The evaluation of the implementation effect of the power substation project can find out the problems of the project more comprehensively,which has important practical significance for the further development of the p...The evaluation of the implementation effect of the power substation project can find out the problems of the project more comprehensively,which has important practical significance for the further development of the power substation project.To ensure accuracy and real-time evaluation,this paper proposes a novel hybrid intelligent evaluation and prediction model based on improved TOPSIS and Long Short-Term Memory(LSTM)optimized by a Sperm Whale Algorithm(SWA).Firstly,under the background of considering the development of new energy,the influencing factors of power substation project implementation effect are analyzed from three aspects of technology,economy and society.Moreover,an evaluation model based on improved TOPSIS is constructed.Then,an intelligent prediction model based on SWA optimized LSTM is designed.Finally,the scientificity and accuracy of the proposed model are verified by empirical analysis,and the important factors affecting the implementation effect of power substation projects are pointed out.展开更多
In order to seek the economical, practical and effective method of obtaining the thickness of broken rock zone, an emerging intelligent prediction method with adaptive neuro-fuzzy inference system (ANFIS) was introduc...In order to seek the economical, practical and effective method of obtaining the thickness of broken rock zone, an emerging intelligent prediction method with adaptive neuro-fuzzy inference system (ANFIS) was introduced into the thickness prediction. And the software with functions of creating and applying prediction systems was devel- oped on the platform of MATLAB6.5. The software was used to predict the broken rock zone thickness of drifts at Li- angbei coal mine, Xinlong Company of Coal Industry in Xuchang city of Henan province. The results show that the predicted values accord well with the in situ measured ones. Thereby the validity of the software is validated and it provides a new approach to obtaining the broken zone thickness.展开更多
Background:The vital signs of trauma patients are complex and changeable,and the prediction of blood transfusion demand mainly depends on doctors'experience and trauma scoring system;therefore,it cannot be accurat...Background:The vital signs of trauma patients are complex and changeable,and the prediction of blood transfusion demand mainly depends on doctors'experience and trauma scoring system;therefore,it cannot be accurately predicted.In this study,a machine learning decision tree algorithm[classification and regression tree(CRT)and eXtreme gradient boosting(XGBoost)]was proposed for the demand prediction of traumatic blood transfusion to provide technical support for doctors.Methods:A total of 1371 trauma patients who were diverted to the Emergency Department of the First Medical Center of Chinese PLA General Hospital from January 2014 to January 2018 were collected from an emergency trauma database.The vital signs,laboratory examination parameters and blood transfusion volume were used as variables,and the non-invasive parameters and all(non-invasive+invasive)parameters were used to construct an intelligent prediction model for red blood cell(RBC)demand by logistic regression(LR),CRT and XGBoost.The prediction accuracy of the model was compared with the area under curve(AUC).Results:For non-invasive parameters,the LR method was the best,with an AUC of 0.72[95%confidence interval(CI)0.657–0.775],which was higher than the CRT(AUC 0.69,95%CI 0.633–0.751)and the XGBoost(AUC 0.71,95%CI 0.654–0.756)(P<0.05).The trauma location and shock index are important prediction parameters.For all the prediction parameters,XGBoost was the best,with an AUC of 0.94(95%CI 0.893–0.981),which was higher than the LR(AUC 0.80,95%CI 0.744–0.850)and the CRT(AUC 0.82,95%CI 0.779–0.853)(P<0.05).Haematocrit(Hct)is an important prediction parameter.Conclusions:The classification performance of the intelligent prediction model of red blood cell transfusion in trauma patients constructed by the decision tree algorithm is not inferior to that of the traditional LR method.It can be used as a technical support to assist doctors to make rapid and accurate blood transfusion decisions in emergency rescue environment,so as to improve the success rate of patient treatment.展开更多
Mobile Industrial Internet of Things(IIoT)applications have achieved the explosive growth in recent years.The mobile IIoT has flourished and become the backbone of the industry,laying a solid foundation for the interc...Mobile Industrial Internet of Things(IIoT)applications have achieved the explosive growth in recent years.The mobile IIoT has flourished and become the backbone of the industry,laying a solid foundation for the interconnection of all things.The variety of application scenarios has brought serious challenges to mobile IIoT networks,which face complex and changeable communication environments.Ensuring data secure transmission is critical for mobile IIoT networks.This paper investigates the data secure transmission performance prediction of mobile IIoT networks.To cut down computational complexity,we propose a data secure transmission scheme employing Transmit Antenna Selection(TAS).The novel secrecy performance expressions are first derived.Then,to realize real-time secrecy analysis,we design an improved Convolutional Neural Network(CNN)model,and propose an intelligent data secure transmission performance prediction algorithm.For mobile signals,the important features may be removed by the pooling layers.This will lead to negative effects on the secrecy performance prediction.A novel nine-layer improved CNN model is designed.Out of the input and output layers,it removes the pooling layer and contains six convolution layers.Elman,Back-Propagation(BP)and LeNet methods are employed to compare with the proposed algorithm.Through simulation analysis,good prediction accuracy is achieved by the CNN algorithm.The prediction accuracy obtains a 59%increase.展开更多
