We report an experimental study of electron transport properties of MnSe/(Bi,Sb)_2Te_3 heterostructures,in which MnSe is an antiferromagnetic insulator,and(Bi,Sb)_2Te_3 is a three-dimensional topological insulator(TI)...We report an experimental study of electron transport properties of MnSe/(Bi,Sb)_2Te_3 heterostructures,in which MnSe is an antiferromagnetic insulator,and(Bi,Sb)_2Te_3 is a three-dimensional topological insulator(TI).Strong magnetic proximity effect is manifested in the measurements of the Hall effect and longitudinal resistances.Our analysis shows that the gate voltage can substantially modify the anomalous Hall conductance,which exceeds 0.1 e^(2)/h at temperature T=1.6 K and magnetic field μ_0H=5 T,even though only the top TI surface is in proximity to MnSe.This work suggests that heterostructures based on antiferromagnetic insulators provide a promising platform for investigating a wide range of topological spintronic phenomena.展开更多
We should add the following acknowledge:Jing Teng thanks the support from the Youth Innovation Promotion Association Project,Chinese Academy of Sciences.
We present an infrared spectroscopy study of the magnetic topological insulator MnBi_(4)Te_7 with antiferromagnetic(AFM) order below the Neel temperature TN= 13 K. Our investigation reveals that the low-frequency opti...We present an infrared spectroscopy study of the magnetic topological insulator MnBi_(4)Te_7 with antiferromagnetic(AFM) order below the Neel temperature TN= 13 K. Our investigation reveals that the low-frequency optical conductivity consists of two Drude peaks, indicating a response of free carriers involving multiple bands. Interestingly, the narrow Drude peak grows strongly as the temperature decreases, while the broad Drude peak remains relatively unchanged. The onset of interband transitions starts around 2000 cm^(-1), followed by two prominent absorption peaks around 10000 cm^(-1) and 20000 cm^(-1). Upon cooling, there is a notable transfer of spectral weight from the interband transitions to the Drude response. Below TN, the AFM transition gives rise to small anomalies of the charge response due to a band reconstruction.These findings provide valuable insights into the interplay between magnetism and the electronic properties in MnBi_(4)Te_7.展开更多
Disorder effects on topological materials in integer dimensions have been extensively explored in recent years. However, its influence on topological systems in fractional dimensions remains unclear. Here, we investig...Disorder effects on topological materials in integer dimensions have been extensively explored in recent years. However, its influence on topological systems in fractional dimensions remains unclear. Here, we investigate the disorder effects on a fractal system constructed on the Sierpiński lattice in fractional dimensions. The system supports the second-order topological insulator phase characterized by a quantized quadrupole moment and the normal insulator phase. We find that the second-order topological insulator phase on the Sierpiński lattice is robust against weak disorder but suppressed by strong disorder. Most interestingly, we find that disorder can transform the normal insulator phase to the second-order topological insulator phase with an emergent quantized quadrupole moment. Finally, the disorder-induced phase is further confirmed by calculating the energy spectrum and the corresponding probability distributions.展开更多
By including certain point group symmetry in the classification of band topology,Fu proposed a class of threedimensionaltopological crystalline insulators(TCIs)without spin-orbit coupling in 2011.In Fu’s model,surfac...By including certain point group symmetry in the classification of band topology,Fu proposed a class of threedimensionaltopological crystalline insulators(TCIs)without spin-orbit coupling in 2011.In Fu’s model,surface states(ifpresent)doubly degenerate atГandM when time-reversal and C_(4) symmetries are preserved.The analogs of Fu’s modelwith surface states quadratically degenerate atM are widely studied,while surface states with quadratic degeneracy atГare rarely reported.In this study,we propose a three-dimensional TCI without spin-orbit coupling in a judiciously designednonsymmorphic photonic metacrystal.The surface states of photonic TCIs exhibit quadratic band degeneracy in the(001)surface Brillouin zone(BZ)center(Гpoint).The gapless surface states and their quadratic dispersion are protected by C4and time-reversal symmetries,which correspond to the nontrivial band topology characterized by Z_(2)topological invariant.Moreover,the surface states along lines fromГto the(001)surface BZ boundary exhibit zigzag feature,which is interpretedfrom symmetry perspective by building composite operators constructed by the product of glide symmetries with timereversalsymmetry.The metacrystal array surrounded with air possesses high order hinge states with electric fields highlylocalized at the hinge that may apply to optical sensors.The gapless surface states and hinge states reside in a cleanfrequency bandgap.The topological surface states emerge at the boundary of the metacrystal and perfect electric conductor(PEC),which provide a pathway for topologically manipulating light propagation in photonic devices.展开更多
Two-dimensional(2D)topological materials have recently garnered significant interest due to their profound physical properties and promising applications for future quantum nanoelectronics.Achieving various topologica...Two-dimensional(2D)topological materials have recently garnered significant interest due to their profound physical properties and promising applications for future quantum nanoelectronics.Achieving various topological states within one type of materials is,however,seldom reported.Based on first-principles calculations and tightbinding models,we investigate topological electronic states in a novel family of 2D halogenated tetragonal stanene(T-SnX,X=F,Cl,Br,I).All the four monolayers are found to be unusual topological nodal-line semimetals(NLSs),protected by a glide mirror symmetry.When spin-orbit coupling(SOC)is turned on,T-SnF and TSnCl are still ascertained as topological NLSs due to the remaining band inversion,primarily composed of Sn pxy orbitals,while T-Sn Br and T-SnI become quantum spin Hall insulators.The phase transition is ascribed to moving up in energy of Sn s orbitals and increasing of SOC strengths.The topology origin in the materials is uniformly rationalized through elementary band representations.The robust and diverse topological states found in the 2D T-SnX monolayers position them as an excellent material platform for development of innovative topological electronics.展开更多
