利用中国区域550个站点逐日地面气温及降水资料,评估了参与政府间气候变化专门委员会第四次报告(the fourth assessment report of the intergovernmental panel on climate change,IPCCAR4)的13个新一代全球气候系统模式及多模式集合...利用中国区域550个站点逐日地面气温及降水资料,评估了参与政府间气候变化专门委员会第四次报告(the fourth assessment report of the intergovernmental panel on climate change,IPCCAR4)的13个新一代全球气候系统模式及多模式集合对中国近40 a(1961—2000年)地面气温和降水的模拟能力,结果表明:最新全球模式对中国地区地面气温年变化及空间分布的模拟结果均较好,但在整个模拟区域地面气温模拟值系统性偏低,东部地区模拟效果好于中西部;对于降水,大部分模式能模拟出中国降水的年变化及空间分布特征,但模拟的区域性差别较大,多数模式对中国东部季风区夏季雨带北抬的过程有一定的模拟能力,但模拟雨带位置偏北。新一代全球模式能模拟出温度的线性变化趋势,但对温度及降水的年际变率模拟能力较低。比较多种评估指标得出,模式集合对温度的模拟效果最好,模式UKMO-HadCM3对降水的模拟效果最好。展开更多
Changes in the climate of the Arctic and of the Antarctic have been of great concern to the international scientific and social communities since the release in 2007 of the Intergovernmental Panel on Climate Change Fo...Changes in the climate of the Arctic and of the Antarctic have been of great concern to the international scientific and social communities since the release in 2007 of the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). Since then, many new findings have been reported from observations and research carried out in the Arctic and Antarctic during the fourth International Polar Year (IPY). There is evidence that global warming is inducing rapid changes in the Arctic and Antarctic, in both a quantitative and qualitative sense, and that these regional changes could be used as indicators of global climate change. Declining Arctic sea ice could affect winter snowfall across much of the Northern Hemisphere by bringing harsher winters. Projections suggest that summertime Arctic sea ice will disappear by 2037. By the 2070s, the Antarctic ozone hole will recover to the level of the early 1980s, following the ban on the production of Freon earlier this century. With the loss of the shielding effect of the ozone hole, Antarctic surface temperatures will increase, ice sheets in East Antarctica will begin to melt, and the Antarctic sea ice will retreat. Therefore, sea level rise will become an increasingly serious issue this century. As sea surface temperature rises, the Southern Ocean will become less effective as a sink for atmospheric CO2 and the increase of surface CO2 will be faster than that in the atmosphere. Increased surface CO2 would lead to ocean acidification and affect ecological systems and food chains.展开更多
Based on daily mean temperature records from 1961 to 2007 at 20 meteorological sites in Southwest Yunnan, and the surface temperature simulated by IPCC AR4 Climate Models, a quantitative examination was undertaken int...Based on daily mean temperature records from 1961 to 2007 at 20 meteorological sites in Southwest Yunnan, and the surface temperature simulated by IPCC AR4 Climate Models, a quantitative examination was undertaken into the characteristics of multi-timescale temperature (AMT, DMT and WMT) variation in Southwest Yunnan. The simulation abilities of the models were also evaluated with the normalized root mean square error (NRMSE) and Mann-Kendal test statistic methods. Temperatures show remarkable increasing trend from 1961 to 2007, with the Mann-Kendall test statistic passing 95% confidence verification. The result of the NRMSE analysis shows that the simulated temperature anomaly variations are more similar to observed ones especially for AMT and DMT, and the projected result (anomalies) of IPCC AR4 climate models can be used for predicting the trends in multi-timescale temperature variation in Southwest Yunnan in the next 40 years under the three emission scenarios, which has better simulating effect on AMT and DMT than WMT. Over the next 40 years the temperature will continue to rise, with annual mean temperature showing a more remarkable rising trend than that of the dry and wet seasons. Temperature anomalies exhibit different increasing rates under different emission scenarios: During the 2020s the rising rates of multi-timescale temperature anomalies in a high greenhouse gases emissions scenario (SRESA2) are smaller than those under a low emission scenario (SRESB1). Except that, the rate of increase in temperature anomalies are the highest in the intermediate emissions scenario (SRESA1B), followed by those in SRESA2, and those in low emissions scenario (SRESB1) are the lowest. The reason of different simulating effects on WMT from AMT and DMT was also discussed.展开更多
