A problem for a central crack in a plate subjected to plane strain conditions is investigated. Mode I crack loading is created by a dynamic pressure pulse applied at a large distance from the crack. It was found that ...A problem for a central crack in a plate subjected to plane strain conditions is investigated. Mode I crack loading is created by a dynamic pressure pulse applied at a large distance from the crack. It was found that for a certain combination of amplitude and duration of the pulse applied, the energy transmitted to the sample has a strongly marked minimum, meaning that with the pulse amplitude or duration moving away from the optimal values, minimum energy required for initiation of crack growth increases rapidly. The results obtained indicate a possibility to optimise energy consumption of different industrial processes connected with fracture. Much could be gained in, for example, drilling or rock pounding where energy input accounts for the largest part of the process cost. Presumably further investigation of the effect observed can make it possible to predict optimal energy saving parameters, i.e. frequency and amplitude of impacts, for industrial devices, e.g. bores, grinding machines, and hence significantly reduce the process cost. The pre- diction can be given based on the parameters of the media fractured (material parameters, prevalent crack length and orientation, etc.).展开更多
This paper outlines the results of experimental study of the dynamic rock failure based on the comparison of dry and saturated limestone samples obtained during the dynamic compression and split tests. The tests were ...This paper outlines the results of experimental study of the dynamic rock failure based on the comparison of dry and saturated limestone samples obtained during the dynamic compression and split tests. The tests were performed using the Kolsky method and its modifications for dynamic splitting. The mechanical data(e.g. strength, time and energy characteristics) of this material at high strain rates are obtained. It is shown that these characteristics are sensitive to the strain rate. A unified interpretation of these rate effects, based on the structuraletemporal approach, is hereby presented. It is demonstrated that the temporal dependence of the dynamic compressive and split tensile strengths of dry and saturated limestone samples can be predicted by the incubation time criterion. Previously discovered possibilities to optimize(minimize) the energy input for the failure process is discussed in connection with industrial rock failure processes. It is shown that the optimal energy input value associated with critical load, which is required to initialize failure in the rock media, strongly depends on the incubation time and the impact duration. The optimal load shapes, which minimize the momentum for a single failure impact, are demonstrated. Through this investigation, a possible approach to reduce the specific energy required for rock cutting by means of high-frequency vibrations is also discussed.展开更多
文摘A problem for a central crack in a plate subjected to plane strain conditions is investigated. Mode I crack loading is created by a dynamic pressure pulse applied at a large distance from the crack. It was found that for a certain combination of amplitude and duration of the pulse applied, the energy transmitted to the sample has a strongly marked minimum, meaning that with the pulse amplitude or duration moving away from the optimal values, minimum energy required for initiation of crack growth increases rapidly. The results obtained indicate a possibility to optimise energy consumption of different industrial processes connected with fracture. Much could be gained in, for example, drilling or rock pounding where energy input accounts for the largest part of the process cost. Presumably further investigation of the effect observed can make it possible to predict optimal energy saving parameters, i.e. frequency and amplitude of impacts, for industrial devices, e.g. bores, grinding machines, and hence significantly reduce the process cost. The pre- diction can be given based on the parameters of the media fractured (material parameters, prevalent crack length and orientation, etc.).
基金supported by IHC Merwede B.V. as well as by Russian Foundation for Basic Research (Grant Nos. 13-0100349 and 14-01-31510)Russian Science Foundation (“support and development”, Grant No. 14-19-01637)Saint Petersburg University (Grant No. 6.38.243.2014)
文摘This paper outlines the results of experimental study of the dynamic rock failure based on the comparison of dry and saturated limestone samples obtained during the dynamic compression and split tests. The tests were performed using the Kolsky method and its modifications for dynamic splitting. The mechanical data(e.g. strength, time and energy characteristics) of this material at high strain rates are obtained. It is shown that these characteristics are sensitive to the strain rate. A unified interpretation of these rate effects, based on the structuraletemporal approach, is hereby presented. It is demonstrated that the temporal dependence of the dynamic compressive and split tensile strengths of dry and saturated limestone samples can be predicted by the incubation time criterion. Previously discovered possibilities to optimize(minimize) the energy input for the failure process is discussed in connection with industrial rock failure processes. It is shown that the optimal energy input value associated with critical load, which is required to initialize failure in the rock media, strongly depends on the incubation time and the impact duration. The optimal load shapes, which minimize the momentum for a single failure impact, are demonstrated. Through this investigation, a possible approach to reduce the specific energy required for rock cutting by means of high-frequency vibrations is also discussed.