It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollab...It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollable poles and low convergence order.In contrast with the classical rational interpolants,the generalized barycentric rational interpolants which depend linearly on the interpolated values,yield infinite smooth approximation with no poles in real numbers.In this paper,a numerical collocation approach,based on the generalized barycentric rational interpolation and Gaussian quadrature formula,was introduced to approximate the solution of Volterra-Fredholm integral equations.Three types of points in the solution domain are used as interpolation nodes.The obtained numerical results confirm that the barycentric rational interpolants are efficient tools for solving Volterra-Fredholm integral equations.Moreover,integral equations with Runge’s function as an exact solution,no oscillation occurrs in the obtained approximate solutions so that the Runge’s phenomenon is avoided.展开更多
In this study, we prove the of existence of solutions of a convolution Volterra integral equation in the space of the Lebesgue integrable function on the set of positive real numbers and with the standard norm defined...In this study, we prove the of existence of solutions of a convolution Volterra integral equation in the space of the Lebesgue integrable function on the set of positive real numbers and with the standard norm defined on it. An operator P was assigned to the convolution integral operator which was later expressed in terms of the superposition operator and the nonlinear operator. Given a ball B<sub>r</sub> belonging to the space L it was established that the operator P maps the ball into itself. The Hausdorff measure of noncompactness was then applied by first proving that given a set M∈ B r the set is bounded, closed, convex and nondecreasing. Finally, the Darbo fixed point theorem was applied on the measure obtained from the set E belonging to M. From this application, it was observed that the conditions for the Darbo fixed point theorem was satisfied. This indicated the presence of at least a fixed point for the integral equation which thereby implying the existence of solutions for the integral equation.展开更多
The issues of solvability and construction of a solution of the Fredholm integral equation of the first kind are considered. It is done by immersing the original problem into solving an extremal problem in Hilbert spa...The issues of solvability and construction of a solution of the Fredholm integral equation of the first kind are considered. It is done by immersing the original problem into solving an extremal problem in Hilbert space. Necessary and sufficient conditions for the existence of a solution are obtained. A method of constructing a solution of the Fredholm integral equation of the first kind is developed. A constructive theory of solvability and construction of a solution to a boundary value problem of a linear integrodifferential equation with a distributed delay in control, generated by the Fredholm integral equation of the first kind, has been created.展开更多
In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equa...In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equation is transformed into a one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of the solution. Specifically you will see that solving the Volterra integral equation of first kind f(t) = {a^t K(t, s)x(s)ds a ≤ t ≤ b or solve the Volterra integral equation of the second kind x(t) =f(t)+{a^t K(t,s)x(s)ds a ≤ t ≤ b is equivalent to solving a generalized moment problem of the form un = {a^b gn(s)x(s)ds n = 0,1,2… This shall apply for to find the solution of an integrodifferential equation of the form x'(t) = f(t) + {a^t K(t,s)x(s)ds for a ≤ t ≤ b and x(a) = a0 Also considering the nonlinear integral equation: f(x)= {fa^x y(x-t)y(t)dt This integral equation is transformed a two-dimensional generalized moment problem. In all cases, we will find an approximated solution and bounds for the error of the estimated solution using the techniques ofgeneralized moment problem.展开更多
This paper deals with optimal combined singular and regular controls for stochastic Volterra integral equations,where the solution X^(u,ξ)(t)=X(t)is given X(t)=φ(t)+∫_(0)^(t) b(t,s,X(s),u(s))ds+∫_(0)^(t)σ(t,s,X(s...This paper deals with optimal combined singular and regular controls for stochastic Volterra integral equations,where the solution X^(u,ξ)(t)=X(t)is given X(t)=φ(t)+∫_(0)^(t) b(t,s,X(s),u(s))ds+∫_(0)^(t)σ(t,s,X(s),u(s))dB(s)+∫_(0)^(t)h(t,s)dξ(s).by Here d B(s)denotes the Brownian motion It?type differential,ξdenotes the singular control(singular in time t with respect to Lebesgue measure)and u denotes the regular control(absolutely continuous with respect to Lebesgue measure).Such systems may for example be used to model harvesting of populations with memory,where X(t)represents the population density at time t,and the singular control processξrepresents the harvesting effort rate.The total income from the harvesting is represented by J(u, ξ) = E[∫_(0)^(t) f_(0)(t,X(t), u(t))dt + ∫_(0)^(t)f_(1)(t,X(t))dξ(t) + g(X(T))] for the given functions f0,f1 and g,where T>0 is a constant denoting the terminal time of the harvesting.Note that it is important to allow the controls to be singular,because in some cases the optimal controls are of this type.Using Hida-Malliavin calculus,we prove sufficient conditions and necessary conditions of optimality of controls.As a consequence,we obtain a new type of backward stochastic Volterra integral equations with singular drift.Finally,to illustrate our results,we apply them to discuss optimal harvesting problems with possibly density dependent prices.展开更多