Future temperature distributions of the marginal Chinese seas are studied by dynamic downscaling of global CCSM3 IPCC_AR4 scenario runs. Different forcing fields from 2080-2099 Special Report on Emissions Scenarios (...Future temperature distributions of the marginal Chinese seas are studied by dynamic downscaling of global CCSM3 IPCC_AR4 scenario runs. Different forcing fields from 2080-2099 Special Report on Emissions Scenarios (SRES) B1, A1, and A2 to 1980-1999 20C3M are averaged and superimposed on CORE2 and SODA2.2.4 data to force high-resolution regional future simulations using the Regional Ocean Modeling System (ROMS). Volume transport increments in downscaling simulation support the CCSM3 result that with a weakening subtropical gyre circulation, the Kuroshio Current in the East China Sea (ECS) is possibly strengthened under the global wanning scheme. This mostly relates to local wind change, whereby the summer monsoon is strengthened and winter monsoon weakened. Future temperature fluxes and their seasonal variations are larger than in the CCSM3 result. Downscaling 100 years' temperature increments are comparable to the CCSM3, with a minimum in B1 scenario of 1.2-2.0~C and a maximum in A2 scenario of 2.5-4.5~C. More detailed temperature distributions are shown in the downscaling simulation. Larger increments are in the Bohai Sea and middle Yellow Sea, and smaller increments near the southeast coast of China, west coast of Korea, and southern ECS. There is a reduction of advective heat north of Taiwan Island and west of Tsushima in summer, and along the southern part of the Yellow Sea warm current in winter. There is enhancement of advective heat in the northern Yellow Sea in winter, related to the delicate temperature increment distribution. At 50 meter depth, the Yellow Sea cold water mass is destroyed. Our simulations suggest that in the formation season of the cold water mass, regional temperature is higher in the future and the water remains at the bottom until next summer. In summer, the mixed layer is deeper, making it much easier for the strengthened surface heat flux to penetrate to the bottom of this water.展开更多
Using the output data of 20 coupled climate models used in IPCC AR4 and observational data from NCEP, the capability of the models to simulate the boreal winter climatology of the East Asian sea level pressure, 850-hP...Using the output data of 20 coupled climate models used in IPCC AR4 and observational data from NCEP, the capability of the models to simulate the boreal winter climatology of the East Asian sea level pressure, 850-hPa wind, and surface air temperature; the decadal variations of the East Asian winter mon- soon (EAWM) intensity and EAWM-related circulation, and the interdecadal variations of EAWM-related circulation are systematically evaluated. The results indicate that 16 models can weakly simulate the declin- ing trend of the EAWM in the 1980s. More than half of the models produce relatively reasonable decadal variations of the EAWM-related circulation and the interdecadal differences of EAWM-related circulation between the boreal winters of 1960-1985 and 1986-1998, including the weakened Siberian high, Aleutian low, and East Asian trough, the enhanced Arctic oscillation and North Pacific oscillation, and a deepened polar vortex. It is found that the performance of the multi-selected-model ensemble in reproducing the spatial dis- tribution of the variations is encouraging, although the variational amplitudes are generally smaller than the observations. In addition, it is found that BCCR-BCM2.0, CGCM3.1-T63, CNRM-CM3, CSIRO-MK3.0, GISS-ER, INM-CM3.0, and MRI-CGCM2.3.2 perform well in every aspect.展开更多
On the basis of the temperature observations during 1961-2000 in China, seven coupled general circulation models' (GCMs) extreme temperature products are evaluated supplied by the Intergovernmental Panel on Climate...On the basis of the temperature observations during 1961-2000 in China, seven coupled general circulation models' (GCMs) extreme temperature products are evaluated supplied by the Intergovernmental Panel on Climate Change' s 4th Assessment Report (IPCC-AR4). The extreme temperature indices in use are frost days (FD), growing season length (GSL), extreme temperature range (ETR), warm nights (TN90), and heat wave duration index (HWDI). Results indicate that all the seven models are capable of simulating spatial and temporal variations in temperature characteristics, and their ensemble acts more reliable than any single one. Among the seven models, GFDL-CM2.0 and MIROC3.2 performances are much better. Besides, most of the models are able to present linear trends of the same positive/negative signs as the observations but for weaker intensities. The simulation effects are different on a nationwide basis, with 110°N as the division, east (west) of which the effects are better (worse) and the poorer over the Qinghai-Tibetan Plateau in China. The predictions for the 21st century on emissions scenarios show that except decreases in the FD and ETR, other indices display significant increasing trend, especially for the indices of HWDI and TN90, which represent the notable extreme climate. This indicates that the temperature-related climate is moving towards the extreme. In the late 21st century, the GSL and TN90 (HWDI) increase most notably in southwest China (the Qinghai-Tibetan Plateau), and the FD decrease most remarkably in the Qinghai-Tibetan Plateau, northwest and northeast of China. Apart from South China, the yearly change range of the extreme temperature is reduced in most of China.展开更多