The main purpose of blasting operation is to produce desired and optimum mean size rock fragments.Smaller or fine fragments cause the loss of ore during loading and transportation,whereas large or coarser fragments ne...The main purpose of blasting operation is to produce desired and optimum mean size rock fragments.Smaller or fine fragments cause the loss of ore during loading and transportation,whereas large or coarser fragments need to be further processed,which enhances production cost.Therefore,accurate prediction of rock fragmentation is crucial in blasting operations.Mean fragment size(MFS) is a crucial index that measures the goodness of blasting designs.Over the past decades,various models have been proposed to evaluate and predict blasting fragmentation.Among these models,artificial intelligence(AI)-based models are becoming more popular due to their outstanding prediction results for multiinfluential factors.In this study,support vector regression(SVR) techniques are adopted as the basic prediction tools,and five types of optimization algorithms,i.e.grid search(GS),grey wolf optimization(GWO),particle swarm optimization(PSO),genetic algorithm(GA) and salp swarm algorithm(SSA),are implemented to improve the prediction performance and optimize the hyper-parameters.The prediction model involves 19 influential factors that constitute a comprehensive blasting MFS evaluation system based on AI techniques.Among all the models,the GWO-v-SVR-based model shows the best comprehensive performance in predicting MFS in blasting operation.Three types of mathematical indices,i.e.mean square error(MSE),coefficient of determination(R^(2)) and variance accounted for(VAF),are utilized for evaluating the performance of different prediction models.The R^(2),MSE and VAF values for the training set are 0.8355,0.00138 and 80.98,respectively,whereas 0.8353,0.00348 and 82.41,respectively for the testing set.Finally,sensitivity analysis is performed to understand the influence of input parameters on MFS.It shows that the most sensitive factor in blasting MFS is the uniaxial compressive strength.展开更多
Hydraulic support is the primary equipment used for surrounding rock control at fully mechanized mining faces.The load,location,and attitude of the hydraulic support are important sets of basis data to predict roof di...Hydraulic support is the primary equipment used for surrounding rock control at fully mechanized mining faces.The load,location,and attitude of the hydraulic support are important sets of basis data to predict roof disasters.This paper summarized and analyzed the status of coal mine safety accidents and the primary influencing factors of roof disasters.This work also proposed monitoring characteristic parameters of roof disasters based on support posture-load changes,such as the support location and support posture.The data feature decomposition method of the additive model was used with the monitoring load data of the hydraulic support in the Yanghuopan coal mine to effectively extract the trend,cycle period,and residuals,which provided the period weighting characteristics of the longwall face.The autoregressive,long-short term memory,and support vector regression algorithms were used to model and analyze the monitoring data to realize single-point predictions.The seasonal autoregressive integrated moving average(SARIMA)and autoregressive integrated moving average(ARIMA)models were adopted to predict the support cycle load of the hydraulic support.The SARIMA model is shown to be better than the ARIMA model for load predictions in one support cycle,but the prediction effect of these two algorithms over a fracture cycle is poor.Therefore,we proposed a hydraulic support load prediction method based on multiple data cutting and a hydraulic support load template library.The constructed technical framework of the roof disaster intelligent prediction platform is based on this method to perform predictions and early warnings of roof disasters based on the load and posture monitoring information from the hydraulic support.展开更多
This paper addresses the important intelligent predicting problem of peritoneal absorption rate in the peritoneal dialysis treatment process of renal failure. As the index of dialysis adequacy, KT/V and Ccr are widely...This paper addresses the important intelligent predicting problem of peritoneal absorption rate in the peritoneal dialysis treatment process of renal failure. As the index of dialysis adequacy, KT/V and Ccr are widely used and accepted. However, growing evidence suggests that the fluid balance may play a critical role in dialysis adequacy and patient outcome. Peritoneal fluid absorption decreases the peritoneal fluid removal. Understanding the peritoneal fluid absorption rate will help clinicians to optimize the dialysis dwell time. The neural network approach is applied to the prediction of peritoneal absorption rate. Compared with multivariable regression method, the experimental results showed that neural network method has an advantage over multivariable regression. The application of this predicting method based-on neural network in clinic is instructive. Keywords Peritoneal dialysis - Neural network - Intelligent prediction - Peritoneal absorption This work was supported in part by the guangdong Province Scientific and Technological key Research Program (No.2002C3021l) and the South China University of Technology.展开更多
