The achievement of ignition at the National Ignition Facility(NIF)has prompted a global wave of further research on inertial fusion energy(IFE).However,IFE requires a target gain G of 30-100,and it is hard to achieve ...The achievement of ignition at the National Ignition Facility(NIF)has prompted a global wave of further research on inertial fusion energy(IFE).However,IFE requires a target gain G of 30-100,and it is hard to achieve fusion at such high gain with the energy,configuration,and technical approach of the NIF.Here,we present a conceptual design for a next-generation laser driver that is applicable to multiple laser fusion schemes and provides 10 MJ,2-3 PW at 3ω(or 2ω,in which case the energy and power can be higher),and one shot per 30 min,with the aim of achieving G>30.It is also efficient,compact,and low in cost,and it has low susceptibility to laser-plasma instabilities.展开更多
Ultrasonic cavitation involves dynamic oscillation processes induced by small bubbles in a liquid under the influence of ultrasonic waves. This study focuses on the investigation of shape and diffusion instabilities o...Ultrasonic cavitation involves dynamic oscillation processes induced by small bubbles in a liquid under the influence of ultrasonic waves. This study focuses on the investigation of shape and diffusion instabilities of two bubbles formed during cavitation. The derived equations for two non-spherical gas bubbles, based on perturbation theory and the Bernoulli equation, enable the analysis of their shape instability. Numerical simulations, utilizing the modified Keller–Miksis equation,are performed to examine the shape and diffusion instabilities. Three types of shape instabilities, namely, Rayleigh–Taylor,Rebound, and parametric instabilities, are observed. The results highlight the influence of initial radius, distance, and perturbation parameter on the shape and diffusion instabilities, as evidenced by the R_0–P_a phase diagram and the variation pattern of the equilibrium curve. This research contributes to the understanding of multiple bubble instability characteristics, which has important theoretical implications for future research in the field. Specifically, it underscores the significance of initial bubble parameters, driving pressure, and relative gas concentration in determining the shape and diffusive equilibrium instabilities of non-spherical bubbles.展开更多
Recent experimental progresses regarding broadband laser-plasma instabilities(LPIs)show that a 0.6%laser bandwidth can reduce backscatters of the stimulated Brillouin scattering(SBS)and the stimulated Raman scattering...Recent experimental progresses regarding broadband laser-plasma instabilities(LPIs)show that a 0.6%laser bandwidth can reduce backscatters of the stimulated Brillouin scattering(SBS)and the stimulated Raman scattering(SRS)at normal incidence[Phys.Rev.Lett.132035102(2024)].In this paper,we present a further discussion of the spectral distributions of the scatters developed by broadband LPIs,in addition to a brief validation of the effectiveness of bandwidth on LPIs mitigation at oblique incidence.SBS backscatter has a small redshift in the broadband case contrary to the blueshift with narrowband laser,which may be explained by the self-cross beam energy transfer between the various frequency components within the bandwidth.SRS backscatter spectrum presents a peak at a longer wavelength in the broadband case compared to the short one in the narrowband case,which is possibly attributed to the mitigation effect of bandwidth on filaments at underdense plasmas.The three-halves harmonic emission(3ω/2)has a one-peak spectral distribution under the broadband condition,which is different from the two-peak distribution under the narrowband condition,and may be related to the spectral mixing of different frequency components within the bandwidth if the main sources of the two are both two-plasmon decays.展开更多
The linear and nonlinear simulations are carried out using the gyrokinetic code NLT for the electrostatic instabilities in the core region of a deuterium plasma based on the International Thermonuclear Experimental Re...The linear and nonlinear simulations are carried out using the gyrokinetic code NLT for the electrostatic instabilities in the core region of a deuterium plasma based on the International Thermonuclear Experimental Reactor(ITER)baseline scenario.The kinetic electron effects on the linear frequency and nonlinear transport are studied by adopting the adiabatic electron model and the fully drift-kinetic electron model in the NLT code,respectively.The linear simulations focus on the dependence of linear frequency on the plasma parameters,such as the ion and electron temperature gradientsκ_(Ti,e)≡R=L_(Ti,e),the density gradientκ_(n)≡R/L_(n)and the ion-electron temperature ratioτ=T_(e)=T_(i).Here,is the major radius,and T_(e)and T_(i)denote the electron and ion temperatures,respectively.L_(A)=-(δ_(r)lnA)^(-1)is the gradient scale length,with denoting the density,the ion and electron temperatures,respectively.In the kinetic electron model,the ion temperature gradient(ITG)instability and the trapped electron mode(TEM)dominate in the small and large k_(θ)region,respectively,wherek_(θ)is the poloidal wavenumber.The TEMdominant region becomes wider by increasing(decreasing)κ_(T_(e))(κ_(T_(i)))or by decreasingκ_(n).For the nominal parameters of the ITER baseline scenario,the maximum growth rate of dominant ITG instability in the kinetic electron model is about three times larger than that in the adiabatic electron model.The normalized linear frequency depends on the value ofτ,rather than the value of T_(e)or T_(i),in both the adiabatic and kinetic electron models.The nonlinear simulation results show that the ion heat diffusivity in the kinetic electron model is quite a lot larger than that in the adiabatic electron model,the radial structure is finer and the time oscillation is more rapid.In addition,the magnitude of the fluctuated potential at the saturated stage peaks in the ITGdominated region,and contributions from the TEM(dominating in the higher k_(θ)region)to the nonlinear transport can be neglected.In the adiabatic electron model,the zonal radial electric field is found to be mainly driven by the turbulent energy flux,and the contribution of turbulent poloidal Reynolds stress is quite small due to the toroidal shielding effect.However,in the kinetic electron model,the turbulent energy flux is not strong enough to drive the zonal radial electric field in the nonlinear saturated stage.The kinetic electron effects on the mechanism of the turbulence-driven zonal radial electric field should be further investigated.展开更多
