The electroluminescence (EL) and photoluminescence (PL) spectra of InGaN/GaN multiple quantum wells (MQWs) with a prestrained InGaN interlayer in a laser diode structure are investigated. When the injection curr...The electroluminescence (EL) and photoluminescence (PL) spectra of InGaN/GaN multiple quantum wells (MQWs) with a prestrained InGaN interlayer in a laser diode structure are investigated. When the injection current increases from 5 mA to 50 mA, the blueshift of the EL emission peak is 1 meV for the prestrained sample and 23 meV for a control sample with the conventional structure. Also, the internal quantum efficiency and the EL intensity at the injection current of 20 mA are increased by 71% and 65% respectively by inserting the prestrained InGaN interlayer. The reduced blueshift and the enhanced emission are attributed mainly to the reduced quantum-confined Stark effect (QCSE) in the prestrained sample. Such attributions are supported by the theoretical simulation results, which reveal the smaller piezoelectric field and the enhanced overlap of electron and hole wave functions in the prestrained sample. Therefore, the prestrained InGaN interlayer contributes to strain relaxation in the MQW layer and enhancement of light emission due to the reduction of QCSE.展开更多
The structural and optical properties of InGaN/GaN multiple quantum wells (MQWs) with different barrier thick-nesses are studied by means of high resolution X-ray diffraction (HRXRD), a cross-sectional transmissio...The structural and optical properties of InGaN/GaN multiple quantum wells (MQWs) with different barrier thick-nesses are studied by means of high resolution X-ray diffraction (HRXRD), a cross-sectional transmission electron mi-croscope (TEM), and temperature-dependent photoluminescence (PL) measurements. HRXRD and cross-sectional TEM measurements show that the interfaces between wells and barriers are abrupt and the entire MQW region has good periodic- ity for all three samples. As the barrier thickness is increased, the temperature of the turning point from blueshift to redshift of the S-shaped temperature-dependent PL peak energy increases monotonously, which indicates that the localization po- tentials due to In-rich clusters is deeper. From the Arrhenius plot of the normalized integrated PL intensity, it is found that there are two kinds of nonradiative recombination processes accounting for the thermal quenching of photoluminescence, and the corresponding activation energy (or the localization potential) increases with the increase of the barrier thickness. The dependence on barrier thickness is attributed to the redistribution of In-rich clusters during the growth of barrier layers, i.e., clusters with lower In contents aggregate into clusters with higher In contents.展开更多
This paper studies the exciton-longitudinal-optical-phonon coupling in InGaN/GaN single quantum wells with various cap layer thicknesses by low temperature photoluminescence (PL) measurements. With increasing cap la...This paper studies the exciton-longitudinal-optical-phonon coupling in InGaN/GaN single quantum wells with various cap layer thicknesses by low temperature photoluminescence (PL) measurements. With increasing cap layer thickness, the PL peak energy shifts to lower energy and the coupling strength between the exciton and longitudinal- optical (LO) phonon, described by Huang-Rhys factor, increases remarkably due to an enhancement of the internal electric field. With increasing excitation intensity, the zero-phonon peak shows a blueshift and the Huang-Rhys factor decreases. These results reveal that there is a large built-in electric field in the well layer and the exciton-LO-phonon coupling is strongly affected by the thickness of the cap layer.展开更多
InGaN based light-emitting diodes (LEDs) with dip-shaped quantum wells and conventional rectangular quantum ~lls are numerically investigated by using the APSYS simulation software. It is found that the structure wi...InGaN based light-emitting diodes (LEDs) with dip-shaped quantum wells and conventional rectangular quantum ~lls are numerically investigated by using the APSYS simulation software. It is found that the structure with dip- aped quantum wells shows improved light output power, lower current leakage and less efficiency droop. Based on Lmerical simulation and analysis, these improvements on the electrical and the optical characteristics are attributed ainly to the alleviation of the electrostatic field in dip-shaped InGaN/GaN multiple quantum wells (MQWs).展开更多
Four blue-violet light emitting InGaN/GaN multiple quantum well(MQW) structures with different well widths are grown by metal–organic chemical vapor deposition. The carrier localization effect in these samples is i...Four blue-violet light emitting InGaN/GaN multiple quantum well(MQW) structures with different well widths are grown by metal–organic chemical vapor deposition. The carrier localization effect in these samples is investigated mainly by temperature-dependent photoluminescence measurements. It is found that the localization effect is enhanced as the well width increases from 1.8 nm to 3.6 nm in our experiments. The temperature induced PL peak blueshift and linewidth variation increase with increasing well width, implying that a greater amplitude of potential fluctuation as well as more localization states exist in wider wells. In addition, it is noted that the broadening of the PL spectra always occurs mainly on the low-energy side of the PL spectra due to the temperature-induced band-gap shrinkage, while in the case of the widest well, a large extension of the spectral curve also occurs in the high energy sides due to the existence of more shallow localized centers.展开更多
