期刊文献+
共找到4,695篇文章
< 1 2 235 >
每页显示 20 50 100
Research on Personal Credit Risk Assessment Model Based on Instance-Based Transfer Learning
1
作者 Maoguang Wang Hang Yang 《International Journal of Intelligence Science》 2021年第1期44-55,共12页
Personal credit risk assessment is an important part of the development of financial enterprises. Big data credit investigation is an inevitable trend of personal credit risk assessment, but some data are missing and ... Personal credit risk assessment is an important part of the development of financial enterprises. Big data credit investigation is an inevitable trend of personal credit risk assessment, but some data are missing and the amount of data is small, so it is difficult to train. At the same time, for different financial platforms, we need to use different models to train according to the characteristics of the current samples, which is time-consuming. <span style="font-family:Verdana;">In view of</span><span style="font-family:Verdana;"> these two problems, this paper uses the idea of transfer learning to build a transferable personal credit risk model based on Instance-based Transfer Learning (Instance-based TL). The model balances the weight of the samples in the source domain, and migrates the existing large dataset samples to the target domain of small samples, and finds out the commonness between them. At the same time, we have done a lot of experiments on the selection of base learners, including traditional machine learning algorithms and ensemble learning algorithms, such as decision tree, logistic regression, </span><span style="font-family:Verdana;">xgboost</span> <span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> so on. The datasets are from P2P platform and bank, the results show that the AUC value of Instance-based TL is 24% higher than that of the traditional machine learning model, which fully proves that the model in this paper has good application value. The model’s evaluation uses AUC, prediction, recall, F1. These criteria prove that this model has good application value from many aspects. At present, we are trying to apply this model to more fields to improve the robustness and applicability of the model;on the other hand, we are trying to do more in-depth research on domain adaptation to enrich the model.</span> 展开更多
关键词 Personal Credit Risk Big Data Credit Investigation instance-based transfer learning
下载PDF
Three-Stage Transfer Learning with AlexNet50 for MRI Image Multi-Class Classification with Optimal Learning Rate
2
作者 Suganya Athisayamani A.Robert Singh +1 位作者 Gyanendra Prasad Joshi Woong Cho 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期155-183,共29页
In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue... In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue anomalies.Traditionally,radiologists manually interpret these images,which can be labor-intensive and time-consuming due to the vast amount of data.To address this challenge,machine learning,and deep learning approaches can be utilized to improve the accuracy and efficiency of anomaly detection in MRI scans.This manuscript presents the use of the Deep AlexNet50 model for MRI classification with discriminative learning methods.There are three stages for learning;in the first stage,the whole dataset is used to learn the features.In the second stage,some layers of AlexNet50 are frozen with an augmented dataset,and in the third stage,AlexNet50 with an augmented dataset with the augmented dataset.This method used three publicly available MRI classification datasets:Harvard whole brain atlas(HWBA-dataset),the School of Biomedical Engineering of Southern Medical University(SMU-dataset),and The National Institute of Neuroscience and Hospitals brain MRI dataset(NINS-dataset)for analysis.Various hyperparameter optimizers like Adam,stochastic gradient descent(SGD),Root mean square propagation(RMS prop),Adamax,and AdamW have been used to compare the performance of the learning process.HWBA-dataset registers maximum classification performance.We evaluated the performance of the proposed classification model using several quantitative metrics,achieving an average accuracy of 98%. 展开更多
关键词 MRI TUMORS CLASSIFICATION AlexNet50 transfer learning hyperparameter tuning OPTIMIZER
下载PDF
IDS-INT:Intrusion detection system using transformer-based transfer learning for imbalanced network traffic 被引量:3
3
作者 Farhan Ullah Shamsher Ullah +1 位作者 Gautam Srivastava Jerry Chun-Wei Lin 《Digital Communications and Networks》 SCIE CSCD 2024年第1期190-204,共15页
A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a... A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model. 展开更多
关键词 Network intrusion detection transfer learning Features extraction Imbalance data Explainable AI CYBERSECURITY
下载PDF
Reliability analysis of slope stability by neural network,principal component analysis,and transfer learning techniques 被引量:1
4
作者 Sheng Zhang Li Ding +3 位作者 Menglong Xie Xuzhen He Rui Yang Chenxi Tong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4034-4045,共12页