The effects of surf zone eddy generated by alongshore currents on the deformation and transport of dye are still poorly understood,and related tracer release experiments are lacking.Therefore,a tracer release laborato...The effects of surf zone eddy generated by alongshore currents on the deformation and transport of dye are still poorly understood,and related tracer release experiments are lacking.Therefore,a tracer release laboratory experiment was conducted under monochromatic,unidirectional incident waves with a large incident angle(30°)on a plane beach with a 1:100 slope in a large wave basin.A charge-coupled device suspended above the basin recorded the dye patch image.The evolution of eddy dye patch was observed and the transport and diffusion were analyzed based on the collected images.Subsequently,a linear instability numerical model was adopted to calculate the perturbation velocity field at the initial stage.The observation and image processing results show that surf zone eddy patches occurred and were separated from the original dye patches.Our numerical analysis results demonstrate that the structure of the perturbation velocity field is consistent with the experimental observations,and that the ejection of eddy patches shoreward or offshore may be ascribed to the double vortex.展开更多
Purpose: Surgical treatment of chronic anterior shoulder instability is a difficult therapeutic challenge for contact athletes. The aim of our study is to evaluate the clinical and radiological results of 40 cases of ...Purpose: Surgical treatment of chronic anterior shoulder instability is a difficult therapeutic challenge for contact athletes. The aim of our study is to evaluate the clinical and radiological results of 40 cases of chronic anterior shoulder instability treated in our institution by Latarjet technique. Methods: We report our experience with the intervention of Latarjet modified by the analysis of a retrospective study of 40 cases. They were all young athletic men, with an average age of 29 years with a predominance of the dominant shoulder. Results: Eighty percent had bone lesions, the first dislocation being traumatic (plating). One patient had a recurrence of his instability due to a new trauma and 67% resumed sport within an average period of eight months, some of whom still had functional discomfort in sports practice (9 patients). After an average follow-up of 75 months, 93% of patients were satisfied with their intervention. Only two mechanical complications were observed. Conclusion: Chronic anterior shoulder instability is pathology of young and active subjects. The preregulenoid coracoid block according to Latarjet represents the therapeutic method of choice in the treatment of chronic anterior instabilities of the shoulder, especially in young and athletic subjects. The result of this intervention remains good despite the complications that can occur such as pseudarthrosis, osteoarthritis, lysis or mobility of the screw.展开更多
Ellipticity as the underlying mechanism for instabilities of physical systems is highlighted in the study of model nonlinear evolution equations with dissipation and the study of phase transition in Van der Waals flui...Ellipticity as the underlying mechanism for instabilities of physical systems is highlighted in the study of model nonlinear evolution equations with dissipation and the study of phase transition in Van der Waals fluid. Interesting results include spiky solutions, chaotic behavior in the context of partial differential equations, as well as the nucleation process due to ellipticity in phase transition.展开更多
AIM: To detect the loss of heterozygosity (LOH) and microsatellite instabilities (MSI) of fragile histidine triad (FHIT) gene in gastric carcinoma and to study their association with the clinical pathological c...AIM: To detect the loss of heterozygosity (LOH) and microsatellite instabilities (MSI) of fragile histidine triad (FHIT) gene in gastric carcinoma and to study their association with the clinical pathological characteristics of gastric carcinoma. METHODS: LOH and MSI of FHIT gene were detected at four microsaterllite loci D3SI3H, D3S4103, D3SI481 and D3S1234 using PCR in matched normal and cancerous tissues from 50 patients with primary gastric cancer. RESULTS: The average frequency of LOH and MSI of FHIT gene in gastric cancer was 32.4% and 26.4% respectively. LOH and MSI of FHIT gene in gastric cancer had no association with histological, Borrmann, and Lauren's classification. LOH of FHIT gene in gastric cancer was related to invasive depth. The frequency of FHIT LOH in gastric cancer with serosa-penetration was obviously higher than that in gastric cancer without serosa-penetration (73.5% vs 37.5%, P 〈 0.05). MSI of FHIT gene in gastric cancer was associated with the lymph node metastasis. The frequency of MSI in gastric cancer without lymph node metastasis was significantly higher than that in gastric cancer with lymph node metastasis (66.7% vs 34.3%, P 〈 0.05). CONCLUSION: LOH of FHIT gene is correlated with invasive depth of gastric carcinoma. MSI of FHIT gene is correlated with lymph node metastases. LOH and MSI of FHIT gene play an important role in carcinogenesis of gastric cancer.展开更多
This paper presents real-time monitoring data and analysis results of the non-stationary vibrations of an operational wind turbine. The advanced time-frequency spectrum analysis reveals varied non-stationary vibration...This paper presents real-time monitoring data and analysis results of the non-stationary vibrations of an operational wind turbine. The advanced time-frequency spectrum analysis reveals varied non-stationary vibrations with timevarying frequencies, which are correlated with certain system natural modes characterized by finite element analysis. Under the effects of strong wind load, the wind turbine system exhibits certain resonances due to blade passing excitations. The system also exhibits certain instabilities due to the coupling of the tower bending modes and blade flapwise mode with blade passing excitations under the variation of wind speed. An analytical model is used to elaborate the non-stationary and instability phenomena observed in experimental results. The properties of the nonlinear instabilities are evaluated by using Lyapunov exponent estimation.展开更多