The boundary-volume integral equation numerical technique can be a powerful tool for piecewise heterogeneous media, but it is limited to small problems or low frequencies because of great computational cost. Therefore...The boundary-volume integral equation numerical technique can be a powerful tool for piecewise heterogeneous media, but it is limited to small problems or low frequencies because of great computational cost. Therefore, a restarted GMRES method is applied to solve large-scale boundary-volume scattering problems in this paper to overcome the computational barrier. The iterative method is firstly applied to responses of dimensionless frequency to a semicircular alluvial valley filled with sediments, compared with the standard Gaussian elimination method. Then the method is tested by a heterogeneous multilayered model to show its applicability. Numerical experiments indicate that the preconditioned GMRES method can significantly improve computational efficiency especially for large Earth models and high frequencies, but with a faster convergence for the left diagonal preconditioning.展开更多
In this paper, the existence and uniqueness of the solution of Fredholm-Volterra integral equation is considered (NF-VIE) with continuous kernel;then we used a numerical method to reduce this type of equations to a sy...In this paper, the existence and uniqueness of the solution of Fredholm-Volterra integral equation is considered (NF-VIE) with continuous kernel;then we used a numerical method to reduce this type of equations to a system of nonlinear Volterra integral equations. Runge-Kutta method (RKM) and Bolck by block method (BBM) are used to solve the system of nonlinear Volterra integral equations of the second kind (SNVIEs) with continuous kernel. The error in each case is calculated.展开更多
Integral equations theoretical parts and applications have been studied and investigated in previous works. In this work, results on investigations of the uniqueness of the Fredholm-Stiltjes linear integral equations ...Integral equations theoretical parts and applications have been studied and investigated in previous works. In this work, results on investigations of the uniqueness of the Fredholm-Stiltjes linear integral equations solutions of the third kind were considered. Volterra integral equations of the first and third kind with smooth kernels were studied, and proof of the existence of a multiparameter family of solutions is described. Additionally, linear Fredholm integral equations of the first kind were investigated, for which Lavrent’ev regularizing operators were constructed.展开更多
This paper proposes the combined Laplace-Adomian decomposition method (LADM) for solution two dimensional linear mixed integral equations of type Volterra-Fredholm with Hilbert kernel. Comparison of the obtained resul...This paper proposes the combined Laplace-Adomian decomposition method (LADM) for solution two dimensional linear mixed integral equations of type Volterra-Fredholm with Hilbert kernel. Comparison of the obtained results with those obtained by the Toeplitz matrix method (TMM) demonstrates that the proposed technique is powerful and simple.展开更多
Using integration by parts and Stokes' formula, the authors give a new definition of Hadamard principal value of higher order singular integrals with Bochner-Martinelli kernel on smooth closed orientable manifolds...Using integration by parts and Stokes' formula, the authors give a new definition of Hadamard principal value of higher order singular integrals with Bochner-Martinelli kernel on smooth closed orientable manifolds in C-n. The Plemelj formula and composite formula of higher order singular integral are obtained. Differential integral equations on smooth closed orientable manifolds are treated by using the composite formula.展开更多
In this paper, the difficulties on calculation in solving singular integral equations are overcome when the restriction of curve of integration to be a closed contour is cancelled. When the curve is an open arc and th...In this paper, the difficulties on calculation in solving singular integral equations are overcome when the restriction of curve of integration to be a closed contour is cancelled. When the curve is an open arc and the solutions for singular integral equations possess singularities of higher order, the solution and the solvable condition for characteristic equations as well as the generalized Noether theorem for complete equations are given.展开更多
A perturbation finite volume(PFV)method for the convective-diffusion integral equa- tion is developed in this paper.The PFV scheme is an upwind and mixed scheme using any higher-order interpolation and second-order in...A perturbation finite volume(PFV)method for the convective-diffusion integral equa- tion is developed in this paper.The PFV scheme is an upwind and mixed scheme using any higher-order interpolation and second-order integration approximations,with the least nodes similar to the standard three-point schemes,that is,the number of the nodes needed is equal to unity plus the face-number of the control volume.For instance,in the two-dimensional(2-D)case,only four nodes for the triangle grids and five nodes for the Cartesian grids are utilized,respectively.The PFV scheme is applied on a number of 1-D linear and nonlinear problems,2-D and 3-D flow model equations.Comparing with other standard three-point schemes,the PFV scheme has much smaller numerical diffusion than the first-order upwind scheme(UDS).Its numerical accuracies are also higher than the second-order central scheme(CDS),the power-law scheme(PLS)and QUICK scheme.展开更多