The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-dema... The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-demanding.To assess the slope stability problems with a more desirable computational effort,many machine learning(ML)algorithms have been proposed.However,most ML-based techniques require that the training data must be in the same feature space and have the same distribution,and the model may need to be rebuilt when the spatial distribution changes.This paper presents a new ML-based algorithm,which combines the principal component analysis(PCA)-based neural network(NN)and transfer learning(TL)techniques(i.e.PCAeNNeTL)to conduct the stability analysis of slopes with different spatial distributions.The Monte Carlo coupled with finite element simulation is first conducted for data acquisition considering the spatial variability of cohesive strength or friction angle of soils from eight slopes with the same geometry.The PCA method is incorporated into the neural network algorithm(i.e.PCA-NN)to increase the computational efficiency by reducing the input variables.It is found that the PCA-NN algorithm performs well in improving the prediction of slope stability for a given slope in terms of the computational accuracy and computational effort when compared with the other two algorithms(i.e.NN and decision trees,DT).Furthermore,the PCAeNNeTL algorithm shows great potential in assessing the stability of slope even with fewer training data. 展开更多
关键词 Slope stability analysis Monte Carlo simulation Neural network(NN) transfer learning(TL)
下载PDF
Selective and Adaptive Incremental Transfer Learning with Multiple Datasets for Machine Fault Diagnosis
5
作者 Kwok Tai Chui Brij B.Gupta +1 位作者 Varsha Arya Miguel Torres-Ruiz 《Computers, Materials & Continua》 SCIE EI 2024年第1期1363-1379,共17页
The visions of Industry 4.0 and 5.0 have reinforced the industrial environment.They have also made artificial intelligence incorporated as a major facilitator.Diagnosing machine faults has become a solid foundation fo... The visions of Industry 4.0 and 5.0 have reinforced the industrial environment.They have also made artificial intelligence incorporated as a major facilitator.Diagnosing machine faults has become a solid foundation for automatically recognizing machine failure,and thus timely maintenance can ensure safe operations.Transfer learning is a promising solution that can enhance the machine fault diagnosis model by borrowing pre-trained knowledge from the source model and applying it to the target model,which typically involves two datasets.In response to the availability of multiple datasets,this paper proposes using selective and adaptive incremental transfer learning(SA-ITL),which fuses three algorithms,namely,the hybrid selective algorithm,the transferability enhancement algorithm,and the incremental transfer learning algorithm.It is a selective algorithm that enables selecting and ordering appropriate datasets for transfer learning and selecting useful knowledge to avoid negative transfer.The algorithm also adaptively adjusts the portion of training data to balance the learning rate and training time.The proposed algorithm is evaluated and analyzed using ten benchmark datasets.Compared with other algorithms from existing works,SA-ITL improves the accuracy of all datasets.Ablation studies present the accuracy enhancements of the SA-ITL,including the hybrid selective algorithm(1.22%-3.82%),transferability enhancement algorithm(1.91%-4.15%),and incremental transfer learning algorithm(0.605%-2.68%).These also show the benefits of enhancing the target model with heterogeneous image datasets that widen the range of domain selection between source and target domains. 展开更多
关键词 Deep learning incremental learning machine fault diagnosis negative transfer transfer learning
下载PDF
Knowledge-reused transfer learning for molecular and materials science
6
作者 An Chen Zhilong Wang +6 位作者 Karl Luigi Loza Vidaurre Yanqiang Han Simin Ye Kehao Tao Shiwei Wang Jing Gao Jinjin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期149-168,共20页
Leveraging big data analytics and advanced algorithms to accelerate and optimize the process of molecular and materials design, synthesis, and application has revolutionized the field of molecular and materials scienc... Leveraging big data analytics and advanced algorithms to accelerate and optimize the process of molecular and materials design, synthesis, and application has revolutionized the field of molecular and materials science, allowing researchers to gain a deeper understanding of material properties and behaviors,leading to the development of new materials that are more efficient and reliable. However, the difficulty in constructing large-scale datasets of new molecules/materials due to the high cost of data acquisition and annotation limits the development of conventional machine learning(ML) approaches. Knowledgereused transfer learning(TL) methods are expected to break this dilemma. The application of TL lowers the data requirements for model training, which makes TL stand out in researches addressing data quality issues. In this review, we summarize recent progress in TL related to molecular and materials. We focus on the application of TL methods for the discovery of advanced molecules/materials, particularly, the construction of TL frameworks for different systems, and how TL can enhance the performance of models. In addition, the challenges of TL are also discussed. 展开更多