The aim of this work is to investigate the flow instabilities in a baffled, stirred tank generated by a single Rushton turbine by means of large eddy simulation (LES). The sliding mesh method was used for the coupli...The aim of this work is to investigate the flow instabilities in a baffled, stirred tank generated by a single Rushton turbine by means of large eddy simulation (LES). The sliding mesh method was used for the coupling between the rotating and the stationary frame of references. The calculations were carried out on the "Shengcao-21C" supercomputer using a computational fluid dynamics (CFD) code CFX5. The flow fields predicted by the LES simulation and the simulation using standard κ-ε model were compared to the results from particle image velocimetry (PIV) measurements. It is shown that the CFD simulations using the LES approach and the standard κ-ε model agree well with the PIV measurements. Fluctuations of the radial and axial velocity are predicted at different frequencies by the LES simulation. Velocity fluctuations of high frequencies are seen in the impeller region, while low frequencies velocity fluctuations are observed in the bulk flow. A low frequency velocity fluctuation with a nondimensional frequency of 0.027Hz is predicted by the LES simulation, which agrees with experimental investigations in the literature. Flow circulation patterns predicted by the LES simulation are asymmetric, stochastic and complex, spanning a large portion of the tanks and varying with time, while circulation patterns calculated by the simulation using the standard κ-ε model are symmetric. The results of the present work give better understanding to the flow instabilities in the mechanically agitated tank. However, further analysis of the LES calculated velocity series by means of fast Fourier transform (FFT) and/or spectra analysis are recommended in future work in order to gain more knowledge of the complicated flow phenomena.展开更多
The elemental mechanisms for many hydrodynamic instabilities can be identified as negative damping,negative diffusion or ellipticity. Identifications of some well-known hydrodynamic instabilities are made.Model equati...The elemental mechanisms for many hydrodynamic instabilities can be identified as negative damping,negative diffusion or ellipticity. Identifications of some well-known hydrodynamic instabilities are made.Model equations in connection with the instability associated with ellipticity should be studied more extensively.展开更多
MHD stability of the Large Helical Device (LHD) plasmas produced with intenseneutral beam injection is experimentally studied. When the steep pressure gradient near the edge isproduced through L-H transition or linear...MHD stability of the Large Helical Device (LHD) plasmas produced with intenseneutral beam injection is experimentally studied. When the steep pressure gradient near the edge isproduced through L-H transition or linear density ramp experiment, interchange-like MHD modes whoserational surface is located very close to the last closed flux surface are strongly excited in acertain discharge condition and affect the plasma transport appreciably. In NBI-heated plasmasproduced at low toroidal field, various Alfven eigenmodes are often excited. Bursting toroidalAlfven egenmodes excited by the presence of energetic ions induce appreciable amount of energeticion loss, but also trigger the formation of internal and edge transport barriers.展开更多
Blast-wave-driven hydrodynamic instabilities are studied in the presence of a background B-field through experiments and simulations in the high-energy-density(HED)physics regime.In experiments conducted at the Labora...Blast-wave-driven hydrodynamic instabilities are studied in the presence of a background B-field through experiments and simulations in the high-energy-density(HED)physics regime.In experiments conducted at the Laboratoire pour l’utilisation des lasers intenses(LULI),a laserdriven shock-tube platform was used to generate a hydrodynamically unstable interface with a prescribed sinusoidal surface perturbation,and short-pulse x-ray radiography was used to characterize the instability growth with and without a 10-T B-field.The LULI experiments were modeled in FLASH using resistive and ideal magnetohydrodynamics(MHD),and comparing the experiments and simulations suggests that the Spitzer model implemented in FLASH is necessary and sufficient for modeling these planar systems.These results suggest insufficient amplification of the seed B-field,due to resistive diffusion,to alter the hydrodynamic behavior.Although the ideal-MHD simulations did not represent the experiments accurately,they suggest that similar HED systems with dynamic plasma-β(=2μ_(0)ρv^(2)/B^(2))values of less than∼100 can reduce the growth of blast-wave-driven Rayleigh–Taylor instabilities.These findings validate the resistive-MHD FLASH modeling that is being used to design future experiments for studying B-field effects in HED plasmas.展开更多
A linear stability analysis has been performed onto a self-gravitating magnetized gas disk boundxed by external pressure. The resulting dispersion relation is fully explained by three kinds of instability: a Parker-ty...A linear stability analysis has been performed onto a self-gravitating magnetized gas disk boundxed by external pressure. The resulting dispersion relation is fully explained by three kinds of instability: a Parker-type instability driven by self-gravity, usual Jeans gravitational instability and convection. In the direction parallel to the magnetic fields, the magnetic tension completely suppresses the convection. If the adiabatic index γ is less than a certain critical value, the perturbations trigger the Parker as well as the Jeans instability in the disk. Consequently, the growth rate curve has two maxima: one at small wavenumber due to a combination of the Parker and Jeans instabilities, and the other at somewhat larger wavenumber mostly due to the Parker instability. In the horizontal direction perpendicular to the fields, the convection makes the growth rate increase monotonically upto a limiting value as the perturbation wavenumber gets large. However, at small wavenumbers, the Jeans instability becomes effective and develops a peak in the growth rate curve. Depending on the system parameters, the maximum growth rate of the convection may or may not be higher than the peak due to the Jeans-Parker instability. Therefore, a cooperative action of the Jeans and Parker instabilities can have chances to over-ride the convection and may develop large scale structures of cylindrical shape in non-linear stage. In thick disks the cylinder is expected to align its axis perpendicular to the field, while in thin ones parallel to it.展开更多
