The effect of fast cooling rate on the microstructure and mechanical properties of low-carbon high-strength steel annealed in the intercritical region was investigated using a Gleeble 1500 thermomechanical simulator a...The effect of fast cooling rate on the microstructure and mechanical properties of low-carbon high-strength steel annealed in the intercritical region was investigated using a Gleeble 1500 thermomechanical simulator and a continuous annealing thermomeehanical simulator. The results showed that the microstructure consisted of ferrite and bainite as the main phases with a small amount of retained austenite and martensite islands at cooling rate of 5 and 50 ℃/s, respectively. Fast cooling after continuous annealing affected all constituents of the microstructure. The mechanical properties were improved considerably. Ultimate tensile strength (U-TS) increased and total elongation (TEL) decreased with increasing cooling rate in all specimens. The specimen 1 at a cooling rate of 5 ℃/s exhibited the maximum TEL and UTSxTEL (20% and 27 200 MPa%, respectively) because of the competition between weakening by presence of the retained austenite plus the carbon indigence by carbide precipitation, and strengthening by martensitic islands and precipitation. The maximum UTS and YS (1 450 and 951 MPa, respectively) were obtained for specimen 2 at a cooling rate of 50 ℃/s. This is attributed to the effect of dispersion strengthening of finer martensite islands and the effect of precipitation strengthening of carbide precipitates.展开更多
A significant amount of austenite can be retained by rapid cooling following intercritical annealing and holding at the bainite transformation range in steel with comparatively low carbon and silicon contents. Retaine...A significant amount of austenite can be retained by rapid cooling following intercritical annealing and holding at the bainite transformation range in steel with comparatively low carbon and silicon contents. Retained austenite is blocky and very fine and moderately stabilized due to C enrichment. The elongation and the strength-ductility balance of the steel can be enhanced considerably due to strain-induced martensite transformation and transformation-induced plasticity (TRIP) of retained austenite.展开更多
In this study, the intercritical annealing process for a typical low-carbon aluminum killed steel is investigated. A cold-rolled sheet was annealed at intercfitical temperatures ranging from 730 ℃ to 770 ℃ and then ...In this study, the intercritical annealing process for a typical low-carbon aluminum killed steel is investigated. A cold-rolled sheet was annealed at intercfitical temperatures ranging from 730 ℃ to 770 ℃ and then cooled in air or water. The annealed steel was then baked at 210 ℃, and its mechanical properties and microstructures were analyzed in detail. It is shown that after the air-cooling process,the strength of steel decreased and ductility increased with an increase in the annealing temperature. However, after water-cooling, the strength and ductility both increased with the increase of annealing temperature. These results are attributed to the property- optimization of the steel.展开更多
The success of obtaining both high strength and high formability in low-carbon quenched and partitioned( Q & P) steels depends on their microstructural constituents. In this regard,the effect of annealing temperat...The success of obtaining both high strength and high formability in low-carbon quenched and partitioned( Q & P) steels depends on their microstructural constituents. In this regard,the effect of annealing temperature on the volume fraction and distribution of carbon in retained austenite in a low-carbon Q & P steel was studied. The microstructures of Q & P steels subjected to different annealing temperatures were studied in detail by electron microscopy,electron microprobe,and X-ray diffraction techniques. The results suggest that intercritical annealing is beneficial in increasing the volume fraction of retained austenite,which is a consequence of the distribution of alloying elements during intercritical annealing. Moreover,the mechanical properties of intercritically annealed Q & P steel,especially its ductility,are significantly enhanced.展开更多