A strain-compensated InGaN quantum well(QW) active region employing a tensile AlGaN barrier is analyzed.Its spectral stability and efficiency droop for a dual-blue light-emitting diode(LED) are improved compared w...A strain-compensated InGaN quantum well(QW) active region employing a tensile AlGaN barrier is analyzed.Its spectral stability and efficiency droop for a dual-blue light-emitting diode(LED) are improved compared with those of the conventional InGaN/GaN QW dual-blue LEDs based on a stacking structure of two In0.18Ga0.82N/GaN QWs and two In0.12Ga0.88N/GaN QWs on the same sapphire substrate.It is found that the optimal performance is achieved when the Al composition of the strain-compensated AlGaN layer is 0.12 in blue QW and 0.21 in blue-violet QW.The improvement performance can be attributed to the strain-compensated InGaN-AlGaN/GaN QW,which can provide a better carrier confinement and effectively reduce leakage current.展开更多
The photoluminescence(PL) properties of a green and blue light-emitting InGaN/GaN multiple quantum well structure with a strong phase separated into quasi-quantum dots(QDs) and an InGaN matrix in the InGaN epilaye...The photoluminescence(PL) properties of a green and blue light-emitting InGaN/GaN multiple quantum well structure with a strong phase separated into quasi-quantum dots(QDs) and an InGaN matrix in the InGaN epilayer are investigated.The excitation power dependences of QD-related green emissions(PD〉) and matrix-related blue emissions(PM) in the low excitation power range of the PL peak energy and line-width indicate that at 6 K both Pm and PD are dominated by the combined action of Coulomb screening and localized state filling effect.However,at 300 K,Pm is dominated by the non-radiative recombination of the carriers in the InGaN matrix,while PD is influenced by the carriers transferred from the shallower QDs to deeper QDs by tunnelling.This is consistent with the excitation power dependence of the PL efficiency for the emission.展开更多
InGaN/GaN multiple quantum well (MQW) solar cells with stepped-thickness quantum wells (SQW) are designed and grown by metal-organic chemical vapor deposition. The stepped-thickness quantum wells structure, in whi...InGaN/GaN multiple quantum well (MQW) solar cells with stepped-thickness quantum wells (SQW) are designed and grown by metal-organic chemical vapor deposition. The stepped-thickness quantum wells structure, in which the well thickness becomes smaller and smaller along the growth direction, reveals better crystalline quality and better spectral overlap with the solar spectrum. Consequently, the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 27.12% and 56.41% compared with the conventional structure under illumination of AM1.5G (100 mW/cm2). In addition, approaches to further promote the performance of InGaN/GaN multiple quantum well solar cells are discussed and presented.展开更多
Blue-red complex light emitting InGaN/GaN multi-quantum well(MQW)structures are fabricated by metal organic chemical vapor deposition(MOCVD).The structures are grown on a 2-inch diameter(0001)oriented(c−face)sapphire ...Blue-red complex light emitting InGaN/GaN multi-quantum well(MQW)structures are fabricated by metal organic chemical vapor deposition(MOCVD).The structures are grown on a 2-inch diameter(0001)oriented(c−face)sapphire substrate,which consists of an approximately 2-µm−thick GaN template and a five-period layer consisting of a 4.9-nm-thick In0.18Ga0.82N well layer and a GaN barrier layer.The surface morphology of the MQW structures is observed by an atomic force microscope(AFM),which indicates the presence of islands of several tens of nanometers in height on the surface.The high resolution x−ray diffraction(XRD)θ/2θscan is carried out on the symmetric(0002)of the InGaN/GaN MQW structures.At least four order satellite peaks presented in the XRD spectrum indicate that the thickness and alloy compositions of the individual quantum wells are repeatable throughout the active region.Besides the 364 nm GaN band edge emission,two main emissions of blue and amber light from these MQWs are found,which possibly originate from the carrier recombinations in the InGaN/GaN QWs and InGaN quasi-quantum dots embedded in the QWs.展开更多
We investigate the photoluminescence(PL)emission from InGaN/GaN multiple quantum-well structures before and after 1 MeV electron irradiation.The PL peak intensity exhibits a slight enhancement after low-dose electron ...We investigate the photoluminescence(PL)emission from InGaN/GaN multiple quantum-well structures before and after 1 MeV electron irradiation.The PL peak intensity exhibits a slight enhancement after low-dose electron irradiation(2×10^(13) e/cm^(2)),and then decreases with the cumulative electron dose.Meanwhile,the full width at half maximum of the PL spectrum narrows after low-dose electron irradiation and widens when the irradiation dose is relatively high.With respect to the yellow photoluminescence,there is no significant change until the electron fluence has accumulated up to 10^(14) e/cm^(2).展开更多