关键词 Machine learning transfer learning Small data MOLECULE Material science
下载PDF
An active learning workflow for predicting hydrogen atom adsorption energies on binary oxides based on local electronic transfer features
7
作者 Wenhao Jing Zihao Jiao +2 位作者 Mengmeng Song Ya Liu Liejin Guo 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第10期1489-1496,共8页
Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still... Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still a lack of models for predicting adsorption energies on oxides,due to the complexity of elemental species and the ambiguous coordination environment.This work proposes an active learning workflow(LeNN)founded on local electronic transfer features(e)and the principle of coordinate rotation invariance.By accurately characterizing the electron transfer to adsorption site atoms and their surrounding geometric structures,LeNN mitigates abrupt feature changes due to different element types and clarifies coordination environments.As a result,it enables the prediction of^(*)H adsorption energy on binary oxide surfaces with a mean absolute error(MAE)below 0.18 eV.Moreover,we incorporate local coverage(θ_(l))and leverage neutral network ensemble to establish an active learning workflow,attaining a prediction MAE below 0.2 eV for 5419 multi-^(*)H adsorption structures.These findings validate the universality and capability of the proposed features in predicting^(*)H adsorption energy on binary oxide surfaces. 展开更多
关键词 Machine learning Adsorption energy Binary oxide Electron transfer Active learning
下载PDF
Transfer Learning Empowered Skin Diseases Detection in Children
8
作者 Meena N.Alnuaimi Nourah S.Alqahtani +7 位作者 Mohammed Gollapalli Atta Rahman Alaa Alahmadi Aghiad Bakry Mustafa Youldash Dania Alkhulaifi Rashad Ahmed Hesham Al-Musallam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2609-2623,共15页
Human beings are often affected by a wide range of skin diseases,which can be attributed to genetic factors and environmental influences,such as exposure to sunshine with ultraviolet(UV)rays.If left untreated,these di... Human beings are often affected by a wide range of skin diseases,which can be attributed to genetic factors and environmental influences,such as exposure to sunshine with ultraviolet(UV)rays.If left untreated,these diseases can have severe consequences and spread,especially among children.Early detection is crucial to prevent their spread and improve a patient’s chances of recovery.Dermatology,the branch of medicine dealing with skin diseases,faces challenges in accurately diagnosing these conditions due to the difficulty in identifying and distinguishing between different diseases based on their appearance,type of skin,and others.This study presents a method for detecting skin diseases using Deep Learning(DL),focusing on the most common diseases affecting children in Saudi Arabia due to the high UV value in most of the year,especially in the summer.The method utilizes various Convolutional Neural Network(CNN)architectures to classify skin conditions such as eczema,psoriasis,and ringworm.The proposed method demonstrates high accuracy rates of 99.99%and 97%using famous and effective transfer learning models MobileNet and DenseNet121,respectively.This illustrates the potential of DL in automating the detection of skin diseases and offers a promising approach for early diagnosis and treatment. 展开更多
关键词 Deep learning MobileNet DenseNet121 skin diseases detection transfer learning
下载PDF
TLERAD: Transfer Learning for Enhanced Ransomware Attack Detection
9
作者 Isha Sood Varsha Sharm 《Computers, Materials & Continua》 SCIE EI 2024年第11期2791-2818,共28页
Ransomware has emerged as a critical cybersecurity threat,characterized by its ability to encrypt user data or lock devices,demanding ransom for their release.Traditional ransomware detection methods face limitations ... Ransomware has emerged as a critical cybersecurity threat,characterized by its ability to encrypt user data or lock devices,demanding ransom for their release.Traditional ransomware detection methods face limitations due to their assumption of similar data distributions between training and testing phases,rendering them less effective against evolving ransomware families.This paper introduces TLERAD(Transfer Learning for Enhanced Ransomware Attack Detection),a novel approach that leverages unsupervised transfer learning and co-clustering techniques to bridge the gap between source and target domains,enabling robust detection of both known and unknown ransomware variants.The proposed method achieves high detection accuracy,with an AUC of 0.98 for known ransomware and 0.93 for unknown ransomware,significantly outperforming baseline methods.Comprehensive experiments demonstrate TLERAD’s effectiveness in real-world scenarios,highlighting its adapt-ability to the rapidly evolving ransomware landscape.The paper also discusses future directions for enhancing TLERAD,including real-time adaptation,integration with lightweight and post-quantum cryptography,and the incorporation of explainable AI techniques. 展开更多