In order to investigate the carbide dissolution mechanism of high carbon-chromium bearing steel during the intercritical austenitization, the database of TCFE7 of Thermo-calc and MOBFE of DICTRA software were used to ...In order to investigate the carbide dissolution mechanism of high carbon-chromium bearing steel during the intercritical austenitization, the database of TCFE7 of Thermo-calc and MOBFE of DICTRA software were used to calculate the elements diffusion kinetic and the evolution law of volume fraction of carbide. DIL805 A dilatometer was used to simulate the intercritical heat treatment. The microstructure was observed by scanning electron microscopy(SEM), and the micro-hardness was tested. The experimental results indicate that the dissolution of carbide is composed of two stages: initial austenite growth governed by carbon diffusion which sharply moves up the micro-hardness of quenched martensite, and subsequent growth controlled by diffusion of Cr elements in M3 C. The volume fraction of M3 C decreases with the increasing holding time, and the metallographic analysis shows a great agreement with values calculated by software.展开更多
Steels of constant manganese and carbon contents with silicon content of 0.34 %- 2.26% were cast. The as-cast steels were then hot rolled at 1 100 ℃ in five passes to reduce the cast ingot thickness from 80 to 4 mm, ...Steels of constant manganese and carbon contents with silicon content of 0.34 %- 2.26% were cast. The as-cast steels were then hot rolled at 1 100 ℃ in five passes to reduce the cast ingot thickness from 80 to 4 mm, air cooled to room temperature and cold rolled to 2 mm in thickness. Dual phase microstructures with different volume fraction of martensite were obtained through the intercritical annealing of the steels at different temperatures for 15 min followed by water quenching. In addition to intercritical annealing temperature, silicon content also altered the volume fraction of martensite in dual phase steels. The partitioning of manganese in dual phase silicon steels was investigated using energy-dispersive spectrometer (EDS). The partitioning coefficient, defined as the ratio of the amounts of alloying element in the austenite to that in the adjacent ferrite, for manganese increased with increasing intercritieal annealing temperature and silicon content of steels. It was also found that the solubility of manganese in ferrite and austenite decreased with increasing intereritical temperature. The results were discussed by the diffusivity and the solubility of manganese in ferrite and austenite existed in dual phase silicon steels.展开更多
The effect of intercritical deformation on retained austenite and tensile performance of a low-carbon Si-Mn steel in modified quenching and bainitic partitioning processes was evaluated.The results showed that the int...The effect of intercritical deformation on retained austenite and tensile performance of a low-carbon Si-Mn steel in modified quenching and bainitic partitioning processes was evaluated.The results showed that the intercritical deformation can play a positive role in stabilizing and refining the retained austenite,and possessed promising potential in balancing tensile strength and ductility of multiphase high-strength steels.The experimental low-carbon Si-Mn steel exhibited multiphase configuration comprising polygonal ferrite,granular bainite and granular structure after two different modified quenching and bainitic partitioning processes,and the bainitic ferrite laths got refined by intercritical deformation.The volume fraction of retained austenite in film-like and blocky morphology was increased from 11.5%to 13.9%due to applied intercritical deformation,and the larger amount of retained austenite provided the sufficient transformation-induced plasticity effect and resulted in enhanced work hardening degree;in response,enhanced ultimate tensile strength 1260 MPa and fracture elongation 22.1%were obtained,leading to increased product of strength and elongation in value of 27.7 GPa% compared to 20.8 GPa% of undeformed structure.展开更多
A mesoscopic cellular automaton model was developed to study the microstructure evolution and solute redistribution of austenization during intercritical annealing of a C-Mn steel. This model enables a depiction of th...A mesoscopic cellular automaton model was developed to study the microstructure evolution and solute redistribution of austenization during intercritical annealing of a C-Mn steel. This model enables a depiction of three-stage kinetics of the transformation combined with the thermodynamic analysis:(1) the rapid austenite growth accompanied with pearlite degeneration until the pearlite dissolves completely;(2) the slower austenite growth into ferrite with a rate limiting factor of carbon diffusion in austenite;and(3) the slow austenite growth in control of the manganese diffusion until the final equilibrium reached for ferrite and austenite. The effect of the annealing temperature on the transformation kinetics and solute partition is also quantitatively rationalized using this model.展开更多