By using the simulative results of more than 20 climate system models which were provided by the fourth assessment report of the Intergovernmental Panel on Climate Change(IPCC),the climate change in Dalian area in the...By using the simulative results of more than 20 climate system models which were provided by the fourth assessment report of the Intergovernmental Panel on Climate Change(IPCC),the climate change in Dalian area in the 21st century under the different scenarios(SRES A2,SRES A1B and SRES B1) were analyzed and predicted with the multi-model's aggregative simulative results via the interpolation downscaling calculation.The results showed that the climate in Dalian would have the obvious warming and wetting tendency in the 21st century as a whole.The annual average warming tendency of air temperature would be 2.45-3.46 ℃/100 years,and the annual precipitation increase trend would be 5.8%-16.3% per 100 years.The warming in winter would be the most obvious,and the precipitation increase would be comparatively obvious in winter and spring.The precipitation decrease would be comparatively obvious in autumn in the previous period of 21st century.In A2,A1B and B1 scenarios,the air temperatures in the late period of 21st century would respectively be 3.46,3.44 and 2.45 ℃ higher than in the ordinary years,and the annual precipitation would respectively be 16.3%,11.8% and 5.79% more than in the ordinary years.展开更多
文摘利用中国区域550个站点逐日地面气温及降水资料,评估了参与政府间气候变化专门委员会第四次报告(the fourth assessment report of the intergovernmental panel on climate change,IPCCAR4)的13个新一代全球气候系统模式及多模式集合对中国近40 a(1961—2000年)地面气温和降水的模拟能力,结果表明:最新全球模式对中国地区地面气温年变化及空间分布的模拟结果均较好,但在整个模拟区域地面气温模拟值系统性偏低,东部地区模拟效果好于中西部;对于降水,大部分模式能模拟出中国降水的年变化及空间分布特征,但模拟的区域性差别较大,多数模式对中国东部季风区夏季雨带北抬的过程有一定的模拟能力,但模拟雨带位置偏北。新一代全球模式能模拟出温度的线性变化趋势,但对温度及降水的年际变率模拟能力较低。比较多种评估指标得出,模式集合对温度的模拟效果最好,模式UKMO-HadCM3对降水的模拟效果最好。
基金supported by the National Natural Science Foundation of China (Grant nos.40531007,41230529)the National High-tech Research & Development Program of China (Grant no.2008AA121703)+3 种基金the International Cooperation Project supported by Ministry of Science and Technology of China (Grant no.2009DFA22920)the International Cooperation Project supported by Chinese Arctic and Antarctic Administration (Grant nos.IC201013,IC201114,IC201201,and IC201308)the Chinese Polar Environmental Comprehensive Investigation and Assessment Programs (Grant nos.CHINARE2012-01-04-02,CHINARE2012-02-01,and CHINARE2012-03-04-02)the Ocean Public Welfare Scientific Research Project of China (Grant no.2004DIB5J178)
文摘Changes in the climate of the Arctic and of the Antarctic have been of great concern to the international scientific and social communities since the release in 2007 of the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). Since then, many new findings have been reported from observations and research carried out in the Arctic and Antarctic during the fourth International Polar Year (IPY). There is evidence that global warming is inducing rapid changes in the Arctic and Antarctic, in both a quantitative and qualitative sense, and that these regional changes could be used as indicators of global climate change. Declining Arctic sea ice could affect winter snowfall across much of the Northern Hemisphere by bringing harsher winters. Projections suggest that summertime Arctic sea ice will disappear by 2037. By the 2070s, the Antarctic ozone hole will recover to the level of the early 1980s, following the ban on the production of Freon earlier this century. With the loss of the shielding effect of the ozone hole, Antarctic surface temperatures will increase, ice sheets in East Antarctica will begin to melt, and the Antarctic sea ice will retreat. Therefore, sea level rise will become an increasingly serious issue this century. As sea surface temperature rises, the Southern Ocean will become less effective as a sink for atmospheric CO2 and the increase of surface CO2 will be faster than that in the atmosphere. Increased surface CO2 would lead to ocean acidification and affect ecological systems and food chains.