关键词 Ransomware detection transfer learning unsupervised learning CO-CLUSTERING CYBERSECURITY machine learning lightweight cryptography post-quantum cryptography explainable AI TLERAD
下载PDF
Optimizing Deep Learning for Computer-Aided Diagnosis of Lung Diseases: An Automated Method Combining Evolutionary Algorithm, Transfer Learning, and Model Compression
10
作者 Hassen Louati Ali Louati +1 位作者 Elham Kariri Slim Bechikh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2519-2547,共29页
Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,w... Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,which are commonly utilized in radiology.To fully exploit their potential,researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems.However,constructing and compressing these systems presents a significant challenge,as it relies heavily on the expertise of data scientists.To tackle this issue,we propose an automated approach that utilizes an evolutionary algorithm(EA)to optimize the design and compression of a convolutional neural network(CNN)for X-Ray image classification.Our approach accurately classifies radiography images and detects potential chest abnormalities and infections,including COVID-19.Furthermore,our approach incorporates transfer learning,where a pre-trainedCNNmodel on a vast dataset of chest X-Ray images is fine-tuned for the specific task of detecting COVID-19.This method can help reduce the amount of labeled data required for the task and enhance the overall performance of the model.We have validated our method via a series of experiments against state-of-the-art architectures. 展开更多
关键词 Computer-aided diagnosis deep learning evolutionary algorithms deep compression transfer learning
下载PDF
A Deep-Learning and Transfer-Learning Hybrid Aerosol Retrieval Algorithm for FY4-AGRI:Development and Verification over Asia
11
作者 Disong Fu Hongrong Shi +9 位作者 Christian AGueymard Dazhi Yang Yu Zheng Huizheng Che Xuehua Fan Xinlei Han Lin Gao Jianchun Bian Minzheng Duan Xiangao Xia 《Engineering》 SCIE EI CAS CSCD 2024年第7期164-174,共11页
The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral b... The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral bands,enabling the detection of highly variable aerosol optical depth(AOD).Quantitative retrieval of AOD has hitherto been challenging,especially over land.In this study,an AOD retrieval algorithm is proposed that combines deep learning and transfer learning.The algorithm uses core concepts from both the Dark Target(DT)and Deep Blue(DB)algorithms to select features for the machinelearning(ML)algorithm,allowing for AOD retrieval at 550 nm over both dark and bright surfaces.The algorithm consists of two steps:①A baseline deep neural network(DNN)with skip connections is developed using 10 min Advanced Himawari Imager(AHI)AODs as the target variable,and②sunphotometer AODs from 89 ground-based stations are used to fine-tune the DNN parameters.Out-of-station validation shows that the retrieved AOD attains high accuracy,characterized by a coefficient of determination(R2)of 0.70,a mean bias error(MBE)of 0.03,and a percentage of data within the expected error(EE)of 70.7%.A sensitivity study reveals that the top-of-atmosphere reflectance at 650 and 470 nm,as well as the surface reflectance at 650 nm,are the two largest sources of uncertainty impacting the retrieval.In a case study of monitoring an extreme aerosol event,the AGRI AOD is found to be able to capture the detailed temporal evolution of the event.This work demonstrates the superiority of the transfer-learning technique in satellite AOD retrievals and the applicability of the retrieved AGRI AOD in monitoring extreme pollution events. 展开更多
关键词 Aerosol optical depth Retrieval algorithm Deep learning transfer learning Advanced Geosynchronous Radiation IMAGER
下载PDF
Image Recognition Model of Fraudulent Websites Based on Image Leader Decision and Inception-V3 Transfer Learning
12
作者 Shengli Zhou Cheng Xu +3 位作者 Rui Xu Weijie Ding Chao Chen Xiaoyang Xu 《China Communications》 SCIE CSCD 2024年第1期215-227,共13页