The so-called bimodal microstructure of Ti-6 Al-4 V alloy,composed of primaryαgrains(α_(p))and transformed β areas(β_(trans)),can be regarded as a"dual-phase"structure to some extent,the mechanical prope...The so-called bimodal microstructure of Ti-6 Al-4 V alloy,composed of primaryαgrains(α_(p))and transformed β areas(β_(trans)),can be regarded as a"dual-phase"structure to some extent,the mechanical properties of which are closely related to the sizes,volume fractions,distributions as well as nanohardness of the two constituents.In this study,the volume fractions of primaryαgrains(vol.%(α_(p)))were systematically modified in three series of bimodal microstructures with fixed primaryαgrain sizes(0.8μm,2.4μm and 5.0μm),by changing the intercritical annealing temperature(T_(int)).By evaluating the tensile properties at room temperature,it was found that with increasing T_(int)(decreasing vol.%(α_(p))),the yield strength of bimodal microstructures monotonically increased,while the uniform elongation firstly increased with T_(int)until 910°C and then drastically decreased afterwards,thereby dividing the T_(int)into two regions,namely region I(830-910°C)and region II(910-970℃).The detailed deformation behaviors within the two regions were studied and compared,from the perspectives of strain distribution analysis,slip system analysis as well as dislocation analysis.For bimodal microstructures in region I,due to the much lower nano-hardness ofβ_(trans)thanα_(p),there was a clear strain partitioning between the two constituents as well as a strain gradient from theα_(p)/β_(trans)interface to the grain interior ofα_(p).This activated a large number of geometrically necessary dislocations(GNDs)near the interface,mostly with components,which contributed greatly to the extraordinary work-hardening abilities of bimodal microstructures in region I.With increasing T_(int),theα_(p)/β_(trans)interface length density gradually increased and so was the density of GNDs with components,which explained the continuous increase of uniform elongation with T_(int)in this region.For bimodal microstructures in region II,where the nano-hardness ofβ_(trans)andα_(p)were comparable,neither a clear strain-partitioning tendency nor a strain gradient across theα_(p)/β_(trans)interface was observed.Consequently,only statistically stored dislocations(SSDs)with component were activated insideα_(p).The absence of dislocations together with a decreased volume fraction ofα_(p)resulted into a dramatic loss of uniform elongation for bimodal microstructures in region II.展开更多
The effect of final hot rolling in the intercritical (α+γ) region on microstructure and properties is very specific to the individual processing conditions and the chemical composition of a steel.S460 is a plate ste...The effect of final hot rolling in the intercritical (α+γ) region on microstructure and properties is very specific to the individual processing conditions and the chemical composition of a steel.S460 is a plate steel processed in this way.To reproduce at the laboratory scale,a multi-stage simulation was developed which included a high temperature austenite deformation and an isothermal hold.The effect of the applied cooling rate following intercritical deformation was investigated.At 1K/s (typical industrial cooling) the microstructure was similar to the reference sample,but included an intragranular ferrite fraction.This was due to differences in processing history,and considered to be linked to a larger prior austenite grain size.At an accelerated cooling rate (15K/s),acicular ferrite formed on shear bands within the strained austenite phase.EBSD scans have been completed to provide further information about the microstructures,with band contrast able to identify the pearlite phase at the slowest cooling rate.This is a starting point from which to focus on the ferrite morphologies.展开更多
