基金supported by Yunnan Revitalization Talent Support Program(202305AS350029 and 202305AT350005)Yunnan Key Laboratory of Solar Physics and Space Science(202205AG070009)。
文摘The near-infrared imaging channel constitutes a crucial component of the multichannel high-resolution imaging system of the New Vacuum Solar Telescope(NVST). We have successfully achieved high-resolution, narrowband imaging of the chromosphere using He I 10830 A triplet within this channel, which significantly enhances the imaging observation capabilities of NVST. This paper provides a concise overview of the optical system associated with the near-infrared imaging channel, detailing data processing procedures and presenting several observed images. Leveraging a high-resolution image reconstruction algorithm, we were able to generate a narrowband image near the diffraction limit at 10830 A with a temporal resolution of less than 10 s.
基金supported by the National Natural Science Foundation of China(12103057,12127901)the Frontier Research Fund of the Institute of Optics and Electronics,Chinese Academy of Sciences(C21K002)+1 种基金the Youth Innovation Promotion Association,Chinese Academy of Sciences(2021378)the National Natural Science Foundation of China(U2031148)。
文摘The 2.5 m wide-field and high-resolution solar telescope(WeHoST)is currently under developing for solar observations.WeHoST aims to achieve high-resolution observations over a super-wide field of view(FOV)of5′×5′,and a desired resolution of 0.3″.To meet the scientific requirements of WeHoST,the ground-layer adaptive optics(GLAO)with a specially designed wave front sensing system is as the primary consideration.We introduce the GLAO configuration,particularly the wave front sensing scheme.Utilizing analytic method,we simulate the performance of both classical AO and GLAO systems,optimize the wave front sensing system,and evaluate GLAO performance in terms of PSF uniformity and correction improvement across whole FOV.The results indicate that,the classical AO will achieve diffraction-limited resolution;the suggested GLAO configuration will uniformly improve the seeing across the full 5′×5′FOV,reducing the FWHM across the axis FOV to less than0.3″(λ≥705 nm,r0≥11 cm),which is more than two times improvement.The specially designed wave front sensor schedule offers new potential for WeHoST’s GLAO,particularly the multi-FOV GLAO and the flexibility to select the detected area.These capabilities will significantly enhance the scientific output of the telescope.
基金support by the National Key R&D Program of China No.2022YFF0503400。
文摘We tested a new model of CMOS detector manufactured by the Gpixel Inc,for potential space astronomical application.In laboratory,we obtain some bias images under the typical application environment.In these bias images,clear random row noise pattern is observed.The row noise also contains some characteristic spatial frequencies.We quantitatively estimated the impact of this feature to photometric measurements,by making simulated images.We compared different bias noise types under strict parameter control.The result shows the row noise will significantly deteriorate the photometric accuracy.It effectively increases the readout noise by a factor of2-10.However,if it is properly removed,the image quality and photometric accuracy will be significantly improved.
基金supported by Open Fund of State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences。
文摘Radiation pattern captures the electromagnetic performance of reflector antennas,which is significantly affected by the deformation of the primary reflector due to gravity and the displacement of the secondary reflector.During the design process of large reflector antennas,a substantial amount of time is often dedicated to iteratively adjusting structural parameters and validating electromagnetic performance.To improve the efficiency of the design process,we first propose an approximate calculation method of optical path difference(OPD)for the deformation of the primary reflector under gravity and the displacement of the secondary reflector.Then an OPD fitting function based on the modified Zernike polynomials is proposed to capture the phase difference of radiation over the aperture plane,based on which the radiation pattern will be obtained quickly by the aperture field integration method.Numerical experiments demonstrate the effectiveness of the proposed quick calculation method for analyzing the radiation pattern of a 10.4 m submillimeter telescope antenna at its highest operating frequency of 856 GHz.In comparison with the numerical simulation method based on GRASP(which is an antenna electromagnetic analysis tool combining physical optics(PO)and physical theory of diffraction(PTD)),the quick calculation method reduces the time for radiation pattern analysis from more than one hour to less than two minutes.Furthermore,the quick calculation method exhibits excellent accuracy for the figure of merit(FOM)of the radiation pattern.Therefore,the proposed quick calculation method can obtain the radiation pattern with high speed and accuracy.Compared to the time-consuming numerical simulation method(PO and PTD),it can be employed for quick analysis of the radiation pattern for the lateral displacement of the secondary reflector and the deformation of the primary reflector under gravity in the design process of a reflector antenna.
