A systematic analysis has been carried out to investigate the fields of application and interaction mechanism of polymeric carbohydrate, i.e. polysaccharides (including starch, dextrin, cellulose and cellulosic deriva...A systematic analysis has been carried out to investigate the fields of application and interaction mechanism of polymeric carbohydrate, i.e. polysaccharides (including starch, dextrin, cellulose and cellulosic derivatives) on various oxides and salt-type minerals in the article, interaction mechanisms of electrostatic, of hydrogen bonding, and of chemical interaction between polymeric carbohydrate and these minerals are put forward.展开更多
A series of novel chalcone derivatives that contain the 1,1-dichloropropene moiety was designed and synthesized. Bioactivity assays showed that most of the target compounds exhibited moderate to good antiviral activit...A series of novel chalcone derivatives that contain the 1,1-dichloropropene moiety was designed and synthesized. Bioactivity assays showed that most of the target compounds exhibited moderate to good antiviral activity against tobacco mosaic virus(TMV) at 500 mg/m L. Among the target compounds,compound 7h showed the highest in vivo inactivation activity against TMV with the EC50 and EC90value of 45.6 and 327.5 mg/m L, respectively, which was similar to that of Ningnanmycin(46.9 and 329.4 mg/m L)and superior to that of Ribavirin(145.1 and 793.1 mg/m L). Meanwhile, the microscale thermophoresis and fluorescence spectroscopy experiments showed that the compound 7h had a strong interaction with the tobacco mosaic virus coat protein.展开更多
This review focuses on the occurrence and interactions of engineered nanoparticles(ENPs)and brominated flame retardants(BFRs)such as polybrominated diphenyl ethers(PBDEs)in water systems and the generation of highly c...This review focuses on the occurrence and interactions of engineered nanoparticles(ENPs)and brominated flame retardants(BFRs)such as polybrominated diphenyl ethers(PBDEs)in water systems and the generation of highly complex compounds in the environment.The release of ENPs and BFRs(e.g.PBDEs)to aquatic environments during their usage and disposal are summarised together with their key interaction mechanisms.The major interaction mechanisms including electrostatic,van derWaals,hydrophobic,molecular bridging and steric,hydrogen andπ-bonding,cation bridging and ligand exchange were identified.The presence of ENPs could influence the fate and behaviour of PBDEs through the interactions as well as induced reactions under certain conditions which increases the formation of complex compounds.The interaction leads to alteration of behaviour for PBDEs and their toxic effects to ecological receptors.The intermingled compound(ENPs-BFRs)would show different behaviour from the parental ENPs or BFRs,which are currently lack of investigation.This review provided insights on the interactions of ENPs and BFRs in artificial,environmental water systems and wastewater treatment plants(WWTPs),which are important for a comprehensive risk assessment.展开更多
The mass communication model and interactive ritual chain theory,which serve as communication paradigms in the new media era,facilitate and enhance the synergy between the fields of social history of medicine and heal...The mass communication model and interactive ritual chain theory,which serve as communication paradigms in the new media era,facilitate and enhance the synergy between the fields of social history of medicine and health communication.This study employs a comprehensive framework based on the five elements of the mass communication model:information source,communication subject,communication object,message content,and post-communication feedback.Additionally,it incorporates the interactive ritual chain theory to examine the evolving dynamics and developmental trajectory of research in the social history of medicine during the new media era.Conclusively,this paper acknowledges the existing interaction gaps in the interaction between health communication and the social history of medicine research while outlining the challenges for fostering collaboration and proposing strategic optimizations for effective integration.展开更多
In this paper, the tropical air-sea interaction is discussed by using a simple air-sea coupled model, in which the inertia-gravity waves are filtered off and only the equatorial Rossby waves are reserved in both the a...In this paper, the tropical air-sea interaction is discussed by using a simple air-sea coupled model, in which the inertia-gravity waves are filtered off and only the equatorial Rossby waves are reserved in both the atmosphere and the ocean. There exist two kinds of air-sea interaction waves in the coupled model, that is, the high-frequency fast waves and the low-frequency slow waves. The phase speed of the fast waves is westward and the frequencies are close to those of the equatorial Rossby waves in the atmosphere. The slow waves propagate westward in the part of short wavelengths and eastward in that of long wavelengths. There exist instabilities for both the westward and eastward propagating slow waves. If the fast waves are filtered off, there is little effect on the slow waves which have great influence on the long range process in the tropical air-sea coupled system. According to the tropical air-sea interaction waves we obtain here, a possible explanation to the propagating process of ENSO events is given.展开更多