基金National Natural Science Foundation of China (40901050), National Basic Research Program of China (No. 2012CB955903)Scientific Research Fund Project of Yunnan Provincial Department of Education (No. 09Y0284, "Technology Research of Adaptation and Mitigation to Yunnan Climate Change")
文摘Based on daily mean temperature records from 1961 to 2007 at 20 meteorological sites in Southwest Yunnan, and the surface temperature simulated by IPCC AR4 Climate Models, a quantitative examination was undertaken into the characteristics of multi-timescale temperature (AMT, DMT and WMT) variation in Southwest Yunnan. The simulation abilities of the models were also evaluated with the normalized root mean square error (NRMSE) and Mann-Kendal test statistic methods. Temperatures show remarkable increasing trend from 1961 to 2007, with the Mann-Kendall test statistic passing 95% confidence verification. The result of the NRMSE analysis shows that the simulated temperature anomaly variations are more similar to observed ones especially for AMT and DMT, and the projected result (anomalies) of IPCC AR4 climate models can be used for predicting the trends in multi-timescale temperature variation in Southwest Yunnan in the next 40 years under the three emission scenarios, which has better simulating effect on AMT and DMT than WMT. Over the next 40 years the temperature will continue to rise, with annual mean temperature showing a more remarkable rising trend than that of the dry and wet seasons. Temperature anomalies exhibit different increasing rates under different emission scenarios: During the 2020s the rising rates of multi-timescale temperature anomalies in a high greenhouse gases emissions scenario (SRESA2) are smaller than those under a low emission scenario (SRESB1). Except that, the rate of increase in temperature anomalies are the highest in the intermediate emissions scenario (SRESA1B), followed by those in SRESA2, and those in low emissions scenario (SRESB1) are the lowest. The reason of different simulating effects on WMT from AMT and DMT was also discussed.
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB417401)the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-EW-201)the Open Fund of Key Laboratory of Data Analysis and Applications,FIO(No.LDAA2011-03)
文摘Future temperature distributions of the marginal Chinese seas are studied by dynamic downscaling of global CCSM3 IPCC_AR4 scenario runs. Different forcing fields from 2080-2099 Special Report on Emissions Scenarios (SRES) B1, A1, and A2 to 1980-1999 20C3M are averaged and superimposed on CORE2 and SODA2.2.4 data to force high-resolution regional future simulations using the Regional Ocean Modeling System (ROMS). Volume transport increments in downscaling simulation support the CCSM3 result that with a weakening subtropical gyre circulation, the Kuroshio Current in the East China Sea (ECS) is possibly strengthened under the global wanning scheme. This mostly relates to local wind change, whereby the summer monsoon is strengthened and winter monsoon weakened. Future temperature fluxes and their seasonal variations are larger than in the CCSM3 result. Downscaling 100 years' temperature increments are comparable to the CCSM3, with a minimum in B1 scenario of 1.2-2.0~C and a maximum in A2 scenario of 2.5-4.5~C. More detailed temperature distributions are shown in the downscaling simulation. Larger increments are in the Bohai Sea and middle Yellow Sea, and smaller increments near the southeast coast of China, west coast of Korea, and southern ECS. There is a reduction of advective heat north of Taiwan Island and west of Tsushima in summer, and along the southern part of the Yellow Sea warm current in winter. There is enhancement of advective heat in the northern Yellow Sea in winter, related to the delicate temperature increment distribution. At 50 meter depth, the Yellow Sea cold water mass is destroyed. Our simulations suggest that in the formation season of the cold water mass, regional temperature is higher in the future and the water remains at the bottom until next summer. In summer, the mixed layer is deeper, making it much easier for the strengthened surface heat flux to penetrate to the bottom of this water.