基金supported by the National Natural Science Foundation of China(grant No.12173062)。
文摘The image quality of a large field survey telescope with a fast focal ratio of the primary mirror is high sensitivity to the optical elements’misalignments and the primary mirror’s deformations.To maintain good optical performance,the perturbations need to be aligned,and the tomographic reconstruction of these perturbations can be derived from wavefront sensing with multi-field points for alignment.This work undertakes a comprehensive examination related to the implementation and optimization of a multi-field split curvature wavefront sensing system,including defocus distance,signal pre-processing,deblending of overlapped doughnuts,field-dependent correction,and distorted coordinate correction.We also conduct experiments to demonstrate the application and performance of a multi-field split curvature wavefront sensing system in Mephisto.In the context of the decentering of the secondary mirror,the coefficient of determination(R)attains a high value of 0.993,indicating a robust linearity between the coma coefficients and the decentering of the secondary mirror.A comparative analysis of the simulated and experimental results shows that the difference between them is less than 0.1λ.
基金support of the National SKA program of China(Nos.2022SKA0110100 and 2022SKA0110101)the National Natural Science Foundation of China(NSFC,Grant Nos.1236114814,12203061,12273070,and 12303004)。
文摘This paper presents the design,calibration,and survey strategy of the Fast Radio Burst(FRB)digital backend and its real-time data processing pipeline employed in the Tianlai Cylinder Pathfinder Array.The array,consisting of three parallel cylindrical reflectors and equipped with 96 dual-polarization feeds,is a radio interferometer array designed for conducting drift scans of the northern celestial semi-sphere.The FRB digital backend enables the formation of 96 digital beams,effectively covering an area of approximately 40 square degrees with the 3 dB beam.Our pipeline demonstrates the capability to conduct an automatic search of FRBs,detecting at quasi-realtime and classifying FRB candidates automatically.The current FRB searching pipeline has an overall recall rate of88%.During the commissioning phase,we successfully detected signals emitted by four well-known pulsars:PSR B0329+54,B2021+51,B0823+26,and B2020+28.We report the first discovery of an FRB by our array,designated as FRB 20220414A.We also investigate the optimal arrangement for the digitally formed beams to achieve maximum detection rate by numerical simulation.
基金generously supported by the National Natural Science Foundation of China(NSFC,Grant Nos.12073047 and 12273077)the National Key Research and Development(Grant No.2022YFF0711500)。
文摘In this study,we conducted simulations to find the geometric aberrations expected for images taken by the Main Survey Camera of the Chinese Space Station Telescope(CSST)due to its motion.As anticipated by previous work,our findings indicate that the geometric distortion of light impacts the focal plane's apparent scale,with a more pronounced influence as the size of the focal plane increases.Our models suggest that the effect consistently influences the pixel scale in both the vertical and parallel directions.The apparent scale variation follows a sinusoidal distribution throughout one orbital period.Simulations reveal that the effect is particularly pronounced in the center of the Galaxy and gradually diminishes along the direction of ecliptic latitude.At low ecliptic latitudes,the total aberration leads to about a 0.94 pixel offset(a 20 minute exposure)and a 0.26 pixel offset(a 300 s exposure)at the edge of the field of view.Appropriate processings for the geometric effect during the CSST pre-and post-observation phases are presented.