In order to investigate the inherent polarization intensity in InGaN/GaN multiple quantum well(MQW) structures,the electroluminescence(EL) spectra of three samples with different GaN barrier thicknesses of 21.3 nm, 11...In order to investigate the inherent polarization intensity in InGaN/GaN multiple quantum well(MQW) structures,the electroluminescence(EL) spectra of three samples with different GaN barrier thicknesses of 21.3 nm, 11.4 nm, and 6.5 nm are experimentally studied. All of the EL spectra present a similar blue-shift under the low-level current injection,and then turns to a red-shift tendency when the current increases to a specific value, which is defined as the turning point.The value of this turning point differs from one another for the three InGaN/GaN MQW samples. Sample A, which has the GaN barrier thickness of 21.3 nm, shows the highest current injection level at the turning point as well as the largest value of blue-shift. It indicates that sample A has the maximum intensity of the polarization field. The red-shift of the EL spectra results from the vertical electron leakage in InGaN/GaN MQWs and the corresponding self-heating effect under the high-level current injection. As a result, it is an effective approach to evaluate the polarization field in the InGaN/GaN MQW structures by using the injection current level at the turning point and the blue-shift of the EL spectra profiles.展开更多
The InGaN/GaN blue light emitting diode(LED) is numerically investigated using a triangular-shaped quantum well model,which involves analysis on its energy band,carrier concentration,overlap of electron and hole wav...The InGaN/GaN blue light emitting diode(LED) is numerically investigated using a triangular-shaped quantum well model,which involves analysis on its energy band,carrier concentration,overlap of electron and hole wave functions,radiative recombination rate,and internal quantum efficiency.The simulation results reveal that the InGaN/GaN blue light emitting diode with triangular quantum wells exhibits a higher radiative recombination rate than the conventional light emitting diode with rectangular quantum wells due to the enhanced overlap of electron and hole wave functions(above 90%) under the polarization field.Consequently,the efficiency droop is only 18% in the light emitting diode with triangular-shaped quantum wells,which is three times lower than that in a conventional LED.展开更多
The effects of polarization and related structural parameters on the intersubband transitions of A1GaN/GaN multi- quantum wells (MQWs) have been investigated by solving the Schr6dinger and the Poisson equations self...The effects of polarization and related structural parameters on the intersubband transitions of A1GaN/GaN multi- quantum wells (MQWs) have been investigated by solving the Schr6dinger and the Poisson equations self-consistently. The results show that the intersubband absorption coefficient increases with increasing polarization while the transition wavelength decreases, which is not identical to the case of the interband transitions. Moreover, it suggests that the well width has a greater effect on the intersubband transitions than the barrier thickness, and the intersubband transition wavelength of the structure when doped in the barrier is shorter than that when doped in the well. It is found that the influences of the structural parameters differ for different electron subbands. The mechanisms responsible for these effects have been investigated in detail.展开更多
The green light emitting diodes (LEDs) have lower quantum efficiency than LEDs with other emission wavelengths in the visible spectrum. In this research, a novel quantum well structure was designed to improve the el...The green light emitting diodes (LEDs) have lower quantum efficiency than LEDs with other emission wavelengths in the visible spectrum. In this research, a novel quantum well structure was designed to improve the electroluminescence (EL) of green InGaN-based LEDs. Compared with the conventional quantum well structure, the novel structure LED gained 2.14 times light out power (LOP) at 20-mA current injection, narrower FWHM and lower blue-shift at different current injection conditions.展开更多
In this study, the influence of multiple interruptions with trimethylindium(TMIn)-treatment in InGaN/GaN multiple quantum wells(MQWs) on green light-emitting diode(LED) is investigated. A comparison of conventional LE...In this study, the influence of multiple interruptions with trimethylindium(TMIn)-treatment in InGaN/GaN multiple quantum wells(MQWs) on green light-emitting diode(LED) is investigated. A comparison of conventional LEDs with the one fabricated with our method shows that the latter has better optical properties. Photoluminescence(PL) full-width at half maximum(FWHM) is reduced, light output power is much higher and the blue shift of electroluminescence(EL) dominant wavelength becomes smaller with current increasing. These improvements should be attributed to the reduced interface roughness of MQW and more uniformity of indium distribution in MQWs by the interruptions with TMIn-treatment.展开更多