The fraudulent website image is a vital information carrier for telecom fraud.The efficient and precise recognition of fraudulent website images is critical to combating and dealing with fraudulent websites.Current re... The fraudulent website image is a vital information carrier for telecom fraud.The efficient and precise recognition of fraudulent website images is critical to combating and dealing with fraudulent websites.Current research on image recognition of fraudulent websites is mainly carried out at the level of image feature extraction and similarity study,which have such disadvantages as difficulty in obtaining image data,insufficient image analysis,and single identification types.This study develops a model based on the entropy method for image leader decision and Inception-v3 transfer learning to address these disadvantages.The data processing part of the model uses a breadth search crawler to capture the image data.Then,the information in the images is evaluated with the entropy method,image weights are assigned,and the image leader is selected.In model training and prediction,the transfer learning of the Inception-v3 model is introduced into image recognition of fraudulent websites.Using selected image leaders to train the model,multiple types of fraudulent websites are identified with high accuracy.The experiment proves that this model has a superior accuracy in recognizing images on fraudulent websites compared to other current models. 展开更多
关键词 fraudulent website image leaders telecom fraud transfer learning
下载PDF
Predictive modeling of critical temperatures in magnesium compounds using transfer learning
13
作者 Surjeet Kumar Russlan Jaafreh +4 位作者 Subhajit Dutta Jung Hyeon Yoo Santiago Pereznieto Kotiba Hamad Dae Ho Yoon 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1540-1553,共14页
This study presents a transfer learning approach for discovering potential Mg-based superconductors utilizing a comprehensive target dataset.Initially,a large source dataset(Bandgap dataset)comprising approximately∼7... This study presents a transfer learning approach for discovering potential Mg-based superconductors utilizing a comprehensive target dataset.Initially,a large source dataset(Bandgap dataset)comprising approximately∼75k compounds is utilized for pretraining,followed by fine-tuning with a smaller Critical Temperature(T_(c))dataset containing∼300 compounds.Comparatively,there is a significant improvement in the performance of the transfer learning model over the traditional deep learning(DL)model in predicting Tc.Subsequently,the transfer learning model is applied to predict the properties of approximately 150k compounds.Predictions are validated computationally using density functional theory(DFT)calculations based on lattice dynamics-related theory.Moreover,to demonstrate the extended predictive capability of the transfer learning model for new materials,a pool of virtual compounds derived from prototype crystal structures from the Materials Project(MP)database is generated.T_(c) predictions are obtained for∼3600 virtual compounds,which underwent screening for electroneutrality and thermodynamic stability.An Extra Trees-based model is trained to utilize E_(hull)values to obtain thermodynamically stable materials,employing a dataset containing Ehull values for approximately 150k materials for training.Materials with Ehull values exceeding 5 meV/atom were filtered out,resulting in a refined list of potential Mg-based superconductors.This study showcases the effectiveness of transfer learning in predicting superconducting properties and highlights its potential for accelerating the discovery of Mg-based materials in the field of superconductivity. 展开更多
关键词 SUPERCONDUCTIVITY Critical temperature transfer learning Crystal structure features Thermodynamic stability
下载PDF
Knowledge Reasoning Method Based on Deep Transfer Reinforcement Learning:DTRLpath
14
作者 Shiming Lin Ling Ye +4 位作者 Yijie Zhuang Lingyun Lu Shaoqiu Zheng Chenxi Huang Ng Yin Kwee 《Computers, Materials & Continua》 SCIE EI 2024年第7期299-317,共19页
In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring mi... In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring missing facts through reasoning.By searching paths on the knowledge graph and making fact and link predictions based on these paths,deep learning-based Reinforcement Learning(RL)agents can demonstrate good performance and interpretability.Therefore,deep reinforcement learning-based knowledge reasoning methods have rapidly emerged in recent years and have become a hot research topic.However,even in a small and fixed knowledge graph reasoning action space,there are still a large number of invalid actions.It often leads to the interruption of RL agents’wandering due to the selection of invalid actions,resulting in a significant decrease in the success rate of path mining.In order to improve the success rate of RL agents in the early stages of path search,this article proposes a knowledge reasoning method based on Deep Transfer Reinforcement Learning path(DTRLpath).Before supervised pre-training and retraining,a pre-task of searching for effective actions in a single step is added.The RL agent is first trained in the pre-task to improve its ability to search for effective actions.Then,the trained agent is transferred to the target reasoning task for path search training,which improves its success rate in searching for target task paths.Finally,based on the comparative experimental results on the FB15K-237 and NELL-995 datasets,it can be concluded that the proposed method significantly improves the success rate of path search and outperforms similar methods in most reasoning tasks. 展开更多