Hydrothermal carbonization(HTC)is a thermochemical conversion technology to produce hydrochar from wet biomass without drying,but it is time-consuming and expensive to experimentally determine the optimal HTC operatio...Hydrothermal carbonization(HTC)is a thermochemical conversion technology to produce hydrochar from wet biomass without drying,but it is time-consuming and expensive to experimentally determine the optimal HTC operational conditions of specific biomass to produce desired hydrochar.Therefore,a machine learning(ML)approach was used to predict and optimize hydrochar properties.Specifically,biochemical components(proteins,lipids,and carbohydrates)of biomass were predicted and analyzed first via elementary composition.Then,accurate single-biomass(no mixture)based ML multi-target models(average R^(2)=0.93 and RMSE=2.36)were built to predict and optimize the hydrochar properties(yield,elemental composition,elemental atomic ratio,and higher heating value).Biomass composition(elemental and biochemical),proximate analyses,and HTC conditions were inputs herein.Interpretation of the model results showed that ash,temperature,and the N and C content of biomass were the most critical factors affecting the hydrochar properties,and that the relative importance of biochemical composition(25%)for the hydrochar was higher than that of operating conditions(19%).Finally,an intelligent system was constructed based on a multi-target model,verified by applying it to predict the atomic ratios(N/C,O/C,and H/C).It could also be extended to optimize hydrochar production from the HTC of single-biomass samples with experimental validation and to predict hydrochar from the co-HTC of mixed biomass samples reported in the literature.This study advances the field by integrating predictive modeling,intelligent systems,and mechanistic insights,offering a holistic approach to the precise control and optimization of hydrochar production through HTC.展开更多
Microwave transmission in a space network is greatly restricted due to precious radio spectrum resources. To meet the demand for large-bandwidth, global seamless coverage and on-demanding access, the Space All-Optical...Microwave transmission in a space network is greatly restricted due to precious radio spectrum resources. To meet the demand for large-bandwidth, global seamless coverage and on-demanding access, the Space All-Optical Network(SAON) becomes a promising paradigm. In this paper, the related space optical communications and network programs around the world are first briefly introduced. Then the intelligent Space All-Optical Network(i-SAON), which can be deemed as an advanced SAON, is illustrated, with the emphasis on its features of high survivability, sensing and reconfiguration intelligence, and large capacity for all optical load and switching. Moreover, some key technologies for i-SAON are described, including the rapid adjustment and control of the laser beam direction, the deep learning-based multi-path anti-fault routing, the intelligent multi-fault diagnosis and switching selection mechanism, and the artificial intelligence-based spectrum sensing and situational forecasting.展开更多
To solve the problems of blindness and inefficiency existing in the determination of meso-level mechanical parameters of particle flow code (PFC) models, we firstly designed and numerically carried out orthogonal test...To solve the problems of blindness and inefficiency existing in the determination of meso-level mechanical parameters of particle flow code (PFC) models, we firstly designed and numerically carried out orthogonal tests on rock samples to investigate the correlations between macro-and meso-level mechanical parameters of rock-like bonded granular materials. Then based on the artificial intelligent technology, the intelligent prediction systems for nine meso-level mechanical parameters of PFC models were obtained by creating, training and testing the prediction models with the set of data got from the orthogonal tests. Lastly the prediction systems were used to predict the meso-level mechanical parameters of one kind of sandy mudstone, and according to the predicted results the macroscopic properties of the rock were obtained by numerical tests. The maximum relative error between the numerical test results and real rock properties is 3.28% which satisfies the precision requirement in engineering. It shows that this paper provides a fast and accurate method for the determination of meso-level mechanical parameters of PFC models.展开更多
In order to solve the problem of strength instability of cemented tailings backfill(CTB)under low temperature environment(≤20℃),the strength optimization and prediction of CTB under the influence of multiple factors...In order to solve the problem of strength instability of cemented tailings backfill(CTB)under low temperature environment(≤20℃),the strength optimization and prediction of CTB under the influence of multiple factors were carried out.The response surface method(RSM)was used to design the experiment to analyze the development law of backfill strength under the coupling effect of curing temperature,sand-cement ratio and slurry mass fraction,and to optimize the mix proportion;the artificial neural network algorithm(ANN)and particle swarm optimization algorithm(PSO)were used to build the prediction model of backfill strength.According to the experimental results of RSM,the optimal mix proportion under different curing temperatures was obtained.When the curing temperature is 10-15℃,the best mix proportion of sand-cement ratio is 9,and the slurry mass fraction is 71%;when the curing temperature is 15-20℃,the best mix proportion of sand-cement ratio is 8,and the slurry mass fraction is 69%.The ANN-PSO intelligent model can accurately predict the strength of CTB,its mean relative estimation error value and correlation coefficient value are only 1.95%and 0.992,and the strength of CTB under different mix proportion can be predicted quickly and accurately by using this model.展开更多