Surge and stall are the two main types of instabilities that often occur on the compressor system of gas turbines. The effect of this instability often leads to excessive vibration due to the back pressure imposed to ...Surge and stall are the two main types of instabilities that often occur on the compressor system of gas turbines. The effect of this instability often leads to excessive vibration due to the back pressure imposed to the system by this phenomenon. In this work, fouling was observed as the major cause of the compressor instability. A step to analyze how this phenomenon can be controlled with the continuous examination of the vibration amplitude using a computer approach led to the execution of this work. The forces resulting to vibration in the system is usually external to it. This external force is aerodynamic and the effect was modeled using force damped vibration analysis. A gas turbine plant on industrial duty for electricity generation was used to actualize this research. The data for amplitude of vibration varied between -15 and 15 mm/s while the given mass flow rate and pressure ratio were determined as falling between 6.1 to 6.8 kg/s and 9.3 to 9.6 respectively. A computer program named VICOMS written in C++ programming language was developed. The results show that the machine should not be run beyond 14.0 mm vibration amplitude in order to avoid surge, stall and other flow-induced catastrophic breakdown.展开更多
The parametric decay instabilities (PDIs) of ion Bernstein wave with different input power levels are investigated via particle-in-cell simulation. It is found that the number of decay channels increases with the in...The parametric decay instabilities (PDIs) of ion Bernstein wave with different input power levels are investigated via particle-in-cell simulation. It is found that the number of decay channels increases with the input power. Resonant mode-mode couplings dominate for a low input power. With increasing the input power, the nonresonant PDIs appear to dissipate the energy of the injected wave and give rise to edge ion heating. The generated child waves couple with each other as well as the injected wave and /or act as a pump wave to excite new decay channels. As a result, the frequency spectrum is broadened with the increase of the input power.展开更多
Loss-cone instabilities are studied for linear fusion devices. The gyro-kinetic equation for such a configuration is rigorously constructed in terms of action-angle variables by making use of canonical transformation....Loss-cone instabilities are studied for linear fusion devices. The gyro-kinetic equation for such a configuration is rigorously constructed in terms of action-angle variables by making use of canonical transformation. The dispersion relation, including for the first time, finite bounce frequency is obtained and numerically solved. The loss-cone modes are found near ion-cyclotron frequency. The growth rates are greatly reduced and approaching zero with increasing beta value. The results suggest that loss-cone instabilities are unlikely to be threatening to linear fusion devices since a new longitudinal invariant is found and gives a constraint which helps confinement.展开更多
The paradox of destabilization of a conservative or non-conservative system by small dissipation,or Ziegler’s paradox(1952),has stimulated a growing interest in the sensitivity of reversible and Hamiltonian systems...The paradox of destabilization of a conservative or non-conservative system by small dissipation,or Ziegler’s paradox(1952),has stimulated a growing interest in the sensitivity of reversible and Hamiltonian systems with respect to dissipative perturbations.Since the last decade it has been widely accepted that dissipation-induced instabilities are closely related to singularities arising on the stability boundary,associated with Whitney’s umbrella.The first explanation of Ziegler’s paradox was given(much earlier)by Oene Bottema in 1956.The aspects of the mechanics and geometry of dissipation-induced instabilities with an application to rotor dynamics are discussed.展开更多
Parametric instabilities induced by the coupling excitation between the high frequency quantum Langmuir waves and the low frequency quantum ion-acoustic waves in single-walled carbon nanotubes are studied with a quant...Parametric instabilities induced by the coupling excitation between the high frequency quantum Langmuir waves and the low frequency quantum ion-acoustic waves in single-walled carbon nanotubes are studied with a quantum Zakharov model. By linearizing the quantum hydrodynamic equations, we get the dispersion relations for the high frequency quantum Langmuir wave and the low frequency quantum ion-acoustic wave. Using two-time scale method, we obtain the quantum Zaharov model in the cylindrical coordinates. Decay instability and four-wave instability are discussed in detail. It is shown that the carbon nanotube's radius, the equilibrium discrete azimuthal quantum number, the perturbed discrete azimuthal quantum number, and the quantum parameter all play a crucial role in the instabilities.展开更多
By using a coordinate system associated with magnetic surfaces, a unified eigen-mode equation for describing the tokamak ideal MHD instabilities is derived in the shear-Alfven approximation. Based on this equation hav...By using a coordinate system associated with magnetic surfaces, a unified eigen-mode equation for describing the tokamak ideal MHD instabilities is derived in the shear-Alfven approximation. Based on this equation having a general operator form, the eigen-mode equation governing the large-scale perturbation (such as the kink mode, the low-n ballooning mode and the Alfven mode) and small-scale perturbation (such as the high-n ballooning mode, the local mode) can be further deduced. In the first part of the present study, the small-scale perturbation is discussed in detail.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12035002).
