[Objective] The research aimed to study forecast models for frozen and melted dates of the river water in Ningxia-Inner Mongolia section of the Yellow River based on SVR optimized by particle swarm optimization algori...[Objective] The research aimed to study forecast models for frozen and melted dates of the river water in Ningxia-Inner Mongolia section of the Yellow River based on SVR optimized by particle swarm optimization algorithm. [Method] Correlation analysis and cause analysis were used to select suitable forecast factor combination of the ice regime. Particle swarm optimization algorithm was used to determine the optimal parameter to construct forecast model. The model was used to forecast frozen and melted dates of the river water in Ningxia-Inner Mongolia section of the Yellow River. [Result] The model had high prediction accuracy and short running time. Average forecast error was 3.51 d, and average running time was 10.464 s. Its forecast effect was better than that of the support vector regression optimized by genetic algorithm (GA) and back propagation type neural network (BPNN). It could accurately forecast frozen and melted dates of the river water. [Conclusion] SVR based on particle swarm optimization algorithm could be used for ice regime forecast.展开更多
基金Supported by National Nature Science Fund Item,China (51009065)Key Science and Technology Research Plan Program in Henan Province,China(112102110033)
文摘[Objective] The research aimed to study forecast models for frozen and melted dates of the river water in Ningxia-Inner Mongolia section of the Yellow River based on SVR optimized by particle swarm optimization algorithm. [Method] Correlation analysis and cause analysis were used to select suitable forecast factor combination of the ice regime. Particle swarm optimization algorithm was used to determine the optimal parameter to construct forecast model. The model was used to forecast frozen and melted dates of the river water in Ningxia-Inner Mongolia section of the Yellow River. [Result] The model had high prediction accuracy and short running time. Average forecast error was 3.51 d, and average running time was 10.464 s. Its forecast effect was better than that of the support vector regression optimized by genetic algorithm (GA) and back propagation type neural network (BPNN). It could accurately forecast frozen and melted dates of the river water. [Conclusion] SVR based on particle swarm optimization algorithm could be used for ice regime forecast.