Floquet engineering has attracted considerable attention as a promising approach for tuning topological phase transitions.We investigate the effects of high-frequency time-periodic driving in a four-dimensional(4D)top...Floquet engineering has attracted considerable attention as a promising approach for tuning topological phase transitions.We investigate the effects of high-frequency time-periodic driving in a four-dimensional(4D)topological insulator,focusing on topological phase transitions at the off-resonant quasienergy gap.The 4D topological insulator hosts gapless three-dimensional boundary states,characterized by the second Chern number C_(2).We demonstrate that the second Chern number of 4D topological insulators can be modulated by tuning the amplitude of time-periodic driving.This includes transitions from a topological phase with C_(2)=±3 to another topological phase with C_(2)=±1,or to a topological phase with an even second Chern number C_(2)=±2,which is absent in the 4D static system.Finally,the approximation theory in the high-frequency limit further confirms the numerical conclusions.展开更多
We theoretically investigate the Ruderman–Kittel–Kasuya–Yosida(RKKY) interaction in helical higher-order topological insulators(HOTIs), revealing distinct behaviors mediated by hinge and Dirac-type bulk carriers. O...We theoretically investigate the Ruderman–Kittel–Kasuya–Yosida(RKKY) interaction in helical higher-order topological insulators(HOTIs), revealing distinct behaviors mediated by hinge and Dirac-type bulk carriers. Our findings show that hinge-mediated interactions consist of Heisenberg, Ising, and Dzyaloshinskii–Moriya(DM) terms, exhibiting a decay with impurity spacing z and oscillations with Fermi energy εF. These interactions demonstrate ferromagnetic behaviors for the Heisenberg and Ising terms and alternating behavior for the DM term. In contrast, bulk-mediated interactions include Heisenberg, twisted Ising, and DM terms, with a conventional cubic oscillating decay. This study highlights the nuanced interplay between hinge and bulk RKKY interactions in HOTIs, offering insights into designs of next-generation quantum devices based on HOTIs.展开更多
The topological states of the two-leg and three-leg ladders formed by two trivial quantum wires with different lattice constants are theoretically investigated. Firstly, we take two trivial quantum wires with a lattic...The topological states of the two-leg and three-leg ladders formed by two trivial quantum wires with different lattice constants are theoretically investigated. Firstly, we take two trivial quantum wires with a lattice constant ratio of 1:2 as an example. For the symmetric nearest-neighbor intra-chain hopping two-leg ladder, the inversion symmetry protected topological insulator phase with two degenerate topological edge states appears. When the inversion symmetry is broken, the topological insulators with one or two topological edge states of different energies and topological metals with edge states embedded in the bulk states could emerge depending on the filling factor. The topological origin of these topological states in the two-leg ladders is the topological properties of the Chern insulators and Chern metals. According to the arrangement of two trivial quantum wires, we construct two types of three-leg ladders. Each type of the three-leg ladder could be divided into one trivial subspace and one topological nontrivial subspace by unitary transformation. The topological nontrivial subspace corresponds to the effective two-leg ladder model. As the filling factor changes, the system could be in topological insulators or topological metals phases. When the two-leg ladder is constructed by two trivial quantum wires with a lattice constant ratio of 1:3 and 2:3, the system could also realize rich topological states such as the topological insulators and topological metals with the topological edge states. These rich topological states in the two-leg and three-leg ladders could be confirmed by current experimental techniques.展开更多
Objective Autism spectrum disorder(ASD)is a neurodevelopmental condition characterized by difficulties with communication and social interaction,restricted and repetitive behaviors.Previous studies have indicated that...Objective Autism spectrum disorder(ASD)is a neurodevelopmental condition characterized by difficulties with communication and social interaction,restricted and repetitive behaviors.Previous studies have indicated that individuals with ASD exhibit early and lifelong attention deficits,which are closely related to the core symptoms of ASD.Basic visual attention processes may provide a critical foundation for their social communication and interaction abilities.Therefore,this study explores the behavior of children with ASD in capturing attention to changes in topological properties.Methods Our study recruited twenty-seven ASD children diagnosed by professional clinicians according to DSM-5 and twenty-eight typically developing(TD)age-matched controls.In an attention capture task,we recorded the saccadic behaviors of children with ASD and TD in response to topological change(TC)and non-topological change(nTC)stimuli.Saccadic reaction time(SRT),visual search time(VS),and first fixation dwell time(FFDT)were used as indicators of attentional bias.Pearson correlation tests between the clinical assessment scales and attentional bias were conducted.Results This study found that TD children had significantly faster SRT(P<0.05)and VS(P<0.05)for the TC stimuli compared to the nTC stimuli,while the children with ASD did not exhibit significant differences in either measure(P>0.05).Additionally,ASD children demonstrated significantly less attention towards the TC targets(measured by FFDT),in comparison to TD children(P<0.05).Furthermore,ASD children exhibited a significant negative linear correlation between their attentional bias(measured by VS)and their scores on the compulsive subscale(P<0.05).Conclusion The results suggest that children with ASD have difficulty shifting their attention to objects with topological changes during change detection.This atypical attention may affect the child’s cognitive and behavioral development,thereby impacting their social communication and interaction.In sum,our findings indicate that difficulties in attentional capture by TC may be a key feature of ASD.展开更多