The transformation behavior, microstructural evolution and mechanical properties were compared in a coldrolled Nb–Mo microalloyed 6.5Mn alloy after intercritical annealing(IA) and quenching and partitioning(Q & P...The transformation behavior, microstructural evolution and mechanical properties were compared in a coldrolled Nb–Mo microalloyed 6.5Mn alloy after intercritical annealing(IA) and quenching and partitioning(Q & P),respectively. The thermodynamic calculation and theoretical analysis were used to determine the optimal heat treatment parameters. The Q & P samples exhibited relatively higher strength with relatively low ductility, mainly due to the hard martensite matrix, which resulted in continuous yielding behavior upon loading, whereas the IA samples showed the significantly improved ductility, which benefited from the more sufficient transformation-induced plasticity(TRIP) effects and the softer ultrafine ferrite matrix. The dependence of yield point elongation(YPE) of IA samples on grain size demonstrated that the YPE value was in the reverse proportional relationship to the average grain size, which agreed well with theoretical analysis.展开更多
Intercritical annealing(IA) at various temperatures followed by quenching and partitioning(IAQP) treatments was conducted on a cold-rolled Fe-0.2C-1.42Si-l.87Mn(wt%) sheet steel.Optimized microstructure and enha...Intercritical annealing(IA) at various temperatures followed by quenching and partitioning(IAQP) treatments was conducted on a cold-rolled Fe-0.2C-1.42Si-l.87Mn(wt%) sheet steel.Optimized microstructure and enhanced mechanical properties were achieved through appropriate adjustment of IA temperatures.The steel which was annealed at1,033 K for 600 s,then quenched to 573 K and partitioned at 693 K for 20 min,designated as 1033 QP steel,exhibits maximum 16.3 vol% retained austenite(RA) with good mechanical properties(ultimate tensile strength 886 MPa and total elongation 27%).It was found that the thermal and mechanical stabilities of RA are mainly influenced by the combined effect of its average carbon content and amount of adjacent martensite.Furthermore,the transformation-induced plasticity effect increased the peak n-values observed at the second stage of the work hardening of IAQP steels.展开更多
The phase transformation from martensite to austenite during intercritical tempering with high heating rate in a low carbon martensitic stainless steel Fe-13%Cr-4%Ni-Mo has been investigated to clarify the microstruct...The phase transformation from martensite to austenite during intercritical tempering with high heating rate in a low carbon martensitic stainless steel Fe-13%Cr-4%Ni-Mo has been investigated to clarify the microstructure evolution in some regions of the weld joint heat affected zone (HAZ). The experimental results indicate that the start and finish temperatures of the martensite to austenite transformation keep constant when the heating rate is higher than 10 K/s, and the transformation is much faster than nickel diffusion. The mechanism of the martensite to austenite transformation changes from diffusion to diffusionless during the intercritical tempering when the heating rate is higher than 10 K/s. The diffusionless transformation and higher As temperature render it difficult for any austenite to remain at room temperature during the intercritical tempering with high heating rate that occurs in the HAZ. Adding a proper intercritical tempering with low heating rate can induce some reversed austenite in the rapid heated sample.展开更多
A new Mn-Si-Al-Mo-Nb transformation-induced plasticity steel was annealed by intercritical annealing for different durations to investigate the partitioning of C element and the volume fraction change of the microstru...A new Mn-Si-Al-Mo-Nb transformation-induced plasticity steel was annealed by intercritical annealing for different durations to investigate the partitioning of C element and the volume fraction change of the microstructural constituents. Direct experimental evidence confirms the partitioning of C elements in different phases during heat treatment by Electron probe microanalysis and X ray diffraction. The distribution of the precipitates was investigated as well. It was revealed that the microstructures and mechanical properties of the investigated steels were affected by the intercritical annealing time. According to the present experiment, the volume fraction of retained austenite and the product of tensile strength and total elongation of investigated steel decrease with increasing intercritical annealing time. It was observed that high tensile strength of 1,103 MPa, total elongation of 21.3%, and strength-ductility product of 23,493.9 MPa % could be successfully produced in this experimental steel at intercritical annealing temperature of 830 ℃, holding for 1 min, and isothermal bainite treatment of 440 ℃ for 5 min holding time.展开更多