In this paper, InGaN/GaN multiple quantum well solar cells (MQWSCs) with an In content of 0.15 are fabricated and studied. The short-circuit density, fill factor and open-circuit voltage (Voc) of the device are 0....In this paper, InGaN/GaN multiple quantum well solar cells (MQWSCs) with an In content of 0.15 are fabricated and studied. The short-circuit density, fill factor and open-circuit voltage (Voc) of the device are 0.7 mA/cm2, 0.40 and 2.22 V, respectively. The results exhibit a significant enhancement of Voc compared with those of InGaN-based hetero and homojunction cells. This enhancement indicates that the InGaN/GaN MQWSC offers an effective way for increasing Voc of an In-rich InxGal-~N solar cell. The device exhibits an external quantum efficiency (EQE) of 36% (7%) at 388 nm (430 nm). The photovoltaic performance of the device can be improved by optimizing the structure of the InGaN/GaN multiple quantum well.展开更多
The electron mobility limited by the interface and surface roughness scatterings of the two-dimensional electron gas in AlxGa1-xN/GaN quantum wells is studied. The newly proposed surface roughness scattering in the Al...The electron mobility limited by the interface and surface roughness scatterings of the two-dimensional electron gas in AlxGa1-xN/GaN quantum wells is studied. The newly proposed surface roughness scattering in the AlGaN/GaN quantum wells becomes effective when an electric field exists in the AlxGa1-xN barrier. For the AlGaN/GaN potential well, the ground subband energy is governed by the spontaneous and the piezoelectric polarization fields which are determined by the barrier and the well thicknesses. The thickness fluctuation of the AlGaN barrier and the GaN well due to the roughnesses cause the local fluctuation of the ground subband energy, which will reduce the 2DEG mobility.展开更多
Epitaxial evolution of buried cracks in a strain-controlled AIN/GaN superlattice interlayer (IL) grown on GaN tem- plate, resulting in crack-free AIGaN/GaN multiple quantum wells (MQW), was investigated. The proce...Epitaxial evolution of buried cracks in a strain-controlled AIN/GaN superlattice interlayer (IL) grown on GaN tem- plate, resulting in crack-free AIGaN/GaN multiple quantum wells (MQW), was investigated. The processes of filling the buried cracks include crack formation in the IL, coalescence from both side walls of the crack, build-up of an MQW-layer hump above the cracks, lateral expansion and merging with the surrounding MQW, and two-dimensional step flow growth. It was confirmed that the filling content in the buried cracks is pure GaN, originating from the deposition of the GaN thin layer directly after the IL. Migration of Ga adatoms into the cracks plays a key role in the filling the buried cracks.展开更多
Low temperature photoluminescence (PL) measurements have been performed for a set of GaN/AlxGal xN quantum wells (QWs). The experimental results show that the optical full width at half maximum (FWHM) increases ...Low temperature photoluminescence (PL) measurements have been performed for a set of GaN/AlxGal xN quantum wells (QWs). The experimental results show that the optical full width at half maximum (FWHM) increases relatively rapidly with increasing A1 composition in the AlxGal xN barrier, and increases only slightly with increasing GaN well width. A model considering the interface roughness is used to interpret the experimental results. In the model, the FWHM's broadening caused by the interface roughness is calculated based on the triangle potential well approximation. We find that the calculated results accord with the experimental results well.展开更多
BaTiO3 (BTO) ferroelectric thin films are prepared by the sol,el method. The fabrication and the optical properties of an InGaN/GaN multiple quantum well light emitting diode (LED) with amorphous BTO ferroelectric...BaTiO3 (BTO) ferroelectric thin films are prepared by the sol,el method. The fabrication and the optical properties of an InGaN/GaN multiple quantum well light emitting diode (LED) with amorphous BTO ferroelectric thin film are studied. The photolumineseence (PL) of the BTO ferroelectric film is attributed to the structure. The ferroeleetric film which annealed at 673 K for 8 h has the better PL property. The peak width is about 30 nm from 580 nm to 610 nm, towards the yellow region. The mixed electroluminescence (EL) spectrum of InGaN/GaN multiple quantum well LED with 150-nm thick amorphous BTO ferroelectric thin film displays the blue-white light. The Commission Internationale De L'Eclairage (CIE) coordinate of EL is (0.2139, 0.1627). EL wavelength and intensity depends on the composition, microstructure and thickness of the ferroelectric thin film. The transmittance of amorphous BTO thin film is about 93% at a wavelength of 450 nm-470 nm. This means the amorphous ferroelectrie thin films can output more blue-ray and emission lights. In addition, the amorphous ferroelectric thin films can be directly fabricated without a binder and used at higher temperatures (200 ℃-400 ℃). It is very favourable to simplify the preparation process and reduce the heat dissipation requirements of an LED. This provides a new way to study LEDs.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2012CB619304)the National Natural Science Foundation of China(Grant Nos.61076013 and 51272008)the Beijing Municipal Science and Technology Project,China(Grant No.H030430020000)