High content of asphaltenes and waxes leads to the high pour point and the poor flowability of heavy oil,which is adverse to its efficient development and its transportation in pipe.Understanding the interaction mecha...High content of asphaltenes and waxes leads to the high pour point and the poor flowability of heavy oil,which is adverse to its efficient development and its transportation in pipe.Understanding the interaction mechanism between asphaltene-wax is crucial to solve these problems,but it is still unclear.In this paper,molecular dynamics simulation was used to investigate the interaction between asphaltenewax and its effects on the crystallization behavior of waxes in heavy oil.Results show that molecules in pure wax are arranged in a paralleled geometry.But wax molecules in heavy oil,which are close to the surface of asphaltene aggregates,are bent and arranged irregularly.When the mass fraction of asphaltenes in asphaltene-wax system(ω_(asp))is 0-25 wt%,the attraction among wax molecules decreases and the bend degree of wax molecules increases with the increase ofω_(asp).Theω_(asp)increases from 0 to 25 wt%,and the attraction between asphaltene-wax is stronger than that among waxes.This causes that the wax precipitation point changes from 353 to 333 K.While theω_(asp)increases to 50 wt%,wax molecules are more dispersed owing to the steric hindrance of asphaltene aggregates,and the interaction among wax molecules transforms from attraction to repulsion.It causes that the ordered crystal structure of waxes can't be formed at normal temperature.Simultaneously,the asphaltene,with the higher molecular weight or the more hetero atoms,has more obvious inhibition to the formation of wax crystals.Besides,resins also have an obvious inhibition on the wax crystal due to the formation of asphalteneresin aggregates with a larger radius.Our results reveal the interaction mechanism between asphaltene-wax,and provide useful guidelines for the development of heavy oil.展开更多
In order to explore the effect mechanism of solvent on the synthesis of the metal organic framework materials, the microscopic interaction between solvent and framework and the effects of N,N-dimethyl-formamide(DMF) o...In order to explore the effect mechanism of solvent on the synthesis of the metal organic framework materials, the microscopic interaction between solvent and framework and the effects of N,N-dimethyl-formamide(DMF) or N-methyl- 2-pyrrolidone(NMP) on solvothermal synthesis of [Zn4O(BDC)3]8 were investigated through a combined DFT and experimental study. XRD and SEM showed that the absorbability of NMP in the pore of [Zn4O(BDC)3]8 was weaker than that of DMF. The thermal decomposition temperature of [Zn4O(BDC)3]8 synthesized in DMF was higher than that in NMP according to TG and FT-IR. In addition, the nitrogen sorption isotherms indicated that NMP improved gas sorption property of [Zn4O(BDC)3]8. The COSMO optimized calculations indicated that the total energy of Zn4O(BDC)3 in NMP was higher than that in DMF, and compared with non-solvent system, the charge of zinc atoms decreased and the charge value was the smallest in NMP. Furthermore, the interaction of DMF, NMP or DEF in [Zn4O(BDC)3]8 crystal model was calculated by DFT method. The results suggested that NMP should be easier to be removed from pore of materials than DMF from the point of view of energy state. It can be concluded that NMP was a favorable solvent to synthesize [Zn4O(BDC)3]8 and the microscopic mechanism was that the binding force between Zn4O(BDC)3 and NMP molecule was weaker than DMF.展开更多
Research of interaction mechanism between Chlorella vulgaris and two bacterial strains(Z-QD08 and Z-QS01) were conducted under laboratory conditions.Growth rates of bacteria and C.vulgaris were tested under co-cultu...Research of interaction mechanism between Chlorella vulgaris and two bacterial strains(Z-QD08 and Z-QS01) were conducted under laboratory conditions.Growth rates of bacteria and C.vulgaris were tested under co-culture conditions to evaluate the effects of concentrations of C.vulgaris and bacteria on their interactions.To test whether the availability of inorganic nutrients,vitamins and trace metals affects the interactions between C.vulgaris and bacteria,experiments were performed with or without the culture medium filtrate of C.vulgaris or bacteria.The results showed that the growth of C.vulgaris was promoted at low concentrations of bacteria(5×106cells/ml),and expressed a positive correlation with the bacteria density,whereas opposite trend was observed for treatments with high bacteria density(10×106cells/ml and 20×106cells/ml).The growth rate of bacteria decreased with the increasing concentrations of C.vulgaris.The growth of bacteria Z-QD08 was inhibited by C.vulgaris through interference competition,while the mechanism for interaction between bacteria Z-QS01 and C.vulgaris was resource competition.The influence of cell density on the interaction between microalgae and bacteria was also discussed.These experiments confirm some elements of published theory on interactions between heterotrophic bacteria and microalgae and suggest that heterotrophic bacteria play an important role in the development of blooms in natural waters.展开更多
The mechanism of interaction relation between the rare-earth element Ce and elements Pb and Bi in Ag-based filler metal has been studied. The results show that the compounds CePb and CeBi with high melting point can b...The mechanism of interaction relation between the rare-earth element Ce and elements Pb and Bi in Ag-based filler metal has been studied. The results show that the compounds CePb and CeBi with high melting point can be easily produced between these three elements in the filler metal, which greatly limited the formation of the isolated phase Pb or Bi and also eliminated the bad effect of impurity elements Pb and Bi on the spreading property of Ag-based filler metal. The metallurgical and quantum-mechanical bond formation analysis show that a strong chemical affinity was existed between the rare-earth element Ce and impurity elements Pb and Bi, which was proved by the XRD analysis results.展开更多
