Total Cloud Cover (TCC) over China deter- mined from four climate datasets including the Interna- tional Satellite Cloud Climatology Project (ISCCP), the 40-year Re-Analysis Project of the European Centre for Medi...Total Cloud Cover (TCC) over China deter- mined from four climate datasets including the Interna- tional Satellite Cloud Climatology Project (ISCCP), the 40-year Re-Analysis Project of the European Centre for Medium-Range Weather Forecasts (ERA-40), Climate Research Unit Time Series 3.0 (CRU3), and ground sta- tion datasets are used to show spatial and temporal varia- tion of TCC and their differences. It is demonstrated that the four datasets show similar spatial pattern and seasonal variation. The maximum value is derived from ISCCE TCC value in North China derived from ERA-40 is 50% larger than that from the station dataset; however, the value is 50% less than that in South China. The annual TCC of ISCCP, ERA-40, and ground station datasets shows a decreasing trend during 1984-2002; however, an increasing trend is derived from CRU3. The results of this study imply remarkable differences of TCC derived from surface and satellite observations as well as model simu- lations. The potential effects of these differences on cloud climatology and associated climatic issues should be carefully considered.展开更多
The International Satellite Cloud Climatology Project (ISCCP) D2 dataset is used to study the global dis- tribution of low, middle and high cloud amounts and their trends of 1983—2001. Evidences have shown that globa...The International Satellite Cloud Climatology Project (ISCCP) D2 dataset is used to study the global dis- tribution of low, middle and high cloud amounts and their trends of 1983—2001. Evidences have shown that global warming has accelerated over the past 20 a and the 1990s was the warmest decade in the instrumental records since 1861. Trends of various clouds amounts over this period are analyzed by employing the linear regression method. The results show that global mean total cloud amounts, in general, have tended to reduce over the past 20 a. But there are slightly increasing by about 2% before 1987 and decreasing by about 4% since then. Cloudiness trends of both low and high clouds decrease while increase for the middle cloud. And there exist remarkable discrepancies in different regions. The preliminary analyses suggest that it is likely that the cloud change occurring over the past 20 a is a positive feed- back to global warming.展开更多
基金supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences(XDA05100300)the National Basic Research Program of China(2013CB955801)the National Natural Science Foundation of China(41175030)
文摘Total Cloud Cover (TCC) over China deter- mined from four climate datasets including the Interna- tional Satellite Cloud Climatology Project (ISCCP), the 40-year Re-Analysis Project of the European Centre for Medium-Range Weather Forecasts (ERA-40), Climate Research Unit Time Series 3.0 (CRU3), and ground sta- tion datasets are used to show spatial and temporal varia- tion of TCC and their differences. It is demonstrated that the four datasets show similar spatial pattern and seasonal variation. The maximum value is derived from ISCCE TCC value in North China derived from ERA-40 is 50% larger than that from the station dataset; however, the value is 50% less than that in South China. The annual TCC of ISCCP, ERA-40, and ground station datasets shows a decreasing trend during 1984-2002; however, an increasing trend is derived from CRU3. The results of this study imply remarkable differences of TCC derived from surface and satellite observations as well as model simu- lations. The potential effects of these differences on cloud climatology and associated climatic issues should be carefully considered.
文摘The International Satellite Cloud Climatology Project (ISCCP) D2 dataset is used to study the global dis- tribution of low, middle and high cloud amounts and their trends of 1983—2001. Evidences have shown that global warming has accelerated over the past 20 a and the 1990s was the warmest decade in the instrumental records since 1861. Trends of various clouds amounts over this period are analyzed by employing the linear regression method. The results show that global mean total cloud amounts, in general, have tended to reduce over the past 20 a. But there are slightly increasing by about 2% before 1987 and decreasing by about 4% since then. Cloudiness trends of both low and high clouds decrease while increase for the middle cloud. And there exist remarkable discrepancies in different regions. The preliminary analyses suggest that it is likely that the cloud change occurring over the past 20 a is a positive feed- back to global warming.