文摘The achievement of ignition at the National Ignition Facility(NIF)has prompted a global wave of further research on inertial fusion energy(IFE).However,IFE requires a target gain G of 30-100,and it is hard to achieve fusion at such high gain with the energy,configuration,and technical approach of the NIF.Here,we present a conceptual design for a next-generation laser driver that is applicable to multiple laser fusion schemes and provides 10 MJ,2-3 PW at 3ω(or 2ω,in which case the energy and power can be higher),and one shot per 30 min,with the aim of achieving G>30.It is also efficient,compact,and low in cost,and it has low susceptibility to laser-plasma instabilities.
基金Project supported by the Scientific Research Project of Higher Education in the Inner Mongolia Autonomous Region (Grant No.NJZY23100)。
文摘Ultrasonic cavitation involves dynamic oscillation processes induced by small bubbles in a liquid under the influence of ultrasonic waves. This study focuses on the investigation of shape and diffusion instabilities of two bubbles formed during cavitation. The derived equations for two non-spherical gas bubbles, based on perturbation theory and the Bernoulli equation, enable the analysis of their shape instability. Numerical simulations, utilizing the modified Keller–Miksis equation,are performed to examine the shape and diffusion instabilities. Three types of shape instabilities, namely, Rayleigh–Taylor,Rebound, and parametric instabilities, are observed. The results highlight the influence of initial radius, distance, and perturbation parameter on the shape and diffusion instabilities, as evidenced by the R_0–P_a phase diagram and the variation pattern of the equilibrium curve. This research contributes to the understanding of multiple bubble instability characteristics, which has important theoretical implications for future research in the field. Specifically, it underscores the significance of initial bubble parameters, driving pressure, and relative gas concentration in determining the shape and diffusive equilibrium instabilities of non-spherical bubbles.
基金Project supported by the National Natural Science Foundation of China (Grant No.11905280)。
文摘Recent experimental progresses regarding broadband laser-plasma instabilities(LPIs)show that a 0.6%laser bandwidth can reduce backscatters of the stimulated Brillouin scattering(SBS)and the stimulated Raman scattering(SRS)at normal incidence[Phys.Rev.Lett.132035102(2024)].In this paper,we present a further discussion of the spectral distributions of the scatters developed by broadband LPIs,in addition to a brief validation of the effectiveness of bandwidth on LPIs mitigation at oblique incidence.SBS backscatter has a small redshift in the broadband case contrary to the blueshift with narrowband laser,which may be explained by the self-cross beam energy transfer between the various frequency components within the bandwidth.SRS backscatter spectrum presents a peak at a longer wavelength in the broadband case compared to the short one in the narrowband case,which is possibly attributed to the mitigation effect of bandwidth on filaments at underdense plasmas.The three-halves harmonic emission(3ω/2)has a one-peak spectral distribution under the broadband condition,which is different from the two-peak distribution under the narrowband condition,and may be related to the spectral mixing of different frequency components within the bandwidth if the main sources of the two are both two-plasmon decays.
基金supported by the National MCF Energy R&D Program of China(No.2019YFE03060000)National Natural Science Foundation of China(Nos.12005063,12375215 and 12175034)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2022HSC-CIP008).
文摘The linear and nonlinear simulations are carried out using the gyrokinetic code NLT for the electrostatic instabilities in the core region of a deuterium plasma based on the International Thermonuclear Experimental Reactor(ITER)baseline scenario.The kinetic electron effects on the linear frequency and nonlinear transport are studied by adopting the adiabatic electron model and the fully drift-kinetic electron model in the NLT code,respectively.The linear simulations focus on the dependence of linear frequency on the plasma parameters,such as the ion and electron temperature gradientsκ_(Ti,e)≡R=L_(Ti,e),the density gradientκ_(n)≡R/L_(n)and the ion-electron temperature ratioτ=T_(e)=T_(i).Here,is the major radius,and T_(e)and T_(i)denote the electron and ion temperatures,respectively.L_(A)=-(δ_(r)lnA)^(-1)is the gradient scale length,with denoting the density,the ion and electron temperatures,respectively.In the kinetic electron model,the ion temperature gradient(ITG)instability and the trapped electron mode(TEM)dominate in the small and large k_(θ)region,respectively,wherek_(θ)is the poloidal wavenumber.The TEMdominant region becomes wider by increasing(decreasing)κ_(T_(e))(κ_(T_(i)))or by decreasingκ_(n).For the nominal parameters of the ITER baseline scenario,the maximum growth rate of dominant ITG instability in the kinetic electron model is about three times larger than that in the adiabatic electron model.The normalized linear frequency depends on the value ofτ,rather than the value of T_(e)or T_(i),in both the adiabatic and kinetic electron models.The nonlinear simulation results show that the ion heat diffusivity in the kinetic electron model is quite a lot larger than that in the adiabatic electron model,the radial structure is finer and the time oscillation is more rapid.In addition,the magnitude of the fluctuated potential at the saturated stage peaks in the ITGdominated region,and contributions from the TEM(dominating in the higher k_(θ)region)to the nonlinear transport can be neglected.In the adiabatic electron model,the zonal radial electric field is found to be mainly driven by the turbulent energy flux,and the contribution of turbulent poloidal Reynolds stress is quite small due to the toroidal shielding effect.However,in the kinetic electron model,the turbulent energy flux is not strong enough to drive the zonal radial electric field in the nonlinear saturated stage.The kinetic electron effects on the mechanism of the turbulence-driven zonal radial electric field should be further investigated.