Understanding the in situ stress state is crucial in many engineering problems and earth science research.The present article presents new insights into the interaction mechanism between the stress state and faults.In...Understanding the in situ stress state is crucial in many engineering problems and earth science research.The present article presents new insights into the interaction mechanism between the stress state and faults.In situ stresses can be influenced by various factors,one of the most important being the existence of faults.A fault could significantly affect the value and direction of the stress components.Reorientation and magnitude changes in stresses exist adjacent to faults and stress jumps/discontinuities across the fault.By contrast,the change in the stress state may lead to the transformation of faulting type and potential fault reactivation.Qualitative fault reactivation assessment using characteristic parameters under the current stress environment provides a method to assess the slip tendency of faults.The correlation between in situ stresses and fault properties enhances the ability to predict the fault slip tendency via stress measurements,which can be used to further refine the assessment of the fault reactivation risk.In the future,stress measurements at greater depths and long-term continuous real-time stress monitoring near/on key parts of faults will be essential.In addition,much attention needs to be paid to distinguishing the genetic mechanisms of abnormal stress states and the type and scale of stress variations and exploring the mechanisms of pre-faulting anomaly and fault reactivation.展开更多
Objective Shale gas is as an important kind of unconventional natural gas,with a great resource potential,and its exploration and development has attracted much attention around the world.Organic matter(OM)pores are...Objective Shale gas is as an important kind of unconventional natural gas,with a great resource potential,and its exploration and development has attracted much attention around the world.Organic matter(OM)pores are a common constituent in shales and form the dominant pore network of many shale gas systems.展开更多
In this study,we use the extended finite element method(XFEM)with a consideration of junction enrichment functions to investigate the mechanics of hydraulic fractures related to naturally cemented fractures.In the pro...In this study,we use the extended finite element method(XFEM)with a consideration of junction enrichment functions to investigate the mechanics of hydraulic fractures related to naturally cemented fractures.In the proposed numerical model,the lubrication equation is adopted to describe the fluid flow within fractures.The fluid-solid coupling systems of the hydraulic fracturing problem are solved using the Newton-Raphson method.The energy release rate criterion is used to determine the cross/arrest behavior between a hydraulic fracture(HF)and a cemented natural fracture(NF).The failure patterns and mechanisms of crack propagation at the intersection of natural fractures are discussed.Simulation results show that after crossing an NF,the failure mode along the cemented NF path may change from the tensile regime to the shear or mixed-mode regime.When an advancing HF kinks back toward the matrix,the failure mode may gradually switch back to the tensile-dominated regime.Key factors,including the length of the upper/lower portion of the cemented NF,horizontal stress anisotropy,and the intersection angle of the crack propagation are investigated in detail.An uncemented or partially cemented NF will form a more complex fracture network than a cemented NF.This study provides insight into the formation mechanism of fracture networks in formations that contain cemented NF.展开更多
The interaction mechanism and phase evolution of ammonium polyphosphate(APP)mixed with muscovite(APP/muscovite)were studied by TG,XRD and SEM,respectively,during heating.When the temperature is not higher than 300...The interaction mechanism and phase evolution of ammonium polyphosphate(APP)mixed with muscovite(APP/muscovite)were studied by TG,XRD and SEM,respectively,during heating.When the temperature is not higher than 300 ℃,muscovite has no effect on the thermaldecomposition of APP,and the initialdecomposition temperature of APP/muscovite at 283 ℃ is basically the same as the APP at 295 ℃,and the main thermaldecomposition products are polyphosphoric acid and NH_4H_2PO_4 at 300 ℃.The polyphosphoric acid,the decomposition products of APP,can enable K and Siout of muscovite and interact with muscovite chemically to generate Al_2O_3·2SiO_2,α-SiO_2 and phosphates(AlPO_4 and K_5P_3O_(10))compounds during 400 ℃-800 ℃,which own obvious adhesive phenomenon and porous structure with the apparent porosity of 58.4%.Further reactions between phosphates other than reactions among Al_2O_3·2SiO_2 and α-SiO_2 can generate KAlP_2O_7 at 1 000 ℃ and the density of residualproduct is improved by low melting point phosphate filling pore to form relatively dense structure and decrease the apparent porosity to 44.4%.The flame resistant and self-supported ceramic materials are expected to enhance the fire-retarding synergistic effect between APP and muscovite.展开更多
Human immunodeficiency virus(HIV) and tuberculosis(TB) coinfection is a serious public health problem. HIV and TB promote each other, accelerating development of HIV to acquired immunodeficiency syndrome(AIDS) and hei...Human immunodeficiency virus(HIV) and tuberculosis(TB) coinfection is a serious public health problem. HIV and TB promote each other, accelerating development of HIV to acquired immunodeficiency syndrome(AIDS) and heightening TB mortality. Determining interaction mechanism between HIV and Mycobacterium tuberculosis can lead to development of effective treatments. This study summarizes prevalence status of AIDS and TB coinfection and research advances concerning their interaction mechanism.展开更多
Carboxylmethyl cellulose(CMC) has become a commercial organic binder in agglomeration of iron ore concentrates. The relative molecular mass and degree of substitution(DS) of CMC have a large impact on its binding perf...Carboxylmethyl cellulose(CMC) has become a commercial organic binder in agglomeration of iron ore concentrates. The relative molecular mass and degree of substitution(DS) of CMC have a large impact on its binding performance. The interaction mechanism between CMC and iron ore particles was analyzed through Zeta potential measurements, adsorption measurements and infrared spectra. The results show that the interaction is chemical adsorption-oriented and the CMC's adsorption performance is related to the properties of CMC as well as the type of iron oxides. CMC has a greater affinity to Fe2O3 than Fe3O4, and CMC with higher relative molecular mass shows a higher adsorption isotherm. Pelletization of practical iron ore concentrates added with CMC further illustrates that CMC with higher relative molecular mass or DS exhibits a better binding performance, which is consistent with the results of adsorption tests.展开更多