The solutions of the nonlinear singular integral equation , t 6 L, are considered, where L is a closed contour in the complex plane, b ≠ 0 is a constant and f(t) is a polynomial. It is an extension of the results obt...The solutions of the nonlinear singular integral equation , t 6 L, are considered, where L is a closed contour in the complex plane, b ≠ 0 is a constant and f(t) is a polynomial. It is an extension of the results obtained in [1] when f(t) is a constant. Certain special cases are illustrated.展开更多
The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the bas...The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.展开更多
For domains composed by balls in C^n, this paper studies the boundary behaviour of Cauchy type integrals with discrete holomorphic kernels and the corresponding linear singular integral equation on each piece of smoot...For domains composed by balls in C^n, this paper studies the boundary behaviour of Cauchy type integrals with discrete holomorphic kernels and the corresponding linear singular integral equation on each piece of smooth lower dimensional edges on the boundary of the domain.展开更多
The elastodynamic problems of piezoelectric hollow cylinders and spheres under radial deformation can be transformed into a second kind Volterra integral equation about a function with respect to time, which greatly s...The elastodynamic problems of piezoelectric hollow cylinders and spheres under radial deformation can be transformed into a second kind Volterra integral equation about a function with respect to time, which greatly simplifies the solving procedure for such elastodynamic problems. Meanwhile, it becomes very important to find a way to solve the second kind Volterra integral equation effectively and quickly. By using an interpolation function to approximate the unknown function, two new recursive formulae were derived, based on which numerical solution can be obtained step by step. The present method can provide accurate numerical results efficiently. It is also very stable for long time calculating.展开更多
By means of Fourier integral transformation of generalized function, the fundamental solution for the bending problem of plates on two-parameter foundation is derived in this paper, and the fundamental solution is exp...By means of Fourier integral transformation of generalized function, the fundamental solution for the bending problem of plates on two-parameter foundation is derived in this paper, and the fundamental solution is expanded into a uniformly convergent series. On the basis of the above work, two boundary integral equations which are suitable to arbitrary shapes and arbitrary boundary conditions are established by means of the Rayleigh-Green identity. The content of the paper provides the powerful theories for the application of BEM in this problem.展开更多
To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the s...To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.展开更多
In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equati...In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equations (BSDEs, for short). Some interesting motivations of studying BSVIEs are recalled. With proper solution concepts, it is possible to establish the corresponding well-posedness for BSVIEs. We also survey various comparison theorems for solutions to BSVIEs.展开更多
This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic So...This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic Sobolev classes, and also gives an optimal algorithm.展开更多
文摘It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollable poles and low convergence order.In contrast with the classical rational interpolants,the generalized barycentric rational interpolants which depend linearly on the interpolated values,yield infinite smooth approximation with no poles in real numbers.In this paper,a numerical collocation approach,based on the generalized barycentric rational interpolation and Gaussian quadrature formula,was introduced to approximate the solution of Volterra-Fredholm integral equations.Three types of points in the solution domain are used as interpolation nodes.The obtained numerical results confirm that the barycentric rational interpolants are efficient tools for solving Volterra-Fredholm integral equations.Moreover,integral equations with Runge’s function as an exact solution,no oscillation occurrs in the obtained approximate solutions so that the Runge’s phenomenon is avoided.
文摘In this study, we prove the of existence of solutions of a convolution Volterra integral equation in the space of the Lebesgue integrable function on the set of positive real numbers and with the standard norm defined on it. An operator P was assigned to the convolution integral operator which was later expressed in terms of the superposition operator and the nonlinear operator. Given a ball B<sub>r</sub> belonging to the space L it was established that the operator P maps the ball into itself. The Hausdorff measure of noncompactness was then applied by first proving that given a set M∈ B r the set is bounded, closed, convex and nondecreasing. Finally, the Darbo fixed point theorem was applied on the measure obtained from the set E belonging to M. From this application, it was observed that the conditions for the Darbo fixed point theorem was satisfied. This indicated the presence of at least a fixed point for the integral equation which thereby implying the existence of solutions for the integral equation.