文摘The electroluminescence (EL) and photoluminescence (PL) spectra of InGaN/GaN multiple quantum wells (MQWs) with a prestrained InGaN interlayer in a laser diode structure are investigated. When the injection current increases from 5 mA to 50 mA, the blueshift of the EL emission peak is 1 meV for the prestrained sample and 23 meV for a control sample with the conventional structure. Also, the internal quantum efficiency and the EL intensity at the injection current of 20 mA are increased by 71% and 65% respectively by inserting the prestrained InGaN interlayer. The reduced blueshift and the enhanced emission are attributed mainly to the reduced quantum-confined Stark effect (QCSE) in the prestrained sample. Such attributions are supported by the theoretical simulation results, which reveal the smaller piezoelectric field and the enhanced overlap of electron and hole wave functions in the prestrained sample. Therefore, the prestrained InGaN interlayer contributes to strain relaxation in the MQW layer and enhancement of light emission due to the reduction of QCSE.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61106044 and 61274052)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110121110029)+1 种基金the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.2013121024)the Natural Science Foundation of Fujian Province of China(Grant No.2013J05096)
文摘The structural and optical properties of InGaN/GaN multiple quantum wells (MQWs) with different barrier thick-nesses are studied by means of high resolution X-ray diffraction (HRXRD), a cross-sectional transmission electron mi-croscope (TEM), and temperature-dependent photoluminescence (PL) measurements. HRXRD and cross-sectional TEM measurements show that the interfaces between wells and barriers are abrupt and the entire MQW region has good periodic- ity for all three samples. As the barrier thickness is increased, the temperature of the turning point from blueshift to redshift of the S-shaped temperature-dependent PL peak energy increases monotonously, which indicates that the localization po- tentials due to In-rich clusters is deeper. From the Arrhenius plot of the normalized integrated PL intensity, it is found that there are two kinds of nonradiative recombination processes accounting for the thermal quenching of photoluminescence, and the corresponding activation energy (or the localization potential) increases with the increase of the barrier thickness. The dependence on barrier thickness is attributed to the redistribution of In-rich clusters during the growth of barrier layers, i.e., clusters with lower In contents aggregate into clusters with higher In contents.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60876007 and 10974165)the Research Program of Xiamen Municipal Science and Technology Bureau,China (Grant No. 2006AA03Z110)
文摘This paper studies the exciton-longitudinal-optical-phonon coupling in InGaN/GaN single quantum wells with various cap layer thicknesses by low temperature photoluminescence (PL) measurements. With increasing cap layer thickness, the PL peak energy shifts to lower energy and the coupling strength between the exciton and longitudinal- optical (LO) phonon, described by Huang-Rhys factor, increases remarkably due to an enhancement of the internal electric field. With increasing excitation intensity, the zero-phonon peak shows a blueshift and the Huang-Rhys factor decreases. These results reveal that there is a large built-in electric field in the well layer and the exciton-LO-phonon coupling is strongly affected by the thickness of the cap layer.
基金supported by the National Natural Science Foundation of China (Grant No. 50602018)the Science and Technology Program of Guangdong Province of China (Grant Nos. 2010B090400456, 2009B011100003, and 2010A081002002)the Scienceand Technology Program of Guangzhou City, China (Grant No. 2010U1-D00191)
文摘InGaN based light-emitting diodes (LEDs) with dip-shaped quantum wells and conventional rectangular quantum ~lls are numerically investigated by using the APSYS simulation software. It is found that the structure with dip- aped quantum wells shows improved light output power, lower current leakage and less efficiency droop. Based on Lmerical simulation and analysis, these improvements on the electrical and the optical characteristics are attributed ainly to the alleviation of the electrostatic field in dip-shaped InGaN/GaN multiple quantum wells (MQWs).
基金supported by the National Key Research and Development Program of China(Grant No.2016YFB0401801)the National Natural Science Foundation of China(Grant Nos.61674138,61674139,61604145,61574135,61574134,61474142,61474110,61377020,and 61376089)+1 种基金Science Challenge Project,China(Grant No.JCKY2016212A503)One Hundred Person Project of the Chinese Academy of Sciences
文摘Four blue-violet light emitting InGaN/GaN multiple quantum well(MQW) structures with different well widths are grown by metal–organic chemical vapor deposition. The carrier localization effect in these samples is investigated mainly by temperature-dependent photoluminescence measurements. It is found that the localization effect is enhanced as the well width increases from 1.8 nm to 3.6 nm in our experiments. The temperature induced PL peak blueshift and linewidth variation increase with increasing well width, implying that a greater amplitude of potential fluctuation as well as more localization states exist in wider wells. In addition, it is noted that the broadening of the PL spectra always occurs mainly on the low-energy side of the PL spectra due to the temperature-induced band-gap shrinkage, while in the case of the widest well, a large extension of the spectral curve also occurs in the high energy sides due to the existence of more shallow localized centers.