关键词 Intelligent agent knowledge graph reasoning REINFORCEMENT transfer learning
下载PDF
A local space transfer learning-based parallel Bayesian optimization with its application
15
作者 Luhang Yang Xixiang Zhang +2 位作者 Jingyi Lu Zhou Tian Wenli Du 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第10期227-237,共11页
The optimization of process parameters in polyolefin production can bring significant economic benefits to the factory.However,due to small data sets,high costs associated with parameter verification cycles,and diffic... The optimization of process parameters in polyolefin production can bring significant economic benefits to the factory.However,due to small data sets,high costs associated with parameter verification cycles,and difficulty in establishing an optimization model,the optimization process is often restricted.To address this issue,we propose using a transfer learning Bayesian optimization strategy to improve the efficiency of parameter optimization while minimizing resource consumption.Specifically,we leverage Gaussian process(GP)regression models to establish an integrated model that incorporates both source and target grade production task data.We then measure the similarity weights of each model by comparing their predicted trends,and utilize these weights to accelerate the solution of optimal process parameters for producing target polyolefin grades.In order to enhance the accuracy of our approach,we acknowledge that measuring similarity in a global search space may not effectively capture local similarity characteristics.Therefore,we propose a novel method for transfer learning optimization that operates within a local space(LSTL-PBO).This method employs partial data acquired through random sampling from the target task data and utilizes Bayesian optimization techniques for model establishment.By focusing on a local search space,we aim to better discern and leverage the inherent similarities between source tasks and the target task.Additionally,we incorporate a parallel concept into our method to address multiple local search spaces simultaneously.By doing so,we can explore different regions of the parameter space in parallel,thereby increasing the chances of finding optimal process parameters.This localized approach allows us to improve the precision and effectiveness of our optimization process.The performance of our method is validated through experiments on benchmark problems,and we discuss the sensitivity of its hyperparameters.The results show that our proposed method can significantly improve the efficiency of process parameter optimization,reduce the dependence on source tasks,and enhance the method's robustness.This has great potential for optimizing processes in industrial environments. 展开更多
关键词 transfer learning Bayesian optimization Process parameters Parallel framework Local search space
下载PDF
Quick Weighing of Passing Vehicles Using the Transfer-Learning-Enhanced Convolutional Neural Network
16
作者 Wangchen Yan Jinbao Yang Xin Luo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2507-2524,共18页
Transfer learning could reduce the time and resources required by the training of new models and be therefore important for generalized applications of the trainedmachine learning algorithms.In this study,a transfer l... Transfer learning could reduce the time and resources required by the training of new models and be therefore important for generalized applications of the trainedmachine learning algorithms.In this study,a transfer learningenhanced convolutional neural network(CNN)was proposed to identify the gross weight and the axle weight of moving vehicles on the bridge.The proposed transfer learning-enhanced CNN model was expected to weigh different bridges based on a small amount of training datasets and provide high identification accuracy.First of all,a CNN algorithm for bridge weigh-in-motion(B-WIM)technology was proposed to identify the axle weight and the gross weight of the typical two-axle,three-axle,and five-axle vehicles as they crossed the bridge with different loading routes and speeds.Then,the pre-trained CNN model was transferred by fine-tuning to weigh themoving vehicle on another bridge.Finally,the identification accuracy and the amount of training data required were compared between the two CNN models.Results showed that the pre-trained CNN model using transfer learning for B-WIM technology could be successfully used for the identification of the axle weight and the gross weight for moving vehicles on another bridge while reducing the training data by 63%.Moreover,the recognition accuracy of the pre-trained CNN model using transfer learning was comparable to that of the original model,showing its promising potentials in the actual applications. 展开更多