Crisis information dissemination plays a key role in the development of emergency responses to epidemic-level public health events.Therefore,clarifying the causes of crisis information dissemination and making accurat...Crisis information dissemination plays a key role in the development of emergency responses to epidemic-level public health events.Therefore,clarifying the causes of crisis information dissemination and making accurate predictions to effectively control such situations have attracted extensive attention.Based on media richness theory and persuasion theory,this study constructs an index system of crisis information dissemination impact factors from two aspects:the crisis information publisher and the published crisis information content.A multi-layer perceptron is used to analyze the weight of the index system,and the prediction is transformed into a pattern classification problem to test crisis information dissemination.In this study,COVID-19 is considered a representative event.An experiment is conducted to predict the crisis information dissemination of COVID-19 in two megacities.Data related to COVID-19 from these two megacities are acquired from the well-known Chinese social media platform Weibo.The experimental results show that not only the identity but also the social influence of the information publisher has a significant impact on crisis information dissemination in epidemic-level public health events.Furthermore,the proposed model achieves more than 95%test accuracy,precision rate,recall value and f1-score in the prediction task.The study provides decision-making support for government departments and a guide for correctly disseminating crisis information and public opinion during future epidemic-level public health events.展开更多
A recent systematic experimental characterisation of technological thin films,based on elaborated design of experiments as well as probe calibration and correction procedures,allowed for the first time the determinati...A recent systematic experimental characterisation of technological thin films,based on elaborated design of experiments as well as probe calibration and correction procedures,allowed for the first time the determination of nanoscale friction under the concurrent influence of several process parameters,comprising normal forces,sliding velocities,and temperature,thus providing an indication of the intricate correlations induced by their interactions and mutual effects.This created the preconditions to undertake in this work an effort to model friction in the nanometric domain with the goal of overcoming the limitations of currently available models in ascertaining the effects of the physicochemical processes and phenomena involved in nanoscale contacts.Due to the stochastic nature of nanoscale friction and the relatively sparse available experimental data,meta-modelling tools fail,however,at predicting the factual behaviour.Based on the acquired experimental data,data mining,incorporating various state-of-the-art machine learning(ML)numerical regression algorithms,is therefore used.The results of the numerical analyses are assessed on an unseen test dataset via a comparative statistical validation.It is therefore shown that the black box ML methods provide effective predictions of the studied correlations with rather good accuracy levels,but the intrinsic nature of such algorithms prevents their usage in most practical applications.Genetic programming-based artificial intelligence(AI)methods are consequently finally used.Despite the marked complexity of the analysed phenomena and the inherent dispersion of the measurements,the developed AI-based symbolic regression models allow attaining an excellent predictive performance with the respective prediction accuracy,depending on the sample type,between 72%and 91%,allowing also to attain an extremely simple functional description of the multidimensional dependence of nanoscale friction on the studied variable process parameters.An effective tool for nanoscale friction prediction,adaptive control purposes,and further scientific and technological nanotribological analyses is thus obtained.展开更多
文摘The evaluation of the implementation effect of the power substation project can find out the problems of the project more comprehensively,which has important practical significance for the further development of the power substation project.To ensure accuracy and real-time evaluation,this paper proposes a novel hybrid intelligent evaluation and prediction model based on improved TOPSIS and Long Short-Term Memory(LSTM)optimized by a Sperm Whale Algorithm(SWA).Firstly,under the background of considering the development of new energy,the influencing factors of power substation project implementation effect are analyzed from three aspects of technology,economy and society.Moreover,an evaluation model based on improved TOPSIS is constructed.Then,an intelligent prediction model based on SWA optimized LSTM is designed.Finally,the scientificity and accuracy of the proposed model are verified by empirical analysis,and the important factors affecting the implementation effect of power substation projects are pointed out.