文摘The issues of solvability and construction of a solution of the Fredholm integral equation of the first kind are considered. It is done by immersing the original problem into solving an extremal problem in Hilbert space. Necessary and sufficient conditions for the existence of a solution are obtained. A method of constructing a solution of the Fredholm integral equation of the first kind is developed. A constructive theory of solvability and construction of a solution to a boundary value problem of a linear integrodifferential equation with a distributed delay in control, generated by the Fredholm integral equation of the first kind, has been created.
文摘In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equation is transformed into a one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of the solution. Specifically you will see that solving the Volterra integral equation of first kind f(t) = {a^t K(t, s)x(s)ds a ≤ t ≤ b or solve the Volterra integral equation of the second kind x(t) =f(t)+{a^t K(t,s)x(s)ds a ≤ t ≤ b is equivalent to solving a generalized moment problem of the form un = {a^b gn(s)x(s)ds n = 0,1,2… This shall apply for to find the solution of an integrodifferential equation of the form x'(t) = f(t) + {a^t K(t,s)x(s)ds for a ≤ t ≤ b and x(a) = a0 Also considering the nonlinear integral equation: f(x)= {fa^x y(x-t)y(t)dt This integral equation is transformed a two-dimensional generalized moment problem. In all cases, we will find an approximated solution and bounds for the error of the estimated solution using the techniques ofgeneralized moment problem.
基金the financial support provided by the Swedish Research Council grant(2020-04697)the Norwegian Research Council grant(250768/F20),respectively。
文摘This paper deals with optimal combined singular and regular controls for stochastic Volterra integral equations,where the solution X^(u,ξ)(t)=X(t)is given X(t)=φ(t)+∫_(0)^(t) b(t,s,X(s),u(s))ds+∫_(0)^(t)σ(t,s,X(s),u(s))dB(s)+∫_(0)^(t)h(t,s)dξ(s).by Here d B(s)denotes the Brownian motion It?type differential,ξdenotes the singular control(singular in time t with respect to Lebesgue measure)and u denotes the regular control(absolutely continuous with respect to Lebesgue measure).Such systems may for example be used to model harvesting of populations with memory,where X(t)represents the population density at time t,and the singular control processξrepresents the harvesting effort rate.The total income from the harvesting is represented by J(u, ξ) = E[∫_(0)^(t) f_(0)(t,X(t), u(t))dt + ∫_(0)^(t)f_(1)(t,X(t))dξ(t) + g(X(T))] for the given functions f0,f1 and g,where T>0 is a constant denoting the terminal time of the harvesting.Note that it is important to allow the controls to be singular,because in some cases the optimal controls are of this type.Using Hida-Malliavin calculus,we prove sufficient conditions and necessary conditions of optimality of controls.As a consequence,we obtain a new type of backward stochastic Volterra integral equations with singular drift.Finally,to illustrate our results,we apply them to discuss optimal harvesting problems with possibly density dependent prices.
基金supported by the National Natural Science Foundation of China(Nos. 41130418 and 40925013)the National Basic Research Program(973 Program)(No.2009CB219403)
文摘The boundary-volume integral equation numerical technique can be a powerful tool for piecewise heterogeneous media, but it is limited to small problems or low frequencies because of great computational cost. Therefore, a restarted GMRES method is applied to solve large-scale boundary-volume scattering problems in this paper to overcome the computational barrier. The iterative method is firstly applied to responses of dimensionless frequency to a semicircular alluvial valley filled with sediments, compared with the standard Gaussian elimination method. Then the method is tested by a heterogeneous multilayered model to show its applicability. Numerical experiments indicate that the preconditioned GMRES method can significantly improve computational efficiency especially for large Earth models and high frequencies, but with a faster convergence for the left diagonal preconditioning.
文摘In this paper, the existence and uniqueness of the solution of Fredholm-Volterra integral equation is considered (NF-VIE) with continuous kernel;then we used a numerical method to reduce this type of equations to a system of nonlinear Volterra integral equations. Runge-Kutta method (RKM) and Bolck by block method (BBM) are used to solve the system of nonlinear Volterra integral equations of the second kind (SNVIEs) with continuous kernel. The error in each case is calculated.