The existence of specific biorhythms and the role of geomagnetic and/or solar magnetic activities are well-established by appropriate correlations in chronobiology. From a physical viewpoint, there are two different a...The existence of specific biorhythms and the role of geomagnetic and/or solar magnetic activities are well-established by appropriate correlations in chronobiology. From a physical viewpoint, there are two different accesses to biorhythms to set up connections to molecular processes: quantum mechanical perturbation theoretical methods and their resonance dominators to characterize specific interactions between constituents. These methods permit the treatment of molecular processes by circuits with characteristic resonances and “beat-frequencies”, which result from primarily fast physical processes. As examples, the tunneling processes between DNA base pairs (H bonds), the ATP decomposition and the irradiation of tumor cells are accounted for.展开更多
Bimolecular interactions play crucial roles in lignin pyrolysis.The tautomerization of key intermediates has a significant impact on the formation of stable products,whereas bimolecular tautomerization has been rarely...Bimolecular interactions play crucial roles in lignin pyrolysis.The tautomerization of key intermediates has a significant impact on the formation of stable products,whereas bimolecular tautomerization has been rarely clarified.In the present work,the bimolecular tautomerization mechanism induced by both concerted and radical interactions was proposed and carefully confirmed.A characteristicβ-O-4 lignin dimer,2-phenoxy-1-phenylethanol(α-OH-PPE),was used as the model compound to reveal two representative keto-phenol and enol-keto tautomerism mechanisms,based on theoretical calculations combined with pyrolysis experiments.The results indicate that the unimolecular tautomerism as the rate-determining step limits product generation,due to fairly high energy barriers.While the free hydroxy compounds and radicals derived from initial pyrolysis can further initiate bimolecular tautomerism reactions through the one-step concerted hydroxyl-assisted hydrogen transfer(hydroxylAHT)and two-step radical hydrogen abstraction interactions,respectively.By alleviating and even avoiding the large ring tension of tautomerism,the unstable tautomers(2,4-cyclohexadienone and1-hydroxy styrene)can be rapidly tautomerized into stable phenol and acetophenone with the help of intermolecular interaction.Benefitting from the significant advantage of retro-ene fragmentation in breaking theβ-O-4 bond to form tautomers,a large amount of stable phenolic and ketone products can be generated following bimolecular tautomerization in the pyrolysis ofβ-O-4 linked lignin.展开更多
Semi-metal friction material was applied widely in brake process of traffic and dynamical system. The friction materials with rare earth additive were manufactured by heating press molding process. The effects of diff...Semi-metal friction material was applied widely in brake process of traffic and dynamical system. The friction materials with rare earth additive were manufactured by heating press molding process. The effects of different reinforcing fibers and adhesives on the properties of the materials were studied by changing the formula. The results showed that the friction materials with YSM resin adhesive and hybrid fibers (Kevlar pulp and steel fiber) had higher and more stable friction coefficient and lower wear rate. Semi-metal friction materials with rare earths formed iron-rich surface layer in the worn surface, and the mechanisms of wear had obvious differences at typical temperature ranges.展开更多
A three-body model composed of two geological bodies and a structural body was developed to explore how ground-support systems respond to axial loads in underground spaces. A detailed method was designed to fabricate ...A three-body model composed of two geological bodies and a structural body was developed to explore how ground-support systems respond to axial loads in underground spaces. A detailed method was designed to fabricate physical scale-model specimens for testing. Three types of specimens were constructed to investigate how three different materials reacted to each other under load. The three types of specimens were called the weak-rock model, hard-rock model and mixed model. The results of uniaxial compression tests show that the mechanical behaviour of a three-body structural support is closely related to the interaction between the three bodies, but owing to different mechanisms, the three types of material behave very differently. To explain the test results, numerical simulations were conducted to explore fully the load responses of the three-body model specimens. The numerical simulations verify the hypotheses proposed for how the three types of material interact.展开更多
ESR measurements using spin trapping technique were carried out for β-carotene-halobenzene system under UV light irradiation.The ESR spectra observed in the presence and in the absence of β-carotene are markedly dif...ESR measurements using spin trapping technique were carried out for β-carotene-halobenzene system under UV light irradiation.The ESR spectra observed in the presence and in the absence of β-carotene are markedly different.The possible scheme of β-carotene interacting with halogen atom was proposed.展开更多
文摘A systematic analysis has been carried out to investigate the fields of application and interaction mechanism of polymeric carbohydrate, i.e. polysaccharides (including starch, dextrin, cellulose and cellulosic derivatives) on various oxides and salt-type minerals in the article, interaction mechanisms of electrostatic, of hydrogen bonding, and of chemical interaction between polymeric carbohydrate and these minerals are put forward.