基金Projects 50474063 and 50490273 supported by National Natural Science Foundation of China
文摘In order to seek the economical, practical and effective method of obtaining the thickness of broken rock zone, an emerging intelligent prediction method with adaptive neuro-fuzzy inference system (ANFIS) was introduced into the thickness prediction. And the software with functions of creating and applying prediction systems was devel- oped on the platform of MATLAB6.5. The software was used to predict the broken rock zone thickness of drifts at Li- angbei coal mine, Xinlong Company of Coal Industry in Xuchang city of Henan province. The results show that the predicted values accord well with the in situ measured ones. Thereby the validity of the software is validated and it provides a new approach to obtaining the broken zone thickness.
基金supported by the Key Project-subtopic of thea13th FiveYear PlanoMilitary Logistics Service Research of China (BWS16J006)。
文摘Background:The vital signs of trauma patients are complex and changeable,and the prediction of blood transfusion demand mainly depends on doctors'experience and trauma scoring system;therefore,it cannot be accurately predicted.In this study,a machine learning decision tree algorithm[classification and regression tree(CRT)and eXtreme gradient boosting(XGBoost)]was proposed for the demand prediction of traumatic blood transfusion to provide technical support for doctors.Methods:A total of 1371 trauma patients who were diverted to the Emergency Department of the First Medical Center of Chinese PLA General Hospital from January 2014 to January 2018 were collected from an emergency trauma database.The vital signs,laboratory examination parameters and blood transfusion volume were used as variables,and the non-invasive parameters and all(non-invasive+invasive)parameters were used to construct an intelligent prediction model for red blood cell(RBC)demand by logistic regression(LR),CRT and XGBoost.The prediction accuracy of the model was compared with the area under curve(AUC).Results:For non-invasive parameters,the LR method was the best,with an AUC of 0.72[95%confidence interval(CI)0.657–0.775],which was higher than the CRT(AUC 0.69,95%CI 0.633–0.751)and the XGBoost(AUC 0.71,95%CI 0.654–0.756)(P<0.05).The trauma location and shock index are important prediction parameters.For all the prediction parameters,XGBoost was the best,with an AUC of 0.94(95%CI 0.893–0.981),which was higher than the LR(AUC 0.80,95%CI 0.744–0.850)and the CRT(AUC 0.82,95%CI 0.779–0.853)(P<0.05).Haematocrit(Hct)is an important prediction parameter.Conclusions:The classification performance of the intelligent prediction model of red blood cell transfusion in trauma patients constructed by the decision tree algorithm is not inferior to that of the traditional LR method.It can be used as a technical support to assist doctors to make rapid and accurate blood transfusion decisions in emergency rescue environment,so as to improve the success rate of patient treatment.
基金supported by the National Natural Science Foundation of China(No.62201313)the Opening Foundation of Fujian Key Laboratory of Sensing and Computing for Smart Cities(Xiamen University)(No.SCSCKF202101)the Open Project of Fujian Provincial Key Laboratory of Information Processing and Intelligent Control(Minjiang University)(No.MJUKF-IPIC202206).