基金Project supported by the National Natural Science Foundation of China (Grant No. U1174001)the Ministry of Education Scientific Research Foundation for Returned Scholars,China (Grant No. 20091001)+1 种基金the Scientific and Technological Plan of Guangzhou City,China (Grant No. 2010U1-D00131)the Natural Science Foundation of Guangdong Province,China (Grant No. S2011010003400)
文摘A strain-compensated InGaN quantum well(QW) active region employing a tensile AlGaN barrier is analyzed.Its spectral stability and efficiency droop for a dual-blue light-emitting diode(LED) are improved compared with those of the conventional InGaN/GaN QW dual-blue LEDs based on a stacking structure of two In0.18Ga0.82N/GaN QWs and two In0.12Ga0.88N/GaN QWs on the same sapphire substrate.It is found that the optimal performance is achieved when the Al composition of the strain-compensated AlGaN layer is 0.12 in blue QW and 0.21 in blue-violet QW.The improvement performance can be attributed to the strain-compensated InGaN-AlGaN/GaN QW,which can provide a better carrier confinement and effectively reduce leakage current.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120131110006)the Key Science and Technology Program of Shandong Province,China(Grant No.2013GGX10221)+2 种基金the Key Laboratory of Functional Crystal Materials and Device(Shandong University,Ministry of Education)(Grant No.JG1401)the Major Research Plan of the National Natural Science Foundation of China(Grant No.91433112)the National Natural Science Foundation of China(Grant No.61306113)
文摘The photoluminescence(PL) properties of a green and blue light-emitting InGaN/GaN multiple quantum well structure with a strong phase separated into quasi-quantum dots(QDs) and an InGaN matrix in the InGaN epilayer are investigated.The excitation power dependences of QD-related green emissions(PD〉) and matrix-related blue emissions(PM) in the low excitation power range of the PL peak energy and line-width indicate that at 6 K both Pm and PD are dominated by the combined action of Coulomb screening and localized state filling effect.However,at 300 K,Pm is dominated by the non-radiative recombination of the carriers in the InGaN matrix,while PD is influenced by the carriers transferred from the shallower QDs to deeper QDs by tunnelling.This is consistent with the excitation power dependence of the PL efficiency for the emission.
基金the National Natural Science Foundation of China(Grant No.51172079)the Science and Technology Program of Guangdong Province,China(Grant Nos.2010B090400456 and 2010A081002002)the Science and Technology Program of Guangzhou,China(Grant No.2011J4300018)
文摘InGaN/GaN multiple quantum well (MQW) solar cells with stepped-thickness quantum wells (SQW) are designed and grown by metal-organic chemical vapor deposition. The stepped-thickness quantum wells structure, in which the well thickness becomes smaller and smaller along the growth direction, reveals better crystalline quality and better spectral overlap with the solar spectrum. Consequently, the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 27.12% and 56.41% compared with the conventional structure under illumination of AM1.5G (100 mW/cm2). In addition, approaches to further promote the performance of InGaN/GaN multiple quantum well solar cells are discussed and presented.
基金by the National Basic Research Program of China under Grant No 2011CB301900the National High-Technology Research and Development Program of China under Grant No 2009AA03A198+2 种基金the National Natural Science Foundation of China under Grant Nos 60721063,60676057,60731160628,60820106003,60990311 and 60906025the Natural Science Foundation of Jiangsu Province(BK2008019,BK2009255)the Research Funds from NJU-Yangzhou Institute of Opto-electronics.
文摘Blue-red complex light emitting InGaN/GaN multi-quantum well(MQW)structures are fabricated by metal organic chemical vapor deposition(MOCVD).The structures are grown on a 2-inch diameter(0001)oriented(c−face)sapphire substrate,which consists of an approximately 2-µm−thick GaN template and a five-period layer consisting of a 4.9-nm-thick In0.18Ga0.82N well layer and a GaN barrier layer.The surface morphology of the MQW structures is observed by an atomic force microscope(AFM),which indicates the presence of islands of several tens of nanometers in height on the surface.The high resolution x−ray diffraction(XRD)θ/2θscan is carried out on the symmetric(0002)of the InGaN/GaN MQW structures.At least four order satellite peaks presented in the XRD spectrum indicate that the thickness and alloy compositions of the individual quantum wells are repeatable throughout the active region.Besides the 364 nm GaN band edge emission,two main emissions of blue and amber light from these MQWs are found,which possibly originate from the carrier recombinations in the InGaN/GaN QWs and InGaN quasi-quantum dots embedded in the QWs.
基金Supported by the National Natural Science Foundation of China under Grant No 11275262.
文摘We investigate the photoluminescence(PL)emission from InGaN/GaN multiple quantum-well structures before and after 1 MeV electron irradiation.The PL peak intensity exhibits a slight enhancement after low-dose electron irradiation(2×10^(13) e/cm^(2)),and then decreases with the cumulative electron dose.Meanwhile,the full width at half maximum of the PL spectrum narrows after low-dose electron irradiation and widens when the irradiation dose is relatively high.With respect to the yellow photoluminescence,there is no significant change until the electron fluence has accumulated up to 10^(14) e/cm^(2).