基金supported by the National Natural Science Foundation of China(Nos.21362004,21562013)Subsidy Project for Outstanding Key Laboratory of Guizhou Province in China(20154004)
文摘A series of novel chalcone derivatives that contain the 1,1-dichloropropene moiety was designed and synthesized. Bioactivity assays showed that most of the target compounds exhibited moderate to good antiviral activity against tobacco mosaic virus(TMV) at 500 mg/m L. Among the target compounds,compound 7h showed the highest in vivo inactivation activity against TMV with the EC50 and EC90value of 45.6 and 327.5 mg/m L, respectively, which was similar to that of Ningnanmycin(46.9 and 329.4 mg/m L)and superior to that of Ribavirin(145.1 and 793.1 mg/m L). Meanwhile, the microscale thermophoresis and fluorescence spectroscopy experiments showed that the compound 7h had a strong interaction with the tobacco mosaic virus coat protein.
文摘This review focuses on the occurrence and interactions of engineered nanoparticles(ENPs)and brominated flame retardants(BFRs)such as polybrominated diphenyl ethers(PBDEs)in water systems and the generation of highly complex compounds in the environment.The release of ENPs and BFRs(e.g.PBDEs)to aquatic environments during their usage and disposal are summarised together with their key interaction mechanisms.The major interaction mechanisms including electrostatic,van derWaals,hydrophobic,molecular bridging and steric,hydrogen andπ-bonding,cation bridging and ligand exchange were identified.The presence of ENPs could influence the fate and behaviour of PBDEs through the interactions as well as induced reactions under certain conditions which increases the formation of complex compounds.The interaction leads to alteration of behaviour for PBDEs and their toxic effects to ecological receptors.The intermingled compound(ENPs-BFRs)would show different behaviour from the parental ENPs or BFRs,which are currently lack of investigation.This review provided insights on the interactions of ENPs and BFRs in artificial,environmental water systems and wastewater treatment plants(WWTPs),which are important for a comprehensive risk assessment.
基金University of Science and Technology of China Quality Project History of Medicine(2023YCZX02)Digital Museum Construction Project of Chinese Centre for Disease Control and Prevention(BB2110240080)The National Key R&D project granted by the Ministry of Science and Technology(2018YFA0902400).
文摘The mass communication model and interactive ritual chain theory,which serve as communication paradigms in the new media era,facilitate and enhance the synergy between the fields of social history of medicine and health communication.This study employs a comprehensive framework based on the five elements of the mass communication model:information source,communication subject,communication object,message content,and post-communication feedback.Additionally,it incorporates the interactive ritual chain theory to examine the evolving dynamics and developmental trajectory of research in the social history of medicine during the new media era.Conclusively,this paper acknowledges the existing interaction gaps in the interaction between health communication and the social history of medicine research while outlining the challenges for fostering collaboration and proposing strategic optimizations for effective integration.
文摘In this paper, the tropical air-sea interaction is discussed by using a simple air-sea coupled model, in which the inertia-gravity waves are filtered off and only the equatorial Rossby waves are reserved in both the atmosphere and the ocean. There exist two kinds of air-sea interaction waves in the coupled model, that is, the high-frequency fast waves and the low-frequency slow waves. The phase speed of the fast waves is westward and the frequencies are close to those of the equatorial Rossby waves in the atmosphere. The slow waves propagate westward in the part of short wavelengths and eastward in that of long wavelengths. There exist instabilities for both the westward and eastward propagating slow waves. If the fast waves are filtered off, there is little effect on the slow waves which have great influence on the long range process in the tropical air-sea coupled system. According to the tropical air-sea interaction waves we obtain here, a possible explanation to the propagating process of ENSO events is given.