文摘Mobile Industrial Internet of Things(IIoT)applications have achieved the explosive growth in recent years.The mobile IIoT has flourished and become the backbone of the industry,laying a solid foundation for the interconnection of all things.The variety of application scenarios has brought serious challenges to mobile IIoT networks,which face complex and changeable communication environments.Ensuring data secure transmission is critical for mobile IIoT networks.This paper investigates the data secure transmission performance prediction of mobile IIoT networks.To cut down computational complexity,we propose a data secure transmission scheme employing Transmit Antenna Selection(TAS).The novel secrecy performance expressions are first derived.Then,to realize real-time secrecy analysis,we design an improved Convolutional Neural Network(CNN)model,and propose an intelligent data secure transmission performance prediction algorithm.For mobile signals,the important features may be removed by the pooling layers.This will lead to negative effects on the secrecy performance prediction.A novel nine-layer improved CNN model is designed.Out of the input and output layers,it removes the pooling layer and contains six convolution layers.Elman,Back-Propagation(BP)and LeNet methods are employed to compare with the proposed algorithm.Through simulation analysis,good prediction accuracy is achieved by the CNN algorithm.The prediction accuracy obtains a 59%increase.
基金funded by the National Natural Science Foundation of China(Grant No.42177164)the Innovation-Driven Project of Central South University(Grant No.2020CX040)supported by China Scholarship Council(Grant No.202006370006)。
文摘The main purpose of blasting operation is to produce desired and optimum mean size rock fragments.Smaller or fine fragments cause the loss of ore during loading and transportation,whereas large or coarser fragments need to be further processed,which enhances production cost.Therefore,accurate prediction of rock fragmentation is crucial in blasting operations.Mean fragment size(MFS) is a crucial index that measures the goodness of blasting designs.Over the past decades,various models have been proposed to evaluate and predict blasting fragmentation.Among these models,artificial intelligence(AI)-based models are becoming more popular due to their outstanding prediction results for multiinfluential factors.In this study,support vector regression(SVR) techniques are adopted as the basic prediction tools,and five types of optimization algorithms,i.e.grid search(GS),grey wolf optimization(GWO),particle swarm optimization(PSO),genetic algorithm(GA) and salp swarm algorithm(SSA),are implemented to improve the prediction performance and optimize the hyper-parameters.The prediction model involves 19 influential factors that constitute a comprehensive blasting MFS evaluation system based on AI techniques.Among all the models,the GWO-v-SVR-based model shows the best comprehensive performance in predicting MFS in blasting operation.Three types of mathematical indices,i.e.mean square error(MSE),coefficient of determination(R^(2)) and variance accounted for(VAF),are utilized for evaluating the performance of different prediction models.The R^(2),MSE and VAF values for the training set are 0.8355,0.00138 and 80.98,respectively,whereas 0.8353,0.00348 and 82.41,respectively for the testing set.Finally,sensitivity analysis is performed to understand the influence of input parameters on MFS.It shows that the most sensitive factor in blasting MFS is the uniaxial compressive strength.
基金The study was supported by the National Natural Science Foundation of China of basic theory research on digital coal mine and intelligent mining(51834006)study on stress,cyclic osmotic pressure and corrosion coupling damage mechanism of coal pillar dam for coalmine underground reservoir(52004124)study on the progressive evolution mechanism of overburden fracture and ore pressure in fully mechanized mining with super high mining height under three field perspectives(51874175)。
文摘Hydraulic support is the primary equipment used for surrounding rock control at fully mechanized mining faces.The load,location,and attitude of the hydraulic support are important sets of basis data to predict roof disasters.This paper summarized and analyzed the status of coal mine safety accidents and the primary influencing factors of roof disasters.This work also proposed monitoring characteristic parameters of roof disasters based on support posture-load changes,such as the support location and support posture.The data feature decomposition method of the additive model was used with the monitoring load data of the hydraulic support in the Yanghuopan coal mine to effectively extract the trend,cycle period,and residuals,which provided the period weighting characteristics of the longwall face.The autoregressive,long-short term memory,and support vector regression algorithms were used to model and analyze the monitoring data to realize single-point predictions.The seasonal autoregressive integrated moving average(SARIMA)and autoregressive integrated moving average(ARIMA)models were adopted to predict the support cycle load of the hydraulic support.The SARIMA model is shown to be better than the ARIMA model for load predictions in one support cycle,but the prediction effect of these two algorithms over a fracture cycle is poor.Therefore,we proposed a hydraulic support load prediction method based on multiple data cutting and a hydraulic support load template library.The constructed technical framework of the roof disaster intelligent prediction platform is based on this method to perform predictions and early warnings of roof disasters based on the load and posture monitoring information from the hydraulic support.
