In view of the forwarding microblogging,secondhand smoke,happiness,and many other phenomena in real life,the spread characteristic of the secondary neighbor nodes in this kind of phenomenon and network scheduling is e...In view of the forwarding microblogging,secondhand smoke,happiness,and many other phenomena in real life,the spread characteristic of the secondary neighbor nodes in this kind of phenomenon and network scheduling is extracted,and sequence influence maximization problem based on the influence of neighbor nodes is proposed in this paper.That is,in the time sequential social network,the propagation characteristics of the second-level neighbor nodes are considered emphatically,and k nodes are found to maximize the information propagation.Firstly,the propagation probability between nodes is calculated by the improved degree estimation algorithm.Secondly,the weighted cascade model(WCM) based on static social network is not suitable for temporal social network.Therefore,an improved weighted cascade model(IWCM) is proposed,and a second-level neighbors time sequential maximizing influence algorithm(STIM) is put forward based on node degree.It combines the consideration of neighbor nodes and the problem of overlap of influence scope between nodes,and makes it chronological.Finally,the experiment verifies that STIM algorithm has stronger practicability,superiority in influence range and running time compared with similar algorithms,and is able to solve the problem of maximizing the timing influence based on the influence of neighbor nodes.展开更多
The aim of this study was to develop an adequate mathematical model for long-term forecasting of technological progress and economic growth in the digital age (2020-2050). In addition, the task was to develop a model ...The aim of this study was to develop an adequate mathematical model for long-term forecasting of technological progress and economic growth in the digital age (2020-2050). In addition, the task was to develop a model for forecast calculations of labor productivity in the symbiosis of “man + intelligent machine”, where an intelligent machine (IM) is understood as a computer or robot equipped with elements of artificial intelligence (AI), as well as in the digital economy as a whole. In the course of the study, it was shown that in order to implement its goals the Schumpeter-Kondratiev innovation and cycle theory on forming long waves (LW) of economic development influenced by a powerful cluster of economic technologies engendered by industrial revolutions is most appropriate for a long-term forecasting of technological progress and economic growth. The Solow neoclassical model of economic growth, synchronized with LW, gives the opportunity to forecast economic dynamics of technologically advanced countries with a greater precision up to 30 years, the time which correlates with the continuation of LW. In the information and digital age, the key role among the main factors of growth (capital, labour and technological progress) is played by the latter. The authors have developed an information model which allows for forecasting technological progress basing on growth rates of endogenous technological information in economics. The main regimes of producing technological information, corresponding to the eras of information and digital economies, are given in the article, as well as the Lagrangians that engender them. The model is verified on the example of the 5<sup>th</sup> information LW for the US economy (1982-2018) and it has had highly accurate approximation for both technological progress and economic growth. A number of new results were obtained using the developed information models for forecasting technological progress. The forecasting trajectory of economic growth of developed countries (on the example of the USA) on the upward stage of the 6<sup>th</sup> LW (2018-2042), engendered by the digital technologies of the 4<sup>th</sup> Industrial Revolution is given. It is also demonstrated that the symbiosis of human and intelligent machine (IM) is the driving force in the digital economy, where man plays the leading role organizing effective and efficient mutual work. Authors suggest a mathematical model for calculating labour productivity in the digital economy, where the symbiosis of “human + IM” is widely used. The calculations carried out with the help of the model show: 1) the symbiosis of “human + IM” from the very beginning lets to realize the possibilities of increasing work performance in the economy with the help of digital technologies;2) the largest labour productivity is achieved in the symbiosis of “human + IM”, where man labour prevails, and the lowest labour productivity is seen where the largest part of the work is performed by IM;3) developed countries may achieve labour productivity of 3% per year by the mid-2020s, which has all the chances to stay up to the 2040s.展开更多
为研究串联系统下多部件应力-强度模型的可靠性问题,基于Kumaraswamy分布,采用极大似然法给出参数及应力-强度模型可靠度的极大似然估计(maximum likelihood estimation,MLE);再利用Jeffreys准则构造无信息先验分布,运用马尔可夫链蒙特...为研究串联系统下多部件应力-强度模型的可靠性问题,基于Kumaraswamy分布,采用极大似然法给出参数及应力-强度模型可靠度的极大似然估计(maximum likelihood estimation,MLE);再利用Jeffreys准则构造无信息先验分布,运用马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)方法给出参数及应力-强度模型可靠度的贝叶斯估计;最后,利用逆矩估计方法给出参数及应力-强度模型可靠度的逆矩估计(inverse moment estimation,IME)。数值模拟结果表明,在不同系统可靠度及不同样本量条件下,通过对3种估计方法的数值进行比较发现贝叶斯估计效果最好,IME优于MLE。该研究为探讨串联系统多部件应力-强度模型可靠性提供了一定的理论基础。展开更多