Topological insulators (TIs) host robust edge or surface states protected by time-reversal symmetry (TRS), which makes them prime candidates for applications in spintronic devices. A promising avenue of research for t...Topological insulators (TIs) host robust edge or surface states protected by time-reversal symmetry (TRS), which makes them prime candidates for applications in spintronic devices. A promising avenue of research for the development of functional TI devices has involved doping of three-dimensional (3D) TI thin film and bulk materials with magnetic elements. This approach aims to break the TRS and open a surface band gap near the Dirac point. Utilizing this gapped surface state allows for a wide range of novel physical effects to be observed, paving a way for applications in spintronics and quantum computation. This review focuses on the research of 3D TIs doped with manganese (Mn). We summarize major progress in the study of Mn doped chalcogenide TIs, including Bi2Se3, Bi2Te3, and Bi2(Te,Se)3. The transport properties, in particular the anomalous Hall effect, of the Mn-doped Bi2Se3 are discussed in detail. Finally, we conclude with future prospects and challenges in further studies of Mn doped TIs.展开更多
The last several years have witnessed the rapid developments in the study and understanding of topological insulators. In this review, after a brief summary of the history of topological insulators, we focus on the re...The last several years have witnessed the rapid developments in the study and understanding of topological insulators. In this review, after a brief summary of the history of topological insulators, we focus on the recent progress made in transport experiments on topological insulator films and nanowires. Some quantum phenomena, including the weak antilocalization, the Aharonov-Bobm effect, and the Shubnikov-de Haas oscillations, observed in these nanostructures are described. In addition, the electronic transport evidence of the superconducting proximity effect as well as an anomalous resistance enhancement in topological insulator/superconductor hybrid structures is included.展开更多
This paper presents an overview of the growth of Bi2Se3, a prototypical three-dimensional topological insulator, by molecular-beam epitaxy on various substrates. Comparison is made between the growth of Bi2 Se3 (111...This paper presents an overview of the growth of Bi2Se3, a prototypical three-dimensional topological insulator, by molecular-beam epitaxy on various substrates. Comparison is made between the growth of Bi2 Se3 (111) on van der Waals (vdW) and non-vdW substrates, with attention paid to twin suppression and strain. Growth along the [221] direction of Bi2Se3 on InP (001) and GaAs (001) substrates is also discussed.展开更多
Providing the strong spin-orbital interaction, Bismuth is the key element in the family of three-dimensional topological insulators. At the same time, Bismuth itself also has very unusual behavior, existing from the t...Providing the strong spin-orbital interaction, Bismuth is the key element in the family of three-dimensional topological insulators. At the same time, Bismuth itself also has very unusual behavior, existing from the thinnest unit to bulk crystals. Ultrathin Bi (111) bilayers have been theoretically proposed as a two-dimensional topological insulator. The related experimental realization achieved only recently, by growing Bi (111) ultrathin bilayers on topological insulator Bi2Te3 or Bi2Se3 substrates. In this review, we started from the growth mode of Bi (111) bilayers and reviewed our recent progress in the studies of the electronic structures and the one-dimensional topological edge states using scanning tunneling microscopy/spectroscopy (STM/STS), angle-resolved photoemission spectroscopy (ARPES), and first principles calculations.展开更多
Based on k · p analysis and realistic tight-binding calculations, we find that time-reversal-breaking Weyl semimetals can be realized in magnetically-doped(Mn, Eu, Cr, etc.) Sn_(1-x)Pb_x(Te, Se) class of topologi...Based on k · p analysis and realistic tight-binding calculations, we find that time-reversal-breaking Weyl semimetals can be realized in magnetically-doped(Mn, Eu, Cr, etc.) Sn_(1-x)Pb_x(Te, Se) class of topological crystalline insulators. All the Weyl points are well separated in momentum space and possess nearly the same energy due to high crystalline symmetry.Moreover, both the Weyl points and Fermi arcs are highly tunable by varying Pb/Sn composition, pressure, magnetization,temperature, surface potential, etc., opening up the possibility of manipulating Weyl points and rewiring the Fermi arcs.展开更多
Topological insulators' properties and their potential device applications are reviewed. We also explain why topologi- cal insulator (TI) nanostructnres are an important avenue for research and discuss some methods...Topological insulators' properties and their potential device applications are reviewed. We also explain why topologi- cal insulator (TI) nanostructnres are an important avenue for research and discuss some methods by which TI nanostructures are produced and characterized. The rapid development of high-quality TI nanostructures provides an ideal platform to ex- ploit salient physical phenomena that have been theoretically predicted but not yet experimentally realized.展开更多