基金financially supported by the Project funded by China Postdoctoral Science Foundation (NO.2022M723500)the National Natural Science Foundation of China (NO.52204069)the Sinopec Science and Technology Project of China (NO.P22015)。
文摘High content of asphaltenes and waxes leads to the high pour point and the poor flowability of heavy oil,which is adverse to its efficient development and its transportation in pipe.Understanding the interaction mechanism between asphaltene-wax is crucial to solve these problems,but it is still unclear.In this paper,molecular dynamics simulation was used to investigate the interaction between asphaltenewax and its effects on the crystallization behavior of waxes in heavy oil.Results show that molecules in pure wax are arranged in a paralleled geometry.But wax molecules in heavy oil,which are close to the surface of asphaltene aggregates,are bent and arranged irregularly.When the mass fraction of asphaltenes in asphaltene-wax system(ω_(asp))is 0-25 wt%,the attraction among wax molecules decreases and the bend degree of wax molecules increases with the increase ofω_(asp).Theω_(asp)increases from 0 to 25 wt%,and the attraction between asphaltene-wax is stronger than that among waxes.This causes that the wax precipitation point changes from 353 to 333 K.While theω_(asp)increases to 50 wt%,wax molecules are more dispersed owing to the steric hindrance of asphaltene aggregates,and the interaction among wax molecules transforms from attraction to repulsion.It causes that the ordered crystal structure of waxes can't be formed at normal temperature.Simultaneously,the asphaltene,with the higher molecular weight or the more hetero atoms,has more obvious inhibition to the formation of wax crystals.Besides,resins also have an obvious inhibition on the wax crystal due to the formation of asphalteneresin aggregates with a larger radius.Our results reveal the interaction mechanism between asphaltene-wax,and provide useful guidelines for the development of heavy oil.
基金Project(51104185)supported by the National Natural Science Foundation of ChinaProject(2010QZZD003)supported by the Key Project of Central South University of Fundamental Research Funds for the Central Universities of China
文摘In order to explore the effect mechanism of solvent on the synthesis of the metal organic framework materials, the microscopic interaction between solvent and framework and the effects of N,N-dimethyl-formamide(DMF) or N-methyl- 2-pyrrolidone(NMP) on solvothermal synthesis of [Zn4O(BDC)3]8 were investigated through a combined DFT and experimental study. XRD and SEM showed that the absorbability of NMP in the pore of [Zn4O(BDC)3]8 was weaker than that of DMF. The thermal decomposition temperature of [Zn4O(BDC)3]8 synthesized in DMF was higher than that in NMP according to TG and FT-IR. In addition, the nitrogen sorption isotherms indicated that NMP improved gas sorption property of [Zn4O(BDC)3]8. The COSMO optimized calculations indicated that the total energy of Zn4O(BDC)3 in NMP was higher than that in DMF, and compared with non-solvent system, the charge of zinc atoms decreased and the charge value was the smallest in NMP. Furthermore, the interaction of DMF, NMP or DEF in [Zn4O(BDC)3]8 crystal model was calculated by DFT method. The results suggested that NMP should be easier to be removed from pore of materials than DMF from the point of view of energy state. It can be concluded that NMP was a favorable solvent to synthesize [Zn4O(BDC)3]8 and the microscopic mechanism was that the binding force between Zn4O(BDC)3 and NMP molecule was weaker than DMF.
基金Key Projects of Applied Basic and Frontier Technology Research of Tianjin under contract No.13JCZDJC29300scientific research plan program of Tianjin Agricultural University under contract No.2009D005the National Natural Science Foundation of China under contract No.31200400
文摘Research of interaction mechanism between Chlorella vulgaris and two bacterial strains(Z-QD08 and Z-QS01) were conducted under laboratory conditions.Growth rates of bacteria and C.vulgaris were tested under co-culture conditions to evaluate the effects of concentrations of C.vulgaris and bacteria on their interactions.To test whether the availability of inorganic nutrients,vitamins and trace metals affects the interactions between C.vulgaris and bacteria,experiments were performed with or without the culture medium filtrate of C.vulgaris or bacteria.The results showed that the growth of C.vulgaris was promoted at low concentrations of bacteria(5×106cells/ml),and expressed a positive correlation with the bacteria density,whereas opposite trend was observed for treatments with high bacteria density(10×106cells/ml and 20×106cells/ml).The growth rate of bacteria decreased with the increasing concentrations of C.vulgaris.The growth of bacteria Z-QD08 was inhibited by C.vulgaris through interference competition,while the mechanism for interaction between bacteria Z-QS01 and C.vulgaris was resource competition.The influence of cell density on the interaction between microalgae and bacteria was also discussed.These experiments confirm some elements of published theory on interactions between heterotrophic bacteria and microalgae and suggest that heterotrophic bacteria play an important role in the development of blooms in natural waters.
文摘The mechanism of interaction relation between the rare-earth element Ce and elements Pb and Bi in Ag-based filler metal has been studied. The results show that the compounds CePb and CeBi with high melting point can be easily produced between these three elements in the filler metal, which greatly limited the formation of the isolated phase Pb or Bi and also eliminated the bad effect of impurity elements Pb and Bi on the spreading property of Ag-based filler metal. The metallurgical and quantum-mechanical bond formation analysis show that a strong chemical affinity was existed between the rare-earth element Ce and impurity elements Pb and Bi, which was proved by the XRD analysis results.