文摘This paper addresses the important intelligent predicting problem of peritoneal absorption rate in the peritoneal dialysis treatment process of renal failure. As the index of dialysis adequacy, KT/V and Ccr are widely used and accepted. However, growing evidence suggests that the fluid balance may play a critical role in dialysis adequacy and patient outcome. Peritoneal fluid absorption decreases the peritoneal fluid removal. Understanding the peritoneal fluid absorption rate will help clinicians to optimize the dialysis dwell time. The neural network approach is applied to the prediction of peritoneal absorption rate. Compared with multivariable regression method, the experimental results showed that neural network method has an advantage over multivariable regression. The application of this predicting method based-on neural network in clinic is instructive. Keywords Peritoneal dialysis - Neural network - Intelligent prediction - Peritoneal absorption This work was supported in part by the guangdong Province Scientific and Technological key Research Program (No.2002C3021l) and the South China University of Technology.
基金supported by the National Key Research and Development Program of China(2021YFE0104900)the Open Project of Xiangjiang Laboratory(22xj03003)the Science and Technology Innovation Program of Hunan Province(2021RC4005,2021GK1210).
文摘Hydrothermal carbonization(HTC)is a thermochemical conversion technology to produce hydrochar from wet biomass without drying,but it is time-consuming and expensive to experimentally determine the optimal HTC operational conditions of specific biomass to produce desired hydrochar.Therefore,a machine learning(ML)approach was used to predict and optimize hydrochar properties.Specifically,biochemical components(proteins,lipids,and carbohydrates)of biomass were predicted and analyzed first via elementary composition.Then,accurate single-biomass(no mixture)based ML multi-target models(average R^(2)=0.93 and RMSE=2.36)were built to predict and optimize the hydrochar properties(yield,elemental composition,elemental atomic ratio,and higher heating value).Biomass composition(elemental and biochemical),proximate analyses,and HTC conditions were inputs herein.Interpretation of the model results showed that ash,temperature,and the N and C content of biomass were the most critical factors affecting the hydrochar properties,and that the relative importance of biochemical composition(25%)for the hydrochar was higher than that of operating conditions(19%).Finally,an intelligent system was constructed based on a multi-target model,verified by applying it to predict the atomic ratios(N/C,O/C,and H/C).It could also be extended to optimize hydrochar production from the HTC of single-biomass samples with experimental validation and to predict hydrochar from the co-HTC of mixed biomass samples reported in the literature.This study advances the field by integrating predictive modeling,intelligent systems,and mechanistic insights,offering a holistic approach to the precise control and optimization of hydrochar production through HTC.
基金supported by CAST Fund for Distinguished Young TalentsCASC Scientific and Technological Innovative Research and Design Projects
文摘Microwave transmission in a space network is greatly restricted due to precious radio spectrum resources. To meet the demand for large-bandwidth, global seamless coverage and on-demanding access, the Space All-Optical Network(SAON) becomes a promising paradigm. In this paper, the related space optical communications and network programs around the world are first briefly introduced. Then the intelligent Space All-Optical Network(i-SAON), which can be deemed as an advanced SAON, is illustrated, with the emphasis on its features of high survivability, sensing and reconfiguration intelligence, and large capacity for all optical load and switching. Moreover, some key technologies for i-SAON are described, including the rapid adjustment and control of the laser beam direction, the deep learning-based multi-path anti-fault routing, the intelligent multi-fault diagnosis and switching selection mechanism, and the artificial intelligence-based spectrum sensing and situational forecasting.
基金the National Natural Science Foundation of China (Nos. 50674083 and 51074162) for its financial support
文摘To solve the problems of blindness and inefficiency existing in the determination of meso-level mechanical parameters of particle flow code (PFC) models, we firstly designed and numerically carried out orthogonal tests on rock samples to investigate the correlations between macro-and meso-level mechanical parameters of rock-like bonded granular materials. Then based on the artificial intelligent technology, the intelligent prediction systems for nine meso-level mechanical parameters of PFC models were obtained by creating, training and testing the prediction models with the set of data got from the orthogonal tests. Lastly the prediction systems were used to predict the meso-level mechanical parameters of one kind of sandy mudstone, and according to the predicted results the macroscopic properties of the rock were obtained by numerical tests. The maximum relative error between the numerical test results and real rock properties is 3.28% which satisfies the precision requirement in engineering. It shows that this paper provides a fast and accurate method for the determination of meso-level mechanical parameters of PFC models.