关键词 Bridge weigh-in-motion transfer learning convolutional neural network
下载PDF
Abnormal Action Detection Based on Parameter-Efficient Transfer Learning in Laboratory Scenarios
17
作者 Changyu Liu Hao Huang +2 位作者 Guogang Huang Chunyin Wu Yingqi Liang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4219-4242,共24页
Laboratory safety is a critical area of broad societal concern,particularly in the detection of abnormal actions.To enhance the efficiency and accuracy of detecting such actions,this paper introduces a novel method ca... Laboratory safety is a critical area of broad societal concern,particularly in the detection of abnormal actions.To enhance the efficiency and accuracy of detecting such actions,this paper introduces a novel method called TubeRAPT(Tubelet Transformer based onAdapter and Prefix TrainingModule).Thismethod primarily comprises three key components:the TubeR network,an adaptive clustering attention mechanism,and a prefix training module.These components work in synergy to address the challenge of knowledge preservation in models pretrained on large datasets while maintaining training efficiency.The TubeR network serves as the backbone for spatio-temporal feature extraction,while the adaptive clustering attention mechanism refines the focus on relevant information.The prefix training module facilitates efficient fine-tuning and knowledge transfer.Experimental results demonstrate the effectiveness of TubeRAPT,achieving a 68.44%mean Average Precision(mAP)on the CLA(Crazy LabActivity)small-scale dataset,marking a significant improvement of 1.53%over the previous TubeR method.This research not only showcases the potential applications of TubeRAPT in the field of abnormal action detection but also offers innovative ideas and technical support for the future development of laboratory safety monitoring technologies.The proposed method has implications for improving safety management systems in various laboratory environments,potentially reducing accidents and enhancing overall workplace safety. 展开更多
关键词 Parameter-efficient transfer learning laboratory scenarios TubeRAPT abnormal action detection
下载PDF
Deep Transfer Learning Models for Mobile-Based Ocular Disorder Identification on Retinal Images
18
作者 Roseline Oluwaseun Ogundokun Joseph Bamidele Awotunde +2 位作者 Hakeem Babalola Akande Cheng-Chi Lee Agbotiname Lucky Imoize 《Computers, Materials & Continua》 SCIE EI 2024年第7期139-161,共23页
Mobile technology is developing significantly.Mobile phone technologies have been integrated into the healthcare industry to help medical practitioners.Typically,computer vision models focus on image detection and cla... Mobile technology is developing significantly.Mobile phone technologies have been integrated into the healthcare industry to help medical practitioners.Typically,computer vision models focus on image detection and classification issues.MobileNetV2 is a computer vision model that performs well on mobile devices,but it requires cloud services to process biometric image information and provide predictions to users.This leads to increased latency.Processing biometrics image datasets on mobile devices will make the prediction faster,but mobiles are resource-restricted devices in terms of storage,power,and computational speed.Hence,a model that is small in size,efficient,and has good prediction quality for biometrics image classification problems is required.Quantizing pre-trained CNN(PCNN)MobileNetV2 architecture combined with a Support Vector Machine(SVM)compacts the model representation and reduces the computational cost and memory requirement.This proposed novel approach combines quantized pre-trained CNN(PCNN)MobileNetV2 architecture with a Support Vector Machine(SVM)to represent models efficiently with low computational cost and memory.Our contributions include evaluating three CNN models for ocular disease identification in transfer learning and deep feature plus SVM approaches,showing the superiority of deep features from MobileNetV2 and SVM classification models,comparing traditional methods,exploring six ocular diseases and normal classification with 20,111 images postdata augmentation,and reducing the number of trainable models.The model is trained on ocular disorder retinal fundus image datasets according to the severity of six age-related macular degeneration(AMD),one of the most common eye illnesses,Cataract,Diabetes,Glaucoma,Hypertension,andMyopia with one class Normal.From the experiment outcomes,it is observed that the suggested MobileNetV2-SVM model size is compressed.The testing accuracy for MobileNetV2-SVM,InceptionV3,and MobileNetV2 is 90.11%,86.88%,and 89.76%respectively while MobileNetV2-SVM,InceptionV3,and MobileNetV2 accuracy are observed to be 92.59%,83.38%,and 90.16%,respectively.The proposed novel technique can be used to classify all biometric medical image datasets on mobile devices. 展开更多