文摘Integral equations theoretical parts and applications have been studied and investigated in previous works. In this work, results on investigations of the uniqueness of the Fredholm-Stiltjes linear integral equations solutions of the third kind were considered. Volterra integral equations of the first and third kind with smooth kernels were studied, and proof of the existence of a multiparameter family of solutions is described. Additionally, linear Fredholm integral equations of the first kind were investigated, for which Lavrent’ev regularizing operators were constructed.
文摘This paper proposes the combined Laplace-Adomian decomposition method (LADM) for solution two dimensional linear mixed integral equations of type Volterra-Fredholm with Hilbert kernel. Comparison of the obtained results with those obtained by the Toeplitz matrix method (TMM) demonstrates that the proposed technique is powerful and simple.
基金the Bilateral Science and Technology Collaboration Program of Australia 1998 the Natural Science Foundation of China (No. 1
文摘Using integration by parts and Stokes' formula, the authors give a new definition of Hadamard principal value of higher order singular integrals with Bochner-Martinelli kernel on smooth closed orientable manifolds in C-n. The Plemelj formula and composite formula of higher order singular integral are obtained. Differential integral equations on smooth closed orientable manifolds are treated by using the composite formula.
基金Foundation item is supported by the NNSF of China(19971064)
文摘In this paper, the difficulties on calculation in solving singular integral equations are overcome when the restriction of curve of integration to be a closed contour is cancelled. When the curve is an open arc and the solutions for singular integral equations possess singularities of higher order, the solution and the solvable condition for characteristic equations as well as the generalized Noether theorem for complete equations are given.
基金The project supported by the National Natural Science Foundation of China(10272106,10372106)
文摘A perturbation finite volume(PFV)method for the convective-diffusion integral equa- tion is developed in this paper.The PFV scheme is an upwind and mixed scheme using any higher-order interpolation and second-order integration approximations,with the least nodes similar to the standard three-point schemes,that is,the number of the nodes needed is equal to unity plus the face-number of the control volume.For instance,in the two-dimensional(2-D)case,only four nodes for the triangle grids and five nodes for the Cartesian grids are utilized,respectively.The PFV scheme is applied on a number of 1-D linear and nonlinear problems,2-D and 3-D flow model equations.Comparing with other standard three-point schemes,the PFV scheme has much smaller numerical diffusion than the first-order upwind scheme(UDS).Its numerical accuracies are also higher than the second-order central scheme(CDS),the power-law scheme(PLS)and QUICK scheme.
文摘The solutions of the nonlinear singular integral equation , t 6 L, are considered, where L is a closed contour in the complex plane, b ≠ 0 is a constant and f(t) is a polynomial. It is an extension of the results obtained in [1] when f(t) is a constant. Certain special cases are illustrated.
文摘The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.
基金Project supported by the National Science Foundation of China (10271097)
文摘For domains composed by balls in C^n, this paper studies the boundary behaviour of Cauchy type integrals with discrete holomorphic kernels and the corresponding linear singular integral equation on each piece of smooth lower dimensional edges on the boundary of the domain.
文摘The elastodynamic problems of piezoelectric hollow cylinders and spheres under radial deformation can be transformed into a second kind Volterra integral equation about a function with respect to time, which greatly simplifies the solving procedure for such elastodynamic problems. Meanwhile, it becomes very important to find a way to solve the second kind Volterra integral equation effectively and quickly. By using an interpolation function to approximate the unknown function, two new recursive formulae were derived, based on which numerical solution can be obtained step by step. The present method can provide accurate numerical results efficiently. It is also very stable for long time calculating.
文摘By means of Fourier integral transformation of generalized function, the fundamental solution for the bending problem of plates on two-parameter foundation is derived in this paper, and the fundamental solution is expanded into a uniformly convergent series. On the basis of the above work, two boundary integral equations which are suitable to arbitrary shapes and arbitrary boundary conditions are established by means of the Rayleigh-Green identity. The content of the paper provides the powerful theories for the application of BEM in this problem.
基金Project supported by the National Natural Science Foundation of China (No. 10271074)
文摘To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.
文摘In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equations (BSDEs, for short). Some interesting motivations of studying BSVIEs are recalled. With proper solution concepts, it is possible to establish the corresponding well-posedness for BSVIEs. We also survey various comparison theorems for solutions to BSVIEs.
基金Project supported by the Natural Science Foundation of China(10371009)Research Fund for the Doctoral Program Higher Education
文摘This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic Sobolev classes, and also gives an optimal algorithm.