Recently,a contact-resistance-measurement method was developed to detect the minigap,hence the Andreev bound states(ABSs),in Josephson junctions constructed on the surface of three-dimensional topological insulators(3...Recently,a contact-resistance-measurement method was developed to detect the minigap,hence the Andreev bound states(ABSs),in Josephson junctions constructed on the surface of three-dimensional topological insulators(3D TIs).In this work,we further generalize that method to the circumstance with radio frequency(rf)irradiation.We find that with the increase of the rf power,the measured minigap becomes broadened and extends to higher energies in a way similar to the rf power dependence of the outer border of the Shapiro step region.We show that the corresponding data of contact resistance under rf irradiation can be well interpreted by using the resistively shunted Josephson junction(RSJ)model and the Blonder–Tinkham–Klapwijk(BTK)theory.Our findings could be useful when using the contact-resistancemeasurement method to study the Majorana-related physics in topological insulator-based Josephson junctions under rf irradiation.展开更多
We study the disorder-induced phase transition in two-dimensional non-Hermitian systems.First,the applicability of the noncommutative geometric method(NGM)in non-Hermitian systems is examined.By calculating the Chern ...We study the disorder-induced phase transition in two-dimensional non-Hermitian systems.First,the applicability of the noncommutative geometric method(NGM)in non-Hermitian systems is examined.By calculating the Chern number of two different systems(a square sample and a cylindrical one),the numerical results calculated by NGM are compared with the analytical one,and the phase boundary obtained by NGM is found to be in good agreement with the theoretical prediction.Then,we use NGM to investigate the evolution of the Chern number in non-Hermitian samples with the disorder effect.For the square sample,the stability of the non-Hermitian Chern insulator under disorder is confirmed.Significantly,we obtain a nontrivial topological phase induced by disorder.This phase is understood as the topological Anderson insulator in non-Hermitian systems.Finally,the disordered phase transition in the cylindrical sample is also investigated.The clean non-Hermitian cylindrical sample has three phases,and such samples show more phase transitions by varying the disorder strength:(1)the normal insulator phase to the gapless phase,(2)the normal insulator phase to the topological Anderson insulator phase,and(3)the gapless phase to the topological Anderson insulator phase.展开更多
Topological insulators are insulating in the bulkbut have metallic surface states. Its unique physicochemicalproperties can find numerous applications in electronics,spintronics, photonics, the energy sciences, and th...Topological insulators are insulating in the bulkbut have metallic surface states. Its unique physicochemicalproperties can find numerous applications in electronics,spintronics, photonics, the energy sciences, and thesignal control of transportation. We report an experimentalapproach to synthesize the high-quality single crystal oftopological insulator Bi2Te3 by using self-flux method. Weobtained the optimal preparation conditions by adjustingthe parameters of heat treatment, and successfully preparedthe single-crystal Bi2Te3 sample. The as-grown sampleshave a surface with bright metallic luster and are soft andfragile. Furthermore, Bi2Te3 has the obvious layer structurefrom SEM results. The data of X-ray diffraction andscanning electron microscope show that Bi2Te3 singlecrystal grows along the c-axis with the order of Te(1)–Bi–Te(2)–Bi–Te(1) and crystallizes in the hexagonal systemwith space group of R/3 m. The q–T curve shows that qdecreases with temperature, showing metallic behaviorover the whole temperature range.展开更多
2H-MoS_(2) is a well-studied and promising non-noble metal electrocatalyst for heterogeneous reactions,such as the hydrogen evolution reaction(HER).The performance is largely limited by the chemically inert basal plan...2H-MoS_(2) is a well-studied and promising non-noble metal electrocatalyst for heterogeneous reactions,such as the hydrogen evolution reaction(HER).The performance is largely limited by the chemically inert basal plane,which is unfavorable for surface adsorption and reactions.Herein,we report a facile method to boost the HER activities of 2H-MoS_(2) by coupling with epitaxial Bi2Te3 topological insulator films.The as-obtained MoS_(2)/Bi2Te3/SrTiO3 catalyst exhibits prominent HER catalytic activities compared to that of pure MoS_(2) structures,with a 189 mV decrease in the overpotential required to reach a current density of 10 mA cm^(−2) and a low Tafel slope of 58 mV dec−1.Theoretical investigations suggest that the enhanced catalytic activity originates from the charge redistribution at the interface between the Bi2Te3topological insulator films and the MoS_(2) layer.The delocalized sp-derived topological surface states could denote electrons to the MoS_(2) layer and activate the basal plane for hydrogen adsorption.This study demonstrates the potential of manipulating topological surface states to design high-performance electrocatalysts.展开更多
基金Supported by the National Key Research and Development Program of China (Grant No.2016YFA0300600)the National Natural Science Foundation of China (Grant No.11961141011)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)。
文摘We report an experimental study of electron transport properties of MnSe/(Bi,Sb)_2Te_3 heterostructures,in which MnSe is an antiferromagnetic insulator,and(Bi,Sb)_2Te_3 is a three-dimensional topological insulator(TI).Strong magnetic proximity effect is manifested in the measurements of the Hall effect and longitudinal resistances.Our analysis shows that the gate voltage can substantially modify the anomalous Hall conductance,which exceeds 0.1 e^(2)/h at temperature T=1.6 K and magnetic field μ_0H=5 T,even though only the top TI surface is in proximity to MnSe.This work suggests that heterostructures based on antiferromagnetic insulators provide a promising platform for investigating a wide range of topological spintronic phenomena.