基金supported in part by Fundamental Research Funds for the Central Universities(23xkjc017)at Sun Yat-sen Universitythe National Natural Science Foundation of China(No.12075326)JSPS KAKENHI(No.22H00139)。
文摘The coherent muon-to-electron transition(COMET)experiment is a leading experiment for the coherent conversion of μ^(-)N→e^(-)N using a high-intensity pulsed muon beamline,produced using innovative slow-extraction techniques.Therefore,it is critical to measure the muon beam characteristics.We set up a muon beam monitor(MBM),where scintillating fibers woven in a cross shape were coupled to silicon photomultipliers to measure the spatial profile and timing structure of the extracted muon beam for the COMET.The MBM detector was tested successfully with a proton beamline at the China Spallation Neutron Source and took data with good performance in the commissioning run.The development of the MBM,including its mechanical structure,electronic readout,and beam measurement results,are discussed.
文摘AIM:To investigate a novel phacoemulsification system“EVA NEXUS”(D.O.R.C.,Dutch Opthalmic Research Center)in comparison to the existing system“EVA”in clinical use.And to compare both phacoemulsification systems in terms of efficiency,safety and postoperative inflammatory activity.METHODS:In this study standardized cataract surgery was performed on both eyes of the study participant,using the“EVA system”(control group,n=20)on one eye and the“EVA NEXUS system”(intervention group,n=20)on the other eye.Only patients with cataract LOCS Grading 1-3 and no accompanying eye diseases were included in this study.A total of 20 patients were included in this study,with each treatment arm including 20 eyes.During surgery a 0.1 mL aqueous humor sample was collected 1min after phacoemulsification to measure the total prostaglanin E2 concentrations using an enzyme-linked immunosorbent assay.The endothelial cell count,visual and refractive outcomes,and anterior chamber flare were evaluated preoperatively,and 1d,1wk,and 3mo postoperatively.RESULTS:There were no statistically significant differences between both groups regarding intraoperative safety parameters including effective phacoemulsification time(P=0.904),balanced saline solution flow(P=0.701)and total surgery time(P=0.565).Postoperative prostaglandin E2 levels,anterior chamber flare as well as endothelial cell loss tended to be lower in the NEXUS-Group,however not being statistically significant(P=0.718;0.164;0.486).Both systems provided similar clinical outcomes,regarding best corrected visual acuity and refractive parameters,showing no statistically significant differences between both groups.CONCLUSION:Both systems show a high level of safety and efficency with similar results in terms of safety parameters including postoperative inflammatory activity and endothelial cell loss as well as visual and refractive outcomes.Although statistically not significant,the EVA NEXUS system tends to cause less postoperative inflammation with lower prostaglandin E2 levels and lower anterior chamber flare values.
基金supported by the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences,grant XDB0550401supported by the National Natural Science Foundation of China(NSFC,grant No.12173009)+2 种基金by the Natural Science Foundation of Guangxi(2020GXNSFDA238018)by the Bagui Young Scholars Programsupported by the National Postdoctoral Program for Innovative Talents(grant No.GZB20230765)。
文摘In spite of the importance of studying the cosmic generation of heavy elements through the r-process,the detection of a kilonova resulting from the merger of a neutron star binary is still a challenging task.In this paper,we show that the Visible Telescope(VT)onboard the ongoing SVOM space mission is powerful for identifying kilonova candidates associated with short gamma-ray bursts up to a distance of 600 Mpc.A significant color variation,turning blue and then turning red,is revealed by calculating the light curves in both red and blue channels of VT by a linear combination of an afterglow and an associated kilonova.The maximum color variation is as high as~0.5-1 mag,which is far larger than the small photometry error of~0.2 mag of VT for a point source with a brightness of 23 mag.Up to a distance of 600 Mpc,~1-2 kilonova candidates per year are predicted to be identified by VT.
文摘On March 3,2024,the prototype permeability logging instrument independently developed in China successfully completed its first downhole test in Ren 91 standard well in PetroChina Huabei Oilfield.In the open hole section at a depth of 3925 metres and at a temperature of 148℃,the device collected high-quality permeability logging data.This marks a key technological breakthrough from 0 to 1 in permeability logging,and lays the foundation for the next step in developing a complete set of permeability logging equipment.