基金the National Key Technology Research and Development Program of China(Nos.2018YFC1900603 and 2018YFC0604604)。
文摘In order to solve the problem of strength instability of cemented tailings backfill(CTB)under low temperature environment(≤20℃),the strength optimization and prediction of CTB under the influence of multiple factors were carried out.The response surface method(RSM)was used to design the experiment to analyze the development law of backfill strength under the coupling effect of curing temperature,sand-cement ratio and slurry mass fraction,and to optimize the mix proportion;the artificial neural network algorithm(ANN)and particle swarm optimization algorithm(PSO)were used to build the prediction model of backfill strength.According to the experimental results of RSM,the optimal mix proportion under different curing temperatures was obtained.When the curing temperature is 10-15℃,the best mix proportion of sand-cement ratio is 9,and the slurry mass fraction is 71%;when the curing temperature is 15-20℃,the best mix proportion of sand-cement ratio is 8,and the slurry mass fraction is 69%.The ANN-PSO intelligent model can accurately predict the strength of CTB,its mean relative estimation error value and correlation coefficient value are only 1.95%and 0.992,and the strength of CTB under different mix proportion can be predicted quickly and accurately by using this model.
基金This research was supported by the National Natural Science Foun-dation of China[grant numbers 71804083,71801017,and 72104032]the Science Foundation of Beijing Information Science&Technol-ogy University[grant number 2021XJJ42].
文摘Crisis information dissemination plays a key role in the development of emergency responses to epidemic-level public health events.Therefore,clarifying the causes of crisis information dissemination and making accurate predictions to effectively control such situations have attracted extensive attention.Based on media richness theory and persuasion theory,this study constructs an index system of crisis information dissemination impact factors from two aspects:the crisis information publisher and the published crisis information content.A multi-layer perceptron is used to analyze the weight of the index system,and the prediction is transformed into a pattern classification problem to test crisis information dissemination.In this study,COVID-19 is considered a representative event.An experiment is conducted to predict the crisis information dissemination of COVID-19 in two megacities.Data related to COVID-19 from these two megacities are acquired from the well-known Chinese social media platform Weibo.The experimental results show that not only the identity but also the social influence of the information publisher has a significant impact on crisis information dissemination in epidemic-level public health events.Furthermore,the proposed model achieves more than 95%test accuracy,precision rate,recall value and f1-score in the prediction task.The study provides decision-making support for government departments and a guide for correctly disseminating crisis information and public opinion during future epidemic-level public health events.
基金The work described in this paper is enabled by using the equipment funded via the EU European Regional Development Fund project entitled“Research Infrastructure for Campus-based Laboratories at the University of Rijeka–RISK”(Project RC.2.2.06-0001)the support of the University of Rijeka,Croatia,grant entitled“Advanced mechatronics devices for smart technological solutions”(Grant uniri-tehnic-18-32).
文摘A recent systematic experimental characterisation of technological thin films,based on elaborated design of experiments as well as probe calibration and correction procedures,allowed for the first time the determination of nanoscale friction under the concurrent influence of several process parameters,comprising normal forces,sliding velocities,and temperature,thus providing an indication of the intricate correlations induced by their interactions and mutual effects.This created the preconditions to undertake in this work an effort to model friction in the nanometric domain with the goal of overcoming the limitations of currently available models in ascertaining the effects of the physicochemical processes and phenomena involved in nanoscale contacts.Due to the stochastic nature of nanoscale friction and the relatively sparse available experimental data,meta-modelling tools fail,however,at predicting the factual behaviour.Based on the acquired experimental data,data mining,incorporating various state-of-the-art machine learning(ML)numerical regression algorithms,is therefore used.The results of the numerical analyses are assessed on an unseen test dataset via a comparative statistical validation.It is therefore shown that the black box ML methods provide effective predictions of the studied correlations with rather good accuracy levels,but the intrinsic nature of such algorithms prevents their usage in most practical applications.Genetic programming-based artificial intelligence(AI)methods are consequently finally used.Despite the marked complexity of the analysed phenomena and the inherent dispersion of the measurements,the developed AI-based symbolic regression models allow attaining an excellent predictive performance with the respective prediction accuracy,depending on the sample type,between 72%and 91%,allowing also to attain an extremely simple functional description of the multidimensional dependence of nanoscale friction on the studied variable process parameters.An effective tool for nanoscale friction prediction,adaptive control purposes,and further scientific and technological nanotribological analyses is thus obtained.