文摘We should add the following acknowledge:Jing Teng thanks the support from the Youth Innovation Promotion Association Project,Chinese Academy of Sciences.
基金Project supported by the the National Natural Science Foundation of China (Grant No.12274442)the National Key R&D Program of China (Grant No.2022YFA1403901)。
文摘We present an infrared spectroscopy study of the magnetic topological insulator MnBi_(4)Te_7 with antiferromagnetic(AFM) order below the Neel temperature TN= 13 K. Our investigation reveals that the low-frequency optical conductivity consists of two Drude peaks, indicating a response of free carriers involving multiple bands. Interestingly, the narrow Drude peak grows strongly as the temperature decreases, while the broad Drude peak remains relatively unchanged. The onset of interband transitions starts around 2000 cm^(-1), followed by two prominent absorption peaks around 10000 cm^(-1) and 20000 cm^(-1). Upon cooling, there is a notable transfer of spectral weight from the interband transitions to the Drude response. Below TN, the AFM transition gives rise to small anomalies of the charge response due to a band reconstruction.These findings provide valuable insights into the interplay between magnetism and the electronic properties in MnBi_(4)Te_7.
基金the support of the National Natural Science Foundation of China (Grant No.12304195)the Chutian Scholars Program in Hubei Province+3 种基金supported by the National Natural Science Foundation of China (Grant No.12074107)the program of outstanding young and middle-aged scientific and technological innovation team of colleges and universities in Hubei Province (Grant No.T2020001)the innovation group project of the Natural Science Foundation of Hubei Province of China (Grant No.2022CFA012)supported by the Postdoctoral Innovation Research Program in Hubei Province (Grant No.351342)。
文摘Disorder effects on topological materials in integer dimensions have been extensively explored in recent years. However, its influence on topological systems in fractional dimensions remains unclear. Here, we investigate the disorder effects on a fractal system constructed on the Sierpiński lattice in fractional dimensions. The system supports the second-order topological insulator phase characterized by a quantized quadrupole moment and the normal insulator phase. We find that the second-order topological insulator phase on the Sierpiński lattice is robust against weak disorder but suppressed by strong disorder. Most interestingly, we find that disorder can transform the normal insulator phase to the second-order topological insulator phase with an emergent quantized quadrupole moment. Finally, the disorder-induced phase is further confirmed by calculating the energy spectrum and the corresponding probability distributions.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.12104148)the Fundamental Research Funds for the Central Universities(Grant No.531118010565).
文摘By including certain point group symmetry in the classification of band topology,Fu proposed a class of threedimensionaltopological crystalline insulators(TCIs)without spin-orbit coupling in 2011.In Fu’s model,surface states(ifpresent)doubly degenerate atГandM when time-reversal and C_(4) symmetries are preserved.The analogs of Fu’s modelwith surface states quadratically degenerate atM are widely studied,while surface states with quadratic degeneracy atГare rarely reported.In this study,we propose a three-dimensional TCI without spin-orbit coupling in a judiciously designednonsymmorphic photonic metacrystal.The surface states of photonic TCIs exhibit quadratic band degeneracy in the(001)surface Brillouin zone(BZ)center(Гpoint).The gapless surface states and their quadratic dispersion are protected by C4and time-reversal symmetries,which correspond to the nontrivial band topology characterized by Z_(2)topological invariant.Moreover,the surface states along lines fromГto the(001)surface BZ boundary exhibit zigzag feature,which is interpretedfrom symmetry perspective by building composite operators constructed by the product of glide symmetries with timereversalsymmetry.The metacrystal array surrounded with air possesses high order hinge states with electric fields highlylocalized at the hinge that may apply to optical sensors.The gapless surface states and hinge states reside in a cleanfrequency bandgap.The topological surface states emerge at the boundary of the metacrystal and perfect electric conductor(PEC),which provide a pathway for topologically manipulating light propagation in photonic devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.12174059,11874117,11904101,and 11604134)the Natural Science Foundation of Shanghai(Grant No.21ZR140820)。
文摘Two-dimensional(2D)topological materials have recently garnered significant interest due to their profound physical properties and promising applications for future quantum nanoelectronics.Achieving various topological states within one type of materials is,however,seldom reported.Based on first-principles calculations and tightbinding models,we investigate topological electronic states in a novel family of 2D halogenated tetragonal stanene(T-SnX,X=F,Cl,Br,I).All the four monolayers are found to be unusual topological nodal-line semimetals(NLSs),protected by a glide mirror symmetry.When spin-orbit coupling(SOC)is turned on,T-SnF and TSnCl are still ascertained as topological NLSs due to the remaining band inversion,primarily composed of Sn pxy orbitals,while T-Sn Br and T-SnI become quantum spin Hall insulators.The phase transition is ascribed to moving up in energy of Sn s orbitals and increasing of SOC strengths.The topology origin in the materials is uniformly rationalized through elementary band representations.The robust and diverse topological states found in the 2D T-SnX monolayers position them as an excellent material platform for development of innovative topological electronics.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074107 and 12304195)the Program of Outstanding Young and Middle-Aged Scientific and Technological Innovation Team of Colleges and Universities in Hubei Province(Grant No.T2020001)+2 种基金the Innovation Group Project of the Natural Science Foundation of Hubei Province of China(Grant No.2022CFA012)the Chutian Scholars Program in Hubei Province,the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20230751)the Postdoctoral Innovation Research Program in Hubei Province(Grant No.351342)。
文摘Floquet engineering has attracted considerable attention as a promising approach for tuning topological phase transitions.We investigate the effects of high-frequency time-periodic driving in a four-dimensional(4D)topological insulator,focusing on topological phase transitions at the off-resonant quasienergy gap.The 4D topological insulator hosts gapless three-dimensional boundary states,characterized by the second Chern number C_(2).We demonstrate that the second Chern number of 4D topological insulators can be modulated by tuning the amplitude of time-periodic driving.This includes transitions from a topological phase with C_(2)=±3 to another topological phase with C_(2)=±1,or to a topological phase with an even second Chern number C_(2)=±2,which is absent in the 4D static system.Finally,the approximation theory in the high-frequency limit further confirms the numerical conclusions.