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFB0400803 and 2016YFB0401801)the National Natural Science Foundation of China(Grant Nos.61674138,61674139,61604145,61574135,and 61574134)。
文摘In order to investigate the inherent polarization intensity in InGaN/GaN multiple quantum well(MQW) structures,the electroluminescence(EL) spectra of three samples with different GaN barrier thicknesses of 21.3 nm, 11.4 nm, and 6.5 nm are experimentally studied. All of the EL spectra present a similar blue-shift under the low-level current injection,and then turns to a red-shift tendency when the current increases to a specific value, which is defined as the turning point.The value of this turning point differs from one another for the three InGaN/GaN MQW samples. Sample A, which has the GaN barrier thickness of 21.3 nm, shows the highest current injection level at the turning point as well as the largest value of blue-shift. It indicates that sample A has the maximum intensity of the polarization field. The red-shift of the EL spectra results from the vertical electron leakage in InGaN/GaN MQWs and the corresponding self-heating effect under the high-level current injection. As a result, it is an effective approach to evaluate the polarization field in the InGaN/GaN MQW structures by using the injection current level at the turning point and the blue-shift of the EL spectra profiles.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61076013,51102003,and 60990313)the National Basic Research Program of China (Grant No. 2012CB619304)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20100001120014)
文摘The InGaN/GaN blue light emitting diode(LED) is numerically investigated using a triangular-shaped quantum well model,which involves analysis on its energy band,carrier concentration,overlap of electron and hole wave functions,radiative recombination rate,and internal quantum efficiency.The simulation results reveal that the InGaN/GaN blue light emitting diode with triangular quantum wells exhibits a higher radiative recombination rate than the conventional light emitting diode with rectangular quantum wells due to the enhanced overlap of electron and hole wave functions(above 90%) under the polarization field.Consequently,the efficiency droop is only 18% in the light emitting diode with triangular-shaped quantum wells,which is three times lower than that in a conventional LED.
基金Project supported by the National Basic Research Program of China (Grant Nos. 2012CB619302 and 2010CB923204)the National Natural Science Foundation of China (Grant Nos. 60976042, 51002058, and 11104150)the China Postdoctoral Science Foundation (Grant No. 20100480064)
文摘The effects of polarization and related structural parameters on the intersubband transitions of A1GaN/GaN multi- quantum wells (MQWs) have been investigated by solving the Schr6dinger and the Poisson equations self-consistently. The results show that the intersubband absorption coefficient increases with increasing polarization while the transition wavelength decreases, which is not identical to the case of the interband transitions. Moreover, it suggests that the well width has a greater effect on the intersubband transitions than the barrier thickness, and the intersubband transition wavelength of the structure when doped in the barrier is shorter than that when doped in the well. It is found that the influences of the structural parameters differ for different electron subbands. The mechanisms responsible for these effects have been investigated in detail.
基金supported by the National Key Research and Development Program of China(Grant Nos.2016YFB0400300 and 2016YFB0400600)the National Natural Science Foundation of China(Grant Nos.11574362,61210014,and 11374340)the Innovative Clean-Energy Research and Application Program of Beijing Municipal Science and Technology Commission(Grant No.Z151100003515001)
文摘The green light emitting diodes (LEDs) have lower quantum efficiency than LEDs with other emission wavelengths in the visible spectrum. In this research, a novel quantum well structure was designed to improve the electroluminescence (EL) of green InGaN-based LEDs. Compared with the conventional quantum well structure, the novel structure LED gained 2.14 times light out power (LOP) at 20-mA current injection, narrower FWHM and lower blue-shift at different current injection conditions.
基金supported by the National Natural Science Foundation of China(Grant Nos.11204360 and 61210014)the Science and Technology Planning Projects of Guangdong Province,China(Grant Nos.2014B050505020,2015B010114007,and 2014B090904045)+2 种基金the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134407110008)the Guangzhou Municipal Science and Technology Project of Guangdong Province,China(Grant No.2016201604030027)the Zhongshan Science and Technology Project of Guangdong Province,China(Grant No.2013B3FC0003)
文摘In this study, the influence of multiple interruptions with trimethylindium(TMIn)-treatment in InGaN/GaN multiple quantum wells(MQWs) on green light-emitting diode(LED) is investigated. A comparison of conventional LEDs with the one fabricated with our method shows that the latter has better optical properties. Photoluminescence(PL) full-width at half maximum(FWHM) is reduced, light output power is much higher and the blue shift of electroluminescence(EL) dominant wavelength becomes smaller with current increasing. These improvements should be attributed to the reduced interface roughness of MQW and more uniformity of indium distribution in MQWs by the interruptions with TMIn-treatment.