基金The open foundation of the State Key Laboratory of Hydraulic Engineering Simulation and Safety under contract No.HESS-2006the Shanxi Province Science Foundation under contract No.202103021224116the research project supported by Shanxi Scholarship Council of China under contract No.2023-067.
文摘The effects of surf zone eddy generated by alongshore currents on the deformation and transport of dye are still poorly understood,and related tracer release experiments are lacking.Therefore,a tracer release laboratory experiment was conducted under monochromatic,unidirectional incident waves with a large incident angle(30°)on a plane beach with a 1:100 slope in a large wave basin.A charge-coupled device suspended above the basin recorded the dye patch image.The evolution of eddy dye patch was observed and the transport and diffusion were analyzed based on the collected images.Subsequently,a linear instability numerical model was adopted to calculate the perturbation velocity field at the initial stage.The observation and image processing results show that surf zone eddy patches occurred and were separated from the original dye patches.Our numerical analysis results demonstrate that the structure of the perturbation velocity field is consistent with the experimental observations,and that the ejection of eddy patches shoreward or offshore may be ascribed to the double vortex.
文摘Purpose: Surgical treatment of chronic anterior shoulder instability is a difficult therapeutic challenge for contact athletes. The aim of our study is to evaluate the clinical and radiological results of 40 cases of chronic anterior shoulder instability treated in our institution by Latarjet technique. Methods: We report our experience with the intervention of Latarjet modified by the analysis of a retrospective study of 40 cases. They were all young athletic men, with an average age of 29 years with a predominance of the dominant shoulder. Results: Eighty percent had bone lesions, the first dislocation being traumatic (plating). One patient had a recurrence of his instability due to a new trauma and 67% resumed sport within an average period of eight months, some of whom still had functional discomfort in sports practice (9 patients). After an average follow-up of 75 months, 93% of patients were satisfied with their intervention. Only two mechanical complications were observed. Conclusion: Chronic anterior shoulder instability is pathology of young and active subjects. The preregulenoid coracoid block according to Latarjet represents the therapeutic method of choice in the treatment of chronic anterior instabilities of the shoulder, especially in young and athletic subjects. The result of this intervention remains good despite the complications that can occur such as pseudarthrosis, osteoarthritis, lysis or mobility of the screw.
文摘Ellipticity as the underlying mechanism for instabilities of physical systems is highlighted in the study of model nonlinear evolution equations with dissipation and the study of phase transition in Van der Waals fluid. Interesting results include spiky solutions, chaotic behavior in the context of partial differential equations, as well as the nucleation process due to ellipticity in phase transition.
基金Supported by the National Natural Science Foundation of China,No.30070845 and No.30371607
文摘AIM: To detect the loss of heterozygosity (LOH) and microsatellite instabilities (MSI) of fragile histidine triad (FHIT) gene in gastric carcinoma and to study their association with the clinical pathological characteristics of gastric carcinoma. METHODS: LOH and MSI of FHIT gene were detected at four microsaterllite loci D3SI3H, D3S4103, D3SI481 and D3S1234 using PCR in matched normal and cancerous tissues from 50 patients with primary gastric cancer. RESULTS: The average frequency of LOH and MSI of FHIT gene in gastric cancer was 32.4% and 26.4% respectively. LOH and MSI of FHIT gene in gastric cancer had no association with histological, Borrmann, and Lauren's classification. LOH of FHIT gene in gastric cancer was related to invasive depth. The frequency of FHIT LOH in gastric cancer with serosa-penetration was obviously higher than that in gastric cancer without serosa-penetration (73.5% vs 37.5%, P 〈 0.05). MSI of FHIT gene in gastric cancer was associated with the lymph node metastasis. The frequency of MSI in gastric cancer without lymph node metastasis was significantly higher than that in gastric cancer with lymph node metastasis (66.7% vs 34.3%, P 〈 0.05). CONCLUSION: LOH of FHIT gene is correlated with invasive depth of gastric carcinoma. MSI of FHIT gene is correlated with lymph node metastases. LOH and MSI of FHIT gene play an important role in carcinogenesis of gastric cancer.