基金supported by the research foundation of Institute for Advanced Sciences of CQUPT(Grant No.E011A2022328)。
文摘We theoretically investigate the Ruderman–Kittel–Kasuya–Yosida(RKKY) interaction in helical higher-order topological insulators(HOTIs), revealing distinct behaviors mediated by hinge and Dirac-type bulk carriers. Our findings show that hinge-mediated interactions consist of Heisenberg, Ising, and Dzyaloshinskii–Moriya(DM) terms, exhibiting a decay with impurity spacing z and oscillations with Fermi energy εF. These interactions demonstrate ferromagnetic behaviors for the Heisenberg and Ising terms and alternating behavior for the DM term. In contrast, bulk-mediated interactions include Heisenberg, twisted Ising, and DM terms, with a conventional cubic oscillating decay. This study highlights the nuanced interplay between hinge and bulk RKKY interactions in HOTIs, offering insights into designs of next-generation quantum devices based on HOTIs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12074101 and 11604081)sponsored by the Natural Science Foundation of Henan Province, China (Grant No. 212300410040)。
文摘The topological states of the two-leg and three-leg ladders formed by two trivial quantum wires with different lattice constants are theoretically investigated. Firstly, we take two trivial quantum wires with a lattice constant ratio of 1:2 as an example. For the symmetric nearest-neighbor intra-chain hopping two-leg ladder, the inversion symmetry protected topological insulator phase with two degenerate topological edge states appears. When the inversion symmetry is broken, the topological insulators with one or two topological edge states of different energies and topological metals with edge states embedded in the bulk states could emerge depending on the filling factor. The topological origin of these topological states in the two-leg ladders is the topological properties of the Chern insulators and Chern metals. According to the arrangement of two trivial quantum wires, we construct two types of three-leg ladders. Each type of the three-leg ladder could be divided into one trivial subspace and one topological nontrivial subspace by unitary transformation. The topological nontrivial subspace corresponds to the effective two-leg ladder model. As the filling factor changes, the system could be in topological insulators or topological metals phases. When the two-leg ladder is constructed by two trivial quantum wires with a lattice constant ratio of 1:3 and 2:3, the system could also realize rich topological states such as the topological insulators and topological metals with the topological edge states. These rich topological states in the two-leg and three-leg ladders could be confirmed by current experimental techniques.
文摘Objective Autism spectrum disorder(ASD)is a neurodevelopmental condition characterized by difficulties with communication and social interaction,restricted and repetitive behaviors.Previous studies have indicated that individuals with ASD exhibit early and lifelong attention deficits,which are closely related to the core symptoms of ASD.Basic visual attention processes may provide a critical foundation for their social communication and interaction abilities.Therefore,this study explores the behavior of children with ASD in capturing attention to changes in topological properties.Methods Our study recruited twenty-seven ASD children diagnosed by professional clinicians according to DSM-5 and twenty-eight typically developing(TD)age-matched controls.In an attention capture task,we recorded the saccadic behaviors of children with ASD and TD in response to topological change(TC)and non-topological change(nTC)stimuli.Saccadic reaction time(SRT),visual search time(VS),and first fixation dwell time(FFDT)were used as indicators of attentional bias.Pearson correlation tests between the clinical assessment scales and attentional bias were conducted.Results This study found that TD children had significantly faster SRT(P<0.05)and VS(P<0.05)for the TC stimuli compared to the nTC stimuli,while the children with ASD did not exhibit significant differences in either measure(P>0.05).Additionally,ASD children demonstrated significantly less attention towards the TC targets(measured by FFDT),in comparison to TD children(P<0.05).Furthermore,ASD children exhibited a significant negative linear correlation between their attentional bias(measured by VS)and their scores on the compulsive subscale(P<0.05).Conclusion The results suggest that children with ASD have difficulty shifting their attention to objects with topological changes during change detection.This atypical attention may affect the child’s cognitive and behavioral development,thereby impacting their social communication and interaction.In sum,our findings indicate that difficulties in attentional capture by TC may be a key feature of ASD.