基金financially supported by the National Natural Science Foundation of China (No.52204084)the Interdisciplinary Research Project for Young Teachers of USTB (the Fundamental Research Funds for the Central Universities,No.FRF-IDRY-20-013)+3 种基金the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program (No.QNXM20220009)the Fundamental Research Funds for the Central Universities (No.FRF-TP-20-041A1)the China Postdoctoral Science Foundation (No.2021M700388)the National Key R&D Program of China (Nos.2022YFC2905600 and 2022YFC3004601)。
文摘Understanding the in situ stress state is crucial in many engineering problems and earth science research.The present article presents new insights into the interaction mechanism between the stress state and faults.In situ stresses can be influenced by various factors,one of the most important being the existence of faults.A fault could significantly affect the value and direction of the stress components.Reorientation and magnitude changes in stresses exist adjacent to faults and stress jumps/discontinuities across the fault.By contrast,the change in the stress state may lead to the transformation of faulting type and potential fault reactivation.Qualitative fault reactivation assessment using characteristic parameters under the current stress environment provides a method to assess the slip tendency of faults.The correlation between in situ stresses and fault properties enhances the ability to predict the fault slip tendency via stress measurements,which can be used to further refine the assessment of the fault reactivation risk.In the future,stress measurements at greater depths and long-term continuous real-time stress monitoring near/on key parts of faults will be essential.In addition,much attention needs to be paid to distinguishing the genetic mechanisms of abnormal stress states and the type and scale of stress variations and exploring the mechanisms of pre-faulting anomaly and fault reactivation.
基金supported by the National Natural Science Foundation of China(grant No.41202103)China Postdoctoral Science Foundation(grant No. 2016M591350)
文摘Objective Shale gas is as an important kind of unconventional natural gas,with a great resource potential,and its exploration and development has attracted much attention around the world.Organic matter(OM)pores are a common constituent in shales and form the dominant pore network of many shale gas systems.
基金financially supported by the National Science Foundation of China(Grant Nos.51804033 and 51936001)Natural Science Foundation of Jiangsu Province(Grant No.BK20170457)+3 种基金Program of Great Wall Scholar(Grant No.CIT&TCD20180313)Jointly Projects of Beijing Natural Science FoundationBeijing Municipal Education Commission(Grant No.KZ201810017023)Beijing Youth Talent Support Program(CIT&TCD201804037).
文摘In this study,we use the extended finite element method(XFEM)with a consideration of junction enrichment functions to investigate the mechanics of hydraulic fractures related to naturally cemented fractures.In the proposed numerical model,the lubrication equation is adopted to describe the fluid flow within fractures.The fluid-solid coupling systems of the hydraulic fracturing problem are solved using the Newton-Raphson method.The energy release rate criterion is used to determine the cross/arrest behavior between a hydraulic fracture(HF)and a cemented natural fracture(NF).The failure patterns and mechanisms of crack propagation at the intersection of natural fractures are discussed.Simulation results show that after crossing an NF,the failure mode along the cemented NF path may change from the tensile regime to the shear or mixed-mode regime.When an advancing HF kinks back toward the matrix,the failure mode may gradually switch back to the tensile-dominated regime.Key factors,including the length of the upper/lower portion of the cemented NF,horizontal stress anisotropy,and the intersection angle of the crack propagation are investigated in detail.An uncemented or partially cemented NF will form a more complex fracture network than a cemented NF.This study provides insight into the formation mechanism of fracture networks in formations that contain cemented NF.
基金Funded by the National Natural Science Foundation of China(No.51472188)
文摘The interaction mechanism and phase evolution of ammonium polyphosphate(APP)mixed with muscovite(APP/muscovite)were studied by TG,XRD and SEM,respectively,during heating.When the temperature is not higher than 300 ℃,muscovite has no effect on the thermaldecomposition of APP,and the initialdecomposition temperature of APP/muscovite at 283 ℃ is basically the same as the APP at 295 ℃,and the main thermaldecomposition products are polyphosphoric acid and NH_4H_2PO_4 at 300 ℃.The polyphosphoric acid,the decomposition products of APP,can enable K and Siout of muscovite and interact with muscovite chemically to generate Al_2O_3·2SiO_2,α-SiO_2 and phosphates(AlPO_4 and K_5P_3O_(10))compounds during 400 ℃-800 ℃,which own obvious adhesive phenomenon and porous structure with the apparent porosity of 58.4%.Further reactions between phosphates other than reactions among Al_2O_3·2SiO_2 and α-SiO_2 can generate KAlP_2O_7 at 1 000 ℃ and the density of residualproduct is improved by low melting point phosphate filling pore to form relatively dense structure and decrease the apparent porosity to 44.4%.The flame resistant and self-supported ceramic materials are expected to enhance the fire-retarding synergistic effect between APP and muscovite.