文摘This paper presents real-time monitoring data and analysis results of the non-stationary vibrations of an operational wind turbine. The advanced time-frequency spectrum analysis reveals varied non-stationary vibrations with timevarying frequencies, which are correlated with certain system natural modes characterized by finite element analysis. Under the effects of strong wind load, the wind turbine system exhibits certain resonances due to blade passing excitations. The system also exhibits certain instabilities due to the coupling of the tower bending modes and blade flapwise mode with blade passing excitations under the variation of wind speed. An analytical model is used to elaborate the non-stationary and instability phenomena observed in experimental results. The properties of the nonlinear instabilities are evaluated by using Lyapunov exponent estimation.
文摘The aim of this work is to investigate the flow instabilities in a baffled, stirred tank generated by a single Rushton turbine by means of large eddy simulation (LES). The sliding mesh method was used for the coupling between the rotating and the stationary frame of references. The calculations were carried out on the "Shengcao-21C" supercomputer using a computational fluid dynamics (CFD) code CFX5. The flow fields predicted by the LES simulation and the simulation using standard κ-ε model were compared to the results from particle image velocimetry (PIV) measurements. It is shown that the CFD simulations using the LES approach and the standard κ-ε model agree well with the PIV measurements. Fluctuations of the radial and axial velocity are predicted at different frequencies by the LES simulation. Velocity fluctuations of high frequencies are seen in the impeller region, while low frequencies velocity fluctuations are observed in the bulk flow. A low frequency velocity fluctuation with a nondimensional frequency of 0.027Hz is predicted by the LES simulation, which agrees with experimental investigations in the literature. Flow circulation patterns predicted by the LES simulation are asymmetric, stochastic and complex, spanning a large portion of the tanks and varying with time, while circulation patterns calculated by the simulation using the standard κ-ε model are symmetric. The results of the present work give better understanding to the flow instabilities in the mechanically agitated tank. However, further analysis of the LES calculated velocity series by means of fast Fourier transform (FFT) and/or spectra analysis are recommended in future work in order to gain more knowledge of the complicated flow phenomena.
文摘The elemental mechanisms for many hydrodynamic instabilities can be identified as negative damping,negative diffusion or ellipticity. Identifications of some well-known hydrodynamic instabilities are made.Model equations in connection with the instability associated with ellipticity should be studied more extensively.
基金The project supported by the Core-University Program between Japan and China on Plasmas and Nuclear Fusion, and a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science
文摘MHD stability of the Large Helical Device (LHD) plasmas produced with intenseneutral beam injection is experimentally studied. When the steep pressure gradient near the edge isproduced through L-H transition or linear density ramp experiment, interchange-like MHD modes whoserational surface is located very close to the last closed flux surface are strongly excited in acertain discharge condition and affect the plasma transport appreciably. In NBI-heated plasmasproduced at low toroidal field, various Alfven eigenmodes are often excited. Bursting toroidalAlfven egenmodes excited by the presence of energetic ions induce appreciable amount of energeticion loss, but also trigger the formation of internal and edge transport barriers.
文摘Blast-wave-driven hydrodynamic instabilities are studied in the presence of a background B-field through experiments and simulations in the high-energy-density(HED)physics regime.In experiments conducted at the Laboratoire pour l’utilisation des lasers intenses(LULI),a laserdriven shock-tube platform was used to generate a hydrodynamically unstable interface with a prescribed sinusoidal surface perturbation,and short-pulse x-ray radiography was used to characterize the instability growth with and without a 10-T B-field.The LULI experiments were modeled in FLASH using resistive and ideal magnetohydrodynamics(MHD),and comparing the experiments and simulations suggests that the Spitzer model implemented in FLASH is necessary and sufficient for modeling these planar systems.These results suggest insufficient amplification of the seed B-field,due to resistive diffusion,to alter the hydrodynamic behavior.Although the ideal-MHD simulations did not represent the experiments accurately,they suggest that similar HED systems with dynamic plasma-β(=2μ_(0)ρv^(2)/B^(2))values of less than∼100 can reduce the growth of blast-wave-driven Rayleigh–Taylor instabilities.These findings validate the resistive-MHD FLASH modeling that is being used to design future experiments for studying B-field effects in HED plasmas.
文摘A linear stability analysis has been performed onto a self-gravitating magnetized gas disk boundxed by external pressure. The resulting dispersion relation is fully explained by three kinds of instability: a Parker-type instability driven by self-gravity, usual Jeans gravitational instability and convection. In the direction parallel to the magnetic fields, the magnetic tension completely suppresses the convection. If the adiabatic index γ is less than a certain critical value, the perturbations trigger the Parker as well as the Jeans instability in the disk. Consequently, the growth rate curve has two maxima: one at small wavenumber due to a combination of the Parker and Jeans instabilities, and the other at somewhat larger wavenumber mostly due to the Parker instability. In the horizontal direction perpendicular to the fields, the convection makes the growth rate increase monotonically upto a limiting value as the perturbation wavenumber gets large. However, at small wavenumbers, the Jeans instability becomes effective and develops a peak in the growth rate curve. Depending on the system parameters, the maximum growth rate of the convection may or may not be higher than the peak due to the Jeans-Parker instability. Therefore, a cooperative action of the Jeans and Parker instabilities can have chances to over-ride the convection and may develop large scale structures of cylindrical shape in non-linear stage. In thick disks the cylinder is expected to align its axis perpendicular to the field, while in thin ones parallel to it.