基金supported by the National Key Research and Development Program (Project No. 2016YFA0300600)the National Science, Foundation of China (Projects No. 11604374 and No. 61425015)+1 种基金the National Basic Research Program of China (Project No. 2015CB921102)the Strategic Priority Research Program of Chinese Academy of Sciences (Project No. XDB28000000)
文摘Topological insulators (TIs) host robust edge or surface states protected by time-reversal symmetry (TRS), which makes them prime candidates for applications in spintronic devices. A promising avenue of research for the development of functional TI devices has involved doping of three-dimensional (3D) TI thin film and bulk materials with magnetic elements. This approach aims to break the TRS and open a surface band gap near the Dirac point. Utilizing this gapped surface state allows for a wide range of novel physical effects to be observed, paving a way for applications in spintronics and quantum computation. This review focuses on the research of 3D TIs doped with manganese (Mn). We summarize major progress in the study of Mn doped chalcogenide TIs, including Bi2Se3, Bi2Te3, and Bi2(Te,Se)3. The transport properties, in particular the anomalous Hall effect, of the Mn-doped Bi2Se3 are discussed in detail. Finally, we conclude with future prospects and challenges in further studies of Mn doped TIs.
基金supported by the National Basic Research Program of China (Grant Nos. 2013CB934600 and 2012CB921300)the National Natural Science Foundation of China (Grant Nos. 11222434 and 11174007)the Pennsylvania State University Materials Research Science and Engineering Center under National Science Foundation (Grant No. DMR-0820404)
文摘The last several years have witnessed the rapid developments in the study and understanding of topological insulators. In this review, after a brief summary of the history of topological insulators, we focus on the recent progress made in transport experiments on topological insulator films and nanowires. Some quantum phenomena, including the weak antilocalization, the Aharonov-Bobm effect, and the Shubnikov-de Haas oscillations, observed in these nanostructures are described. In addition, the electronic transport evidence of the superconducting proximity effect as well as an anomalous resistance enhancement in topological insulator/superconductor hybrid structures is included.
基金supported by the Research Grant Council (RGC) of Hong Kong Special Administrative Region for its financial support under the General Research Funds (Grant Nos. 706110 and 706111)the SRFDP and RGCERG Joint Research Scheme sponsored by the RGC of Hong Kong and the Ministry of Education of China (M-HKU709/l2)
文摘This paper presents an overview of the growth of Bi2Se3, a prototypical three-dimensional topological insulator, by molecular-beam epitaxy on various substrates. Comparison is made between the growth of Bi2 Se3 (111) on van der Waals (vdW) and non-vdW substrates, with attention paid to twin suppression and strain. Growth along the [221] direction of Bi2Se3 on InP (001) and GaAs (001) substrates is also discussed.
基金supported by the National Basic Research Program of China (Grants Nos. 2012CB927401,2011CB921902,2013CB921902,and 2011CB922200)the National Natural Science Foundation of China (Grants Nos. 91021002,11174199,11134008,and 11274228)SCSTC (Grant Nos. 11JC1405000,11PJ1405200,and 12JC1405300)
文摘Providing the strong spin-orbital interaction, Bismuth is the key element in the family of three-dimensional topological insulators. At the same time, Bismuth itself also has very unusual behavior, existing from the thinnest unit to bulk crystals. Ultrathin Bi (111) bilayers have been theoretically proposed as a two-dimensional topological insulator. The related experimental realization achieved only recently, by growing Bi (111) ultrathin bilayers on topological insulator Bi2Te3 or Bi2Se3 substrates. In this review, we started from the growth mode of Bi (111) bilayers and reviewed our recent progress in the studies of the electronic structures and the one-dimensional topological edge states using scanning tunneling microscopy/spectroscopy (STM/STS), angle-resolved photoemission spectroscopy (ARPES), and first principles calculations.
基金Project supported by the MRSEC Program of the National Natural Science Foundation of China(Grant No.DMR-1419807)the Start Up Funding from HKUST and the National Thousand-Yong-Talents Program of China
文摘Based on k · p analysis and realistic tight-binding calculations, we find that time-reversal-breaking Weyl semimetals can be realized in magnetically-doped(Mn, Eu, Cr, etc.) Sn_(1-x)Pb_x(Te, Se) class of topological crystalline insulators. All the Weyl points are well separated in momentum space and possess nearly the same energy due to high crystalline symmetry.Moreover, both the Weyl points and Fermi arcs are highly tunable by varying Pb/Sn composition, pressure, magnetization,temperature, surface potential, etc., opening up the possibility of manipulating Weyl points and rewiring the Fermi arcs.
基金supported by the National Young 1000 Talents Plan of Chinathe Pu Jiang Talent Plan in Shanghai City, China
文摘Topological insulators' properties and their potential device applications are reviewed. We also explain why topologi- cal insulator (TI) nanostructnres are an important avenue for research and discuss some methods by which TI nanostructures are produced and characterized. The rapid development of high-quality TI nanostructures provides an ideal platform to ex- ploit salient physical phenomena that have been theoretically predicted but not yet experimentally realized.