基金Supported by the National Natural Science Foundation of China(No.62172352,61871465,42002138)the Natural Science Foundation of Hebei Province(No.F2019203157)the Science and Technology Research Project of Hebei(No.ZD2019004)。
文摘In view of the forwarding microblogging,secondhand smoke,happiness,and many other phenomena in real life,the spread characteristic of the secondary neighbor nodes in this kind of phenomenon and network scheduling is extracted,and sequence influence maximization problem based on the influence of neighbor nodes is proposed in this paper.That is,in the time sequential social network,the propagation characteristics of the second-level neighbor nodes are considered emphatically,and k nodes are found to maximize the information propagation.Firstly,the propagation probability between nodes is calculated by the improved degree estimation algorithm.Secondly,the weighted cascade model(WCM) based on static social network is not suitable for temporal social network.Therefore,an improved weighted cascade model(IWCM) is proposed,and a second-level neighbors time sequential maximizing influence algorithm(STIM) is put forward based on node degree.It combines the consideration of neighbor nodes and the problem of overlap of influence scope between nodes,and makes it chronological.Finally,the experiment verifies that STIM algorithm has stronger practicability,superiority in influence range and running time compared with similar algorithms,and is able to solve the problem of maximizing the timing influence based on the influence of neighbor nodes.
文摘The aim of this study was to develop an adequate mathematical model for long-term forecasting of technological progress and economic growth in the digital age (2020-2050). In addition, the task was to develop a model for forecast calculations of labor productivity in the symbiosis of “man + intelligent machine”, where an intelligent machine (IM) is understood as a computer or robot equipped with elements of artificial intelligence (AI), as well as in the digital economy as a whole. In the course of the study, it was shown that in order to implement its goals the Schumpeter-Kondratiev innovation and cycle theory on forming long waves (LW) of economic development influenced by a powerful cluster of economic technologies engendered by industrial revolutions is most appropriate for a long-term forecasting of technological progress and economic growth. The Solow neoclassical model of economic growth, synchronized with LW, gives the opportunity to forecast economic dynamics of technologically advanced countries with a greater precision up to 30 years, the time which correlates with the continuation of LW. In the information and digital age, the key role among the main factors of growth (capital, labour and technological progress) is played by the latter. The authors have developed an information model which allows for forecasting technological progress basing on growth rates of endogenous technological information in economics. The main regimes of producing technological information, corresponding to the eras of information and digital economies, are given in the article, as well as the Lagrangians that engender them. The model is verified on the example of the 5<sup>th</sup> information LW for the US economy (1982-2018) and it has had highly accurate approximation for both technological progress and economic growth. A number of new results were obtained using the developed information models for forecasting technological progress. The forecasting trajectory of economic growth of developed countries (on the example of the USA) on the upward stage of the 6<sup>th</sup> LW (2018-2042), engendered by the digital technologies of the 4<sup>th</sup> Industrial Revolution is given. It is also demonstrated that the symbiosis of human and intelligent machine (IM) is the driving force in the digital economy, where man plays the leading role organizing effective and efficient mutual work. Authors suggest a mathematical model for calculating labour productivity in the digital economy, where the symbiosis of “human + IM” is widely used. The calculations carried out with the help of the model show: 1) the symbiosis of “human + IM” from the very beginning lets to realize the possibilities of increasing work performance in the economy with the help of digital technologies;2) the largest labour productivity is achieved in the symbiosis of “human + IM”, where man labour prevails, and the lowest labour productivity is seen where the largest part of the work is performed by IM;3) developed countries may achieve labour productivity of 3% per year by the mid-2020s, which has all the chances to stay up to the 2040s.
文摘为研究串联系统下多部件应力-强度模型的可靠性问题,基于Kumaraswamy分布,采用极大似然法给出参数及应力-强度模型可靠度的极大似然估计(maximum likelihood estimation,MLE);再利用Jeffreys准则构造无信息先验分布,运用马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)方法给出参数及应力-强度模型可靠度的贝叶斯估计;最后,利用逆矩估计方法给出参数及应力-强度模型可靠度的逆矩估计(inverse moment estimation,IME)。数值模拟结果表明,在不同系统可靠度及不同样本量条件下,通过对3种估计方法的数值进行比较发现贝叶斯估计效果最好,IME优于MLE。该研究为探讨串联系统多部件应力-强度模型可靠性提供了一定的理论基础。