文摘Surge and stall are the two main types of instabilities that often occur on the compressor system of gas turbines. The effect of this instability often leads to excessive vibration due to the back pressure imposed to the system by this phenomenon. In this work, fouling was observed as the major cause of the compressor instability. A step to analyze how this phenomenon can be controlled with the continuous examination of the vibration amplitude using a computer approach led to the execution of this work. The forces resulting to vibration in the system is usually external to it. This external force is aerodynamic and the effect was modeled using force damped vibration analysis. A gas turbine plant on industrial duty for electricity generation was used to actualize this research. The data for amplitude of vibration varied between -15 and 15 mm/s while the given mass flow rate and pressure ratio were determined as falling between 6.1 to 6.8 kg/s and 9.3 to 9.6 respectively. A computer program named VICOMS written in C++ programming language was developed. The results show that the machine should not be run beyond 14.0 mm vibration amplitude in order to avoid surge, stall and other flow-induced catastrophic breakdown.
基金Supported by the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics(NSFC No 11261140328 and NRF No 2012K2A2A6000443)the National Magnetic Confinement Fusion Science Program of China under Grant No 2013GB111002+1 种基金the National Natural Science Foundation of China under Grant Nos 11175212 and 11475220the Program of Fusion Reactor Physics and Digital Tokamak with the Chinese Academy of Sciences 'One-Three-Five' Strategic Planning
文摘The parametric decay instabilities (PDIs) of ion Bernstein wave with different input power levels are investigated via particle-in-cell simulation. It is found that the number of decay channels increases with the input power. Resonant mode-mode couplings dominate for a low input power. With increasing the input power, the nonresonant PDIs appear to dissipate the energy of the injected wave and give rise to edge ion heating. The generated child waves couple with each other as well as the injected wave and /or act as a pump wave to excite new decay channels. As a result, the frequency spectrum is broadened with the increase of the input power.
基金supported by the Natural Science Foundation for Young Scientists of China (No. 11605143)National Natural Science Foundation of China (Nos. 11575055,11261140327,11005035,11205053)+3 种基金the project,Plasma Confinement in the Advanced Magnetic Mirror (WX-2015-01-01)the Open Research Subject of the Key Laboratory of Advanced Computation in Xihua University (Nos. szjj2017-011 and szjj2017-012)the Young Scholarship Plan of Xihua University (No. 0220170201)the National Key Research and Development Program of China (No. 2017YFE0300405)
文摘Loss-cone instabilities are studied for linear fusion devices. The gyro-kinetic equation for such a configuration is rigorously constructed in terms of action-angle variables by making use of canonical transformation. The dispersion relation, including for the first time, finite bounce frequency is obtained and numerically solved. The loss-cone modes are found near ion-cyclotron frequency. The growth rates are greatly reduced and approaching zero with increasing beta value. The results suggest that loss-cone instabilities are unlikely to be threatening to linear fusion devices since a new longitudinal invariant is found and gives a constraint which helps confinement.
文摘The paradox of destabilization of a conservative or non-conservative system by small dissipation,or Ziegler’s paradox(1952),has stimulated a growing interest in the sensitivity of reversible and Hamiltonian systems with respect to dissipative perturbations.Since the last decade it has been widely accepted that dissipation-induced instabilities are closely related to singularities arising on the stability boundary,associated with Whitney’s umbrella.The first explanation of Ziegler’s paradox was given(much earlier)by Oene Bottema in 1956.The aspects of the mechanics and geometry of dissipation-induced instabilities with an application to rotor dynamics are discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11274255 and 10975114)the Natural Science Foundation of Gansu Province of China (Grant No.2011GS04358)the Creation of Science and Technology of Northwest Normal University of China (Grant No.NWNU-KJCXGC-03-48)
文摘Parametric instabilities induced by the coupling excitation between the high frequency quantum Langmuir waves and the low frequency quantum ion-acoustic waves in single-walled carbon nanotubes are studied with a quantum Zakharov model. By linearizing the quantum hydrodynamic equations, we get the dispersion relations for the high frequency quantum Langmuir wave and the low frequency quantum ion-acoustic wave. Using two-time scale method, we obtain the quantum Zaharov model in the cylindrical coordinates. Decay instability and four-wave instability are discussed in detail. It is shown that the carbon nanotube's radius, the equilibrium discrete azimuthal quantum number, the perturbed discrete azimuthal quantum number, and the quantum parameter all play a crucial role in the instabilities.
基金Tish work was wupported by the National Natural Science Foundation of China No.19975015.
文摘By using a coordinate system associated with magnetic surfaces, a unified eigen-mode equation for describing the tokamak ideal MHD instabilities is derived in the shear-Alfven approximation. Based on this equation having a general operator form, the eigen-mode equation governing the large-scale perturbation (such as the kink mode, the low-n ballooning mode and the Alfven mode) and small-scale perturbation (such as the high-n ballooning mode, the local mode) can be further deduced. In the first part of the present study, the small-scale perturbation is discussed in detail.