基金Project supported by the National Basic Research Program of China(Grant Nos.2016YFA0300601,2017YFA0304700,and 2015CB921402)the National Natural Science Foundation China(Grant Nos.11527806,91221203,11174357,91421303,and 11774405)+1 种基金the Strategic Priority Research Program B of the Chinese Academy of Sciences(Grant Nos.XDB07010100 and XDB28000000)the Beijing Municipal Science&Technology Commission,China(Grant No.Z191100007219008)
文摘Recently,a contact-resistance-measurement method was developed to detect the minigap,hence the Andreev bound states(ABSs),in Josephson junctions constructed on the surface of three-dimensional topological insulators(3D TIs).In this work,we further generalize that method to the circumstance with radio frequency(rf)irradiation.We find that with the increase of the rf power,the measured minigap becomes broadened and extends to higher energies in a way similar to the rf power dependence of the outer border of the Shapiro step region.We show that the corresponding data of contact resistance under rf irradiation can be well interpreted by using the resistively shunted Josephson junction(RSJ)model and the Blonder–Tinkham–Klapwijk(BTK)theory.Our findings could be useful when using the contact-resistancemeasurement method to study the Majorana-related physics in topological insulator-based Josephson junctions under rf irradiation.
基金Project supported by the National Basic Research Program of China(Grant No.2019YFA0308403)the National Natural Science Foundation of China(Grant No.11822407)+1 种基金Undergraduate Training Program for Innovation and Entrepreneurship,Soochow University(Grant No.201810285022Z)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘We study the disorder-induced phase transition in two-dimensional non-Hermitian systems.First,the applicability of the noncommutative geometric method(NGM)in non-Hermitian systems is examined.By calculating the Chern number of two different systems(a square sample and a cylindrical one),the numerical results calculated by NGM are compared with the analytical one,and the phase boundary obtained by NGM is found to be in good agreement with the theoretical prediction.Then,we use NGM to investigate the evolution of the Chern number in non-Hermitian samples with the disorder effect.For the square sample,the stability of the non-Hermitian Chern insulator under disorder is confirmed.Significantly,we obtain a nontrivial topological phase induced by disorder.This phase is understood as the topological Anderson insulator in non-Hermitian systems.Finally,the disordered phase transition in the cylindrical sample is also investigated.The clean non-Hermitian cylindrical sample has three phases,and such samples show more phase transitions by varying the disorder strength:(1)the normal insulator phase to the gapless phase,(2)the normal insulator phase to the topological Anderson insulator phase,and(3)the gapless phase to the topological Anderson insulator phase.
基金supported by the National Magnetic Confinement Fusion Science Program (Grant No. 2011GB112001)the Program of International S&T Cooperation (Grant No. 2013DFA 51050)+3 种基金the National Natural Science Foundation of China (Grant No. 11104224, 11004162, 51271155)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110184120029)the Fundamental Research Funds for the Central Universities (Grant No. 2682013ZT16, SWJTU11ZT31, 2682013CX004, SWJTU11BR063)the Science Foundation of Sichuan Province (Grant No. 2011JY0031, 2011JY0130)
文摘Topological insulators are insulating in the bulkbut have metallic surface states. Its unique physicochemicalproperties can find numerous applications in electronics,spintronics, photonics, the energy sciences, and thesignal control of transportation. We report an experimentalapproach to synthesize the high-quality single crystal oftopological insulator Bi2Te3 by using self-flux method. Weobtained the optimal preparation conditions by adjustingthe parameters of heat treatment, and successfully preparedthe single-crystal Bi2Te3 sample. The as-grown sampleshave a surface with bright metallic luster and are soft andfragile. Furthermore, Bi2Te3 has the obvious layer structurefrom SEM results. The data of X-ray diffraction andscanning electron microscope show that Bi2Te3 singlecrystal grows along the c-axis with the order of Te(1)–Bi–Te(2)–Bi–Te(1) and crystallizes in the hexagonal systemwith space group of R/3 m. The q–T curve shows that qdecreases with temperature, showing metallic behaviorover the whole temperature range.
基金This work was financially supported by the European Research Council(ERC Advanced Grant No.291472'Idea Heusler1)and the ERC Advanced Grant(No.742068)TOPMAT.K.C.was funded by the National Natural Science Foundation of China(Grant No.12074038)J.H.and S.P.were supported by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)No.314790414.
文摘2H-MoS_(2) is a well-studied and promising non-noble metal electrocatalyst for heterogeneous reactions,such as the hydrogen evolution reaction(HER).The performance is largely limited by the chemically inert basal plane,which is unfavorable for surface adsorption and reactions.Herein,we report a facile method to boost the HER activities of 2H-MoS_(2) by coupling with epitaxial Bi2Te3 topological insulator films.The as-obtained MoS_(2)/Bi2Te3/SrTiO3 catalyst exhibits prominent HER catalytic activities compared to that of pure MoS_(2) structures,with a 189 mV decrease in the overpotential required to reach a current density of 10 mA cm^(−2) and a low Tafel slope of 58 mV dec−1.Theoretical investigations suggest that the enhanced catalytic activity originates from the charge redistribution at the interface between the Bi2Te3topological insulator films and the MoS_(2) layer.The delocalized sp-derived topological surface states could denote electrons to the MoS_(2) layer and activate the basal plane for hydrogen adsorption.This study demonstrates the potential of manipulating topological surface states to design high-performance electrocatalysts.