基金Supported by the National Natural Science Foundation of China(41130103 and 40905041)Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX2-YW-QN202)China Global Change Research Program(2012CB955401)
文摘Using the output data of 20 coupled climate models used in IPCC AR4 and observational data from NCEP, the capability of the models to simulate the boreal winter climatology of the East Asian sea level pressure, 850-hPa wind, and surface air temperature; the decadal variations of the East Asian winter mon- soon (EAWM) intensity and EAWM-related circulation, and the interdecadal variations of EAWM-related circulation are systematically evaluated. The results indicate that 16 models can weakly simulate the declin- ing trend of the EAWM in the 1980s. More than half of the models produce relatively reasonable decadal variations of the EAWM-related circulation and the interdecadal differences of EAWM-related circulation between the boreal winters of 1960-1985 and 1986-1998, including the weakened Siberian high, Aleutian low, and East Asian trough, the enhanced Arctic oscillation and North Pacific oscillation, and a deepened polar vortex. It is found that the performance of the multi-selected-model ensemble in reproducing the spatial dis- tribution of the variations is encouraging, although the variational amplitudes are generally smaller than the observations. In addition, it is found that BCCR-BCM2.0, CGCM3.1-T63, CNRM-CM3, CSIRO-MK3.0, GISS-ER, INM-CM3.0, and MRI-CGCM2.3.2 perform well in every aspect.
基金The research of regular and technology about important and climate events around Beijing area under contract No.Z07050600680701the National Natural Science Foundation of China under contract No.40675043
文摘On the basis of the temperature observations during 1961-2000 in China, seven coupled general circulation models' (GCMs) extreme temperature products are evaluated supplied by the Intergovernmental Panel on Climate Change' s 4th Assessment Report (IPCC-AR4). The extreme temperature indices in use are frost days (FD), growing season length (GSL), extreme temperature range (ETR), warm nights (TN90), and heat wave duration index (HWDI). Results indicate that all the seven models are capable of simulating spatial and temporal variations in temperature characteristics, and their ensemble acts more reliable than any single one. Among the seven models, GFDL-CM2.0 and MIROC3.2 performances are much better. Besides, most of the models are able to present linear trends of the same positive/negative signs as the observations but for weaker intensities. The simulation effects are different on a nationwide basis, with 110°N as the division, east (west) of which the effects are better (worse) and the poorer over the Qinghai-Tibetan Plateau in China. The predictions for the 21st century on emissions scenarios show that except decreases in the FD and ETR, other indices display significant increasing trend, especially for the indices of HWDI and TN90, which represent the notable extreme climate. This indicates that the temperature-related climate is moving towards the extreme. In the late 21st century, the GSL and TN90 (HWDI) increase most notably in southwest China (the Qinghai-Tibetan Plateau), and the FD decrease most remarkably in the Qinghai-Tibetan Plateau, northwest and northeast of China. Apart from South China, the yearly change range of the extreme temperature is reduced in most of China.
基金Supported by The National Natural Science Fund(40971294)The General Project of Humanities and Social Sciences in Liaoning Education Department(2009A405)The Science and Technology Plan Project of Dalian Technology Bureau(2008E13SF189,2009E11SF230)
文摘By using the simulative results of more than 20 climate system models which were provided by the fourth assessment report of the Intergovernmental Panel on Climate Change(IPCC),the climate change in Dalian area in the 21st century under the different scenarios(SRES A2,SRES A1B and SRES B1) were analyzed and predicted with the multi-model's aggregative simulative results via the interpolation downscaling calculation.The results showed that the climate in Dalian would have the obvious warming and wetting tendency in the 21st century as a whole.The annual average warming tendency of air temperature would be 2.45-3.46 ℃/100 years,and the annual precipitation increase trend would be 5.8%-16.3% per 100 years.The warming in winter would be the most obvious,and the precipitation increase would be comparatively obvious in winter and spring.The precipitation decrease would be comparatively obvious in autumn in the previous period of 21st century.In A2,A1B and B1 scenarios,the air temperatures in the late period of 21st century would respectively be 3.46,3.44 and 2.45 ℃ higher than in the ordinary years,and the annual precipitation would respectively be 16.3%,11.8% and 5.79% more than in the ordinary years.