文摘Human immunodeficiency virus(HIV) and tuberculosis(TB) coinfection is a serious public health problem. HIV and TB promote each other, accelerating development of HIV to acquired immunodeficiency syndrome(AIDS) and heightening TB mortality. Determining interaction mechanism between HIV and Mycobacterium tuberculosis can lead to development of effective treatments. This study summarizes prevalence status of AIDS and TB coinfection and research advances concerning their interaction mechanism.
基金Project(2012zzts101)supported by the Fundamental Research Funds for the Central Universities,China
文摘Carboxylmethyl cellulose(CMC) has become a commercial organic binder in agglomeration of iron ore concentrates. The relative molecular mass and degree of substitution(DS) of CMC have a large impact on its binding performance. The interaction mechanism between CMC and iron ore particles was analyzed through Zeta potential measurements, adsorption measurements and infrared spectra. The results show that the interaction is chemical adsorption-oriented and the CMC's adsorption performance is related to the properties of CMC as well as the type of iron oxides. CMC has a greater affinity to Fe2O3 than Fe3O4, and CMC with higher relative molecular mass shows a higher adsorption isotherm. Pelletization of practical iron ore concentrates added with CMC further illustrates that CMC with higher relative molecular mass or DS exhibits a better binding performance, which is consistent with the results of adsorption tests.
文摘The existence of specific biorhythms and the role of geomagnetic and/or solar magnetic activities are well-established by appropriate correlations in chronobiology. From a physical viewpoint, there are two different accesses to biorhythms to set up connections to molecular processes: quantum mechanical perturbation theoretical methods and their resonance dominators to characterize specific interactions between constituents. These methods permit the treatment of molecular processes by circuits with characteristic resonances and “beat-frequencies”, which result from primarily fast physical processes. As examples, the tunneling processes between DNA base pairs (H bonds), the ATP decomposition and the irradiation of tumor cells are accounted for.
基金the National Natural Science Foundation of China(52276189,52106241)Natural Science Foundation of Jiangsu Province(BK20221248)for financial support。
文摘Bimolecular interactions play crucial roles in lignin pyrolysis.The tautomerization of key intermediates has a significant impact on the formation of stable products,whereas bimolecular tautomerization has been rarely clarified.In the present work,the bimolecular tautomerization mechanism induced by both concerted and radical interactions was proposed and carefully confirmed.A characteristicβ-O-4 lignin dimer,2-phenoxy-1-phenylethanol(α-OH-PPE),was used as the model compound to reveal two representative keto-phenol and enol-keto tautomerism mechanisms,based on theoretical calculations combined with pyrolysis experiments.The results indicate that the unimolecular tautomerism as the rate-determining step limits product generation,due to fairly high energy barriers.While the free hydroxy compounds and radicals derived from initial pyrolysis can further initiate bimolecular tautomerism reactions through the one-step concerted hydroxyl-assisted hydrogen transfer(hydroxylAHT)and two-step radical hydrogen abstraction interactions,respectively.By alleviating and even avoiding the large ring tension of tautomerism,the unstable tautomers(2,4-cyclohexadienone and1-hydroxy styrene)can be rapidly tautomerized into stable phenol and acetophenone with the help of intermolecular interaction.Benefitting from the significant advantage of retro-ene fragmentation in breaking theβ-O-4 bond to form tautomers,a large amount of stable phenolic and ketone products can be generated following bimolecular tautomerization in the pyrolysis ofβ-O-4 linked lignin.
文摘Semi-metal friction material was applied widely in brake process of traffic and dynamical system. The friction materials with rare earth additive were manufactured by heating press molding process. The effects of different reinforcing fibers and adhesives on the properties of the materials were studied by changing the formula. The results showed that the friction materials with YSM resin adhesive and hybrid fibers (Kevlar pulp and steel fiber) had higher and more stable friction coefficient and lower wear rate. Semi-metal friction materials with rare earths formed iron-rich surface layer in the worn surface, and the mechanisms of wear had obvious differences at typical temperature ranges.
基金Project(51674244)supported by the National Natural Science Foundation of ChinaProject(2014QNA47)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(BK20151145)supported by the Natural Science Foundation of Jiangsu Province,China
文摘A three-body model composed of two geological bodies and a structural body was developed to explore how ground-support systems respond to axial loads in underground spaces. A detailed method was designed to fabricate physical scale-model specimens for testing. Three types of specimens were constructed to investigate how three different materials reacted to each other under load. The three types of specimens were called the weak-rock model, hard-rock model and mixed model. The results of uniaxial compression tests show that the mechanical behaviour of a three-body structural support is closely related to the interaction between the three bodies, but owing to different mechanisms, the three types of material behave very differently. To explain the test results, numerical simulations were conducted to explore fully the load responses of the three-body model specimens. The numerical simulations verify the hypotheses proposed for how the three types of material interact.
文摘ESR measurements using spin trapping technique were carried out for β-carotene-halobenzene system under UV light irradiation.The ESR spectra observed in the presence and in the absence of β-carotene are markedly different.The possible scheme of β-carotene interacting with halogen atom was proposed.