关键词 Retinal images ocular disorder deep transfer learning disease identification mobile device
下载PDF
A transfer learning enhanced physics-informed neural network for parameter identification in soft materials
19
作者 Jing’ang ZHU Yiheng XUE Zishun LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1685-1704,共20页
Soft materials,with the sensitivity to various external stimuli,exhibit high flexibility and stretchability.Accurate prediction of their mechanical behaviors requires advanced hyperelastic constitutive models incorpor... Soft materials,with the sensitivity to various external stimuli,exhibit high flexibility and stretchability.Accurate prediction of their mechanical behaviors requires advanced hyperelastic constitutive models incorporating multiple parameters.However,identifying multiple parameters under complex deformations remains a challenge,especially with limited observed data.In this study,we develop a physics-informed neural network(PINN)framework to identify material parameters and predict mechanical fields,focusing on compressible Neo-Hookean materials and hydrogels.To improve accuracy,we utilize scaling techniques to normalize network outputs and material parameters.This framework effectively solves forward and inverse problems,extrapolating continuous mechanical fields from sparse boundary data and identifying unknown mechanical properties.We explore different approaches for imposing boundary conditions(BCs)to assess their impacts on accuracy.To enhance efficiency and generalization,we propose a transfer learning enhanced PINN(TL-PINN),allowing pre-trained networks to quickly adapt to new scenarios.The TL-PINN significantly reduces computational costs while maintaining accuracy.This work holds promise in addressing practical challenges in soft material science,and provides insights into soft material mechanics with state-of-the-art experimental methods. 展开更多
关键词 soft material parameter identification physics-informed neural network(PINN) transfer learning inverse problem
下载PDF
Combining machine and deep transfer learning for mediastinal lymph node evaluation in patients with lung cancer
20
作者 Hui XIE Jianfang ZHANG +2 位作者 Lijuan DING Tao TAN Qing LI 《虚拟现实与智能硬件(中英文)》 EI 2024年第3期226-238,共13页
Background The prognosis and survival of patients with lung cancer are likely to deteriorate with metastasis.Using deep-learning in the detection of lymph node metastasis can facilitate the noninvasive calculation of ... Background The prognosis and survival of patients with lung cancer are likely to deteriorate with metastasis.Using deep-learning in the detection of lymph node metastasis can facilitate the noninvasive calculation of the likelihood of such metastasis,thereby providing clinicians with crucial information to enhance diagnostic precision and ultimately improve patient survival and prognosis.Methods In total,623 eligible patients were recruited from two medical institutions.Seven deep learning models,namely Alex,GoogLeNet,Resnet18,Resnet101,Vgg16,Vgg19,and MobileNetv3(small),were utilized to extract deep image histological features.The dimensionality of the extracted features was then reduced using the Spearman correlation coefficient(r≥0.9)and Least Absolute Shrinkage and Selection Operator.Eleven machine learning methods,namely Support Vector Machine,K-nearest neighbor,Random Forest,Extra Trees,XGBoost,LightGBM,Naive Bayes,AdaBoost,Gradient Boosting Decision Tree,Linear Regression,and Multilayer Perceptron,were employed to construct classification prediction models for the filtered final features.The diagnostic performances of the models were assessed using various metrics,including accuracy,area under the receiver operating characteristic curve,sensitivity,specificity,positive predictive value,and negative predictive value.Calibration and decision-curve analyses were also performed.Results The present study demonstrated that using deep radiomic features extracted from Vgg16,in conjunction with a prediction model constructed via a linear regression algorithm,effectively distinguished the status of mediastinal lymph nodes in patients with lung cancer.The performance of the model was evaluated based on various metrics,including accuracy,area under the receiver operating characteristic curve,sensitivity,specificity,positive predictive value,and negative predictive value,which yielded values of 0.808,0.834,0.851,0.745,0.829,and 0.776,respectively.The validation set of the model was assessed using clinical decision curves,calibration curves,and confusion matrices,which collectively demonstrated the model's stability and accuracy.Conclusion In this study,information on the deep radiomics of Vgg16 was obtained from computed tomography images,and the linear regression method was able to accurately diagnose mediastinal lymph node metastases in patients with lung cancer. 展开更多
关键词 Machine learning Deep transfer learning EVALUATION Mediastinal lymph node lung cancer patie
下载PDF
上一页 1 2 235 下一页 到第
使用帮助 返回顶部