基金supported by the Jilin Scientific and Technological Development Program (No.20220204116YY)the National Natural Science Foundation of China(No.62235018 and No.12133009)。
文摘The thermal gradient is an important factor that causes degradation to the image quality of telescopes. In order to ensure the accurate alignment of the primary focus unit and the primary mirror, the hexapod platform(as a corrector) is investigated in this paper. First, a ground-based telescope with 2.5 m aperture and 3.5 deg field of view is described. The telescope is under construction, and it is expected to be finished in 2023. Second, the hexapod platform with flexure hinges utilized to adjust the primary focus unit is proposed, which is applied as a corrector.Then, the inverse kinematics of the platform is established and an open-loop control system is built based on it.Finally, the cryogenic performance test for the hexapod platform is performed. The experimental results show that the resolution and repeatability of the translation for the hexapod platform can be achieved at the micrometer level.The resolution and repeatability of the rotation can be achieved at the arc-second level. Therefore, the cryogenic performance of the hexapod platform can meet the optical imaging requirements of the wide-field ground-based telescope. The kinematic analysis and cryogenic performance tests in the paper provide a technical reference for the precise alignment of the primary focus unit and the primary mirror, which can improve the imaging quality of the telescope.
基金the support by National Key R&D Program of China(No.2022YFF0503403,2022YFF0711500)the support of National Natural Science Foundation of China(NSFC,grant Nos.11988101,12073047,12273077,12022306,12373048,12263005)+3 种基金the support from the Ministry of Science and Technology of China(Nos.2020SKA0110100)the science research grants from the China Manned Space Project(Nos.CMS-CSST-2021-B01,CMSCSST-2021-A01)CAS Project for Young Scientists in Basic Research(No.YSBR-062)the support from K.C.Wong Education Foundation。
文摘The China Space Station Telescope(CSST)is a two-meter space telescope with multiple back-end instruments.The Fine Guidance Sensor(FGS)is an essential subsystem of the CSST Precision Image Stability System to ensure the required absolute pointing accuracy and line-of-sight stabilization.In this study,we construct the Main Guide Star Catalog for FGS.To accomplish this,we utilize the information about the FGS and object information from the Gaia Data Release 3.We provide an FGS instrument magnitude and exclude variables,binaries,and high proper motion stars from the catalog to ensure uniform FGS guidance capabilities.Subsequently,we generate a HEALPix index,which provides a hierarchical tessellation of the celestial sphere,and employ the Voronoi algorithm to achieve a homogeneous distribution of stars across the catalog.This distribution ensures adequate coverage and sampling of the sky.The performance of the CSST guide star catalog was assessed by simulating the field of view of the FGS according to the CSST mock survey strategy catalog.The analysis of the results indicates that this catalog provides adequate coverage and accuracy.The catalog's performance meets the FGS requirements,ensuring the functioning of the FGS and its guidance capabilities.
文摘Leighton Chajnantor Telescope(LCT), i.e., the former Caltech Submillimeter Observatory telescope, will be refurbished at the new site in Chajnantor Plateau, Chile in 2023. The environment of LCT will change significantly after its relocation, and the telescope will be exposed to large wind disturbances directly because its enclosure will be completely open during observation. The wind disturbance is expected to be a challenge for LCT's pointing control since the existing control method cannot reject this disturbance very well. Therefore, it is very necessary to develop a new pointing control method with good capability of disturbance rejection. In this research, a disturbance observer—based composite position controller(DOB-CPC) is designed, in which an H∞feedback controller is employed to compress the disturbance, and a feedforward linear quadratic regulator is employed to compensate the disturbance precisely based on the estimated disturbance signal. Moreover, a controller switching policy is adopted, which applies the proportional controller to the transient process to achieve a quick response and applies the DOB-CPC to the steady state to achieve a small position error. Numerical experiments are conducted to verify the good performance of the proposed pointing controller(i.e., DOB-CPC) for rejecting the disturbance acting on LCT.