基金supported by Knowledge Innovation Engineering of the Chinese Academy of Sciences (Grant No. YYYJ-0701-02)the National Natural Science Foundation of China (Grant Nos. 60890193 and 60906006)+1 种基金the State Key Development Program for Basic Research of China (Grant Nos. 2006CB604905 and 2010CB327503)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. ISCAS2008T01,ISCAS2009L01,and ISCAS2009L02)
文摘In this paper, InGaN/GaN multiple quantum well solar cells (MQWSCs) with an In content of 0.15 are fabricated and studied. The short-circuit density, fill factor and open-circuit voltage (Voc) of the device are 0.7 mA/cm2, 0.40 and 2.22 V, respectively. The results exhibit a significant enhancement of Voc compared with those of InGaN-based hetero and homojunction cells. This enhancement indicates that the InGaN/GaN MQWSC offers an effective way for increasing Voc of an In-rich InxGal-~N solar cell. The device exhibits an external quantum efficiency (EQE) of 36% (7%) at 388 nm (430 nm). The photovoltaic performance of the device can be improved by optimizing the structure of the InGaN/GaN multiple quantum well.
基金the National Natural Science Foundation of China(Grant Nos.91233111,11275228,60976008,61006004,61076001,and 10979507)the National Basic Research Program of China(Grant No.2012CB619305)the National High Technology Research and Development Program of China(Grant No.2011AA03A101)
文摘The electron mobility limited by the interface and surface roughness scatterings of the two-dimensional electron gas in AlxGa1-xN/GaN quantum wells is studied. The newly proposed surface roughness scattering in the AlGaN/GaN quantum wells becomes effective when an electric field exists in the AlxGa1-xN barrier. For the AlGaN/GaN potential well, the ground subband energy is governed by the spontaneous and the piezoelectric polarization fields which are determined by the barrier and the well thicknesses. The thickness fluctuation of the AlGaN barrier and the GaN well due to the roughnesses cause the local fluctuation of the ground subband energy, which will reduce the 2DEG mobility.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174008 and 61361166007)the National Basic Research Program of China(Grant Nos.2012CB619306 and 2012CB619301)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20100001120012)
文摘Epitaxial evolution of buried cracks in a strain-controlled AIN/GaN superlattice interlayer (IL) grown on GaN tem- plate, resulting in crack-free AIGaN/GaN multiple quantum wells (MQW), was investigated. The processes of filling the buried cracks include crack formation in the IL, coalescence from both side walls of the crack, build-up of an MQW-layer hump above the cracks, lateral expansion and merging with the surrounding MQW, and two-dimensional step flow growth. It was confirmed that the filling content in the buried cracks is pure GaN, originating from the deposition of the GaN thin layer directly after the IL. Migration of Ga adatoms into the cracks plays a key role in the filling the buried cracks.
基金supported by the National Basic Research Program of China(Grant No.2012CB619306)the National High Technology Research and Development Program of China(Grant No.2011AA03A101)
文摘Low temperature photoluminescence (PL) measurements have been performed for a set of GaN/AlxGal xN quantum wells (QWs). The experimental results show that the optical full width at half maximum (FWHM) increases relatively rapidly with increasing A1 composition in the AlxGal xN barrier, and increases only slightly with increasing GaN well width. A model considering the interface roughness is used to interpret the experimental results. In the model, the FWHM's broadening caused by the interface roughness is calculated based on the triangle potential well approximation. We find that the calculated results accord with the experimental results well.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61076042 and 60607006)the Special Project on Development of National Key Scientific Instruments and Equipment of China (Grant No. 2011YQ16000205)the National High Technology Research and Development Program of China (Grant No. 2011AA03A106)
文摘BaTiO3 (BTO) ferroelectric thin films are prepared by the sol,el method. The fabrication and the optical properties of an InGaN/GaN multiple quantum well light emitting diode (LED) with amorphous BTO ferroelectric thin film are studied. The photolumineseence (PL) of the BTO ferroelectric film is attributed to the structure. The ferroeleetric film which annealed at 673 K for 8 h has the better PL property. The peak width is about 30 nm from 580 nm to 610 nm, towards the yellow region. The mixed electroluminescence (EL) spectrum of InGaN/GaN multiple quantum well LED with 150-nm thick amorphous BTO ferroelectric thin film displays the blue-white light. The Commission Internationale De L'Eclairage (CIE) coordinate of EL is (0.2139, 0.1627). EL wavelength and intensity depends on the composition, microstructure and thickness of the ferroelectric thin film. The transmittance of amorphous BTO thin film is about 93% at a wavelength of 450 nm-470 nm. This means the amorphous ferroelectrie thin films can output more blue-ray and emission lights. In addition, the amorphous ferroelectric thin films can be directly fabricated without a binder and used at higher temperatures (200 ℃-400 ℃). It is very favourable to simplify the preparation process and reduce the heat dissipation requirements of an LED. This provides a new way to study LEDs.