2k factorial design is employed to find the mathematical relation between the carbon content and intercritical annealing temperature (IAT) in order to predict the responses namely martensite volume fraction (MVF),...2k factorial design is employed to find the mathematical relation between the carbon content and intercritical annealing temperature (IAT) in order to predict the responses namely martensite volume fraction (MVF), microhardness (H), yield strength (YS), ultimate tensile strength (UTS), total elongation (TEL), yield ratio (YR) and Charpy impact energy (CIE) in dual phase (DP) steels. Steels containing different carbon contents (0.085% C and 0.380% C) had been chosen for this purpose. The main advantages of factorial design are its easy implementation and the effective computation compared with the other optimization techniques, which were employed for predicting mentioned responses in the literature. To verify the proposed approach based on factorial design, experiments for verification were performed. The results of the verification experiments and the mathematical models are in accordance with each other and the literature.展开更多
In this study, the effect of pre-deformation at recrystallization and non-recrystallization zone on the grain ultrafining by the subsequent intercritical deformation (ID) was investigated on low-carbon microalloyed ...In this study, the effect of pre-deformation at recrystallization and non-recrystallization zone on the grain ultrafining by the subsequent intercritical deformation (ID) was investigated on low-carbon microalloyed steel. The results showed that ultrafine grain microstructure with an average size of - 1.0 μm was fabricated through pre-deformation in the recrys- tallization zone followed by ID. When pre-deformed at the non-recrystallization zone prior to ID, the grain size increased to 1.6 μm with a heterogeneous distribution along with the well-developed dynamic recovery of ferrite. The grain ultrafining mechanism was attributed to the combined action of the deformation-induced ferrite transformation and the continuous dynamic recrystallization. In particular, the continuous dynamic recrystallization process during ID occurred on the pro-eutectoid ferrite as a result of the subgrain rotation mechanism and the absorbing dislocations mechanism.展开更多
Mn distribution and austenite morphology at the early stage of intercritical annealing of 5Mn steel were investigated. It was experimentally demonstrated that a newly formed 20 nm-thick austenite was formed without th...Mn distribution and austenite morphology at the early stage of intercritical annealing of 5Mn steel were investigated. It was experimentally demonstrated that a newly formed 20 nm-thick austenite was formed without the partitioning of Mn. The elemental analysis confirmed that the growth of austenite should be controlled by the diffusion of C prior to the diffusion of Mn at a low heating rate. The austenite growth started under negligible-partitioning local equilibrium mode and then switched to partitioning local equilibrium mode. Mn segregation at the γ/α interface suggested that the collector plate mechanism was the essential way of Mn partitioning at the early stage of austenite growth.展开更多
Pre-quenching prior to intercritical annealing quenching and partitioning(Q-P)process was proposed to enhance the volume fraction of retained austenite and the mechanical properties of a low-carbon Si Mn steel.The int...Pre-quenching prior to intercritical annealing quenching and partitioning(Q-P)process was proposed to enhance the volume fraction of retained austenite and the mechanical properties of a low-carbon Si Mn steel.The intercritical austenite exhibited a lath morphology due to the martensitic microstructure maintained prior to intercritical annealing.Consequently,the alloy element enrichment of intercritical austenite,in which the alloy element was aggregated at the austenitic boundaries and further diffused inside,improved the stability of intercritical austenite and decreased the M_(s) of it.As a result,the fraction of retained austenite in steel was increased,which improved the mechanical properties of the experimental Q-P steel.展开更多
A cold rolled dual phase (DP) steel with the C-Si-Mn alloy system was trial-produced in the laboratory, utilizing a Gleeble-3800 thermal simulator. The effects of continuous annealing parameters on the mechanical pr...A cold rolled dual phase (DP) steel with the C-Si-Mn alloy system was trial-produced in the laboratory, utilizing a Gleeble-3800 thermal simulator. The effects of continuous annealing parameters on the mechanical properties and microstructures of the DP steel were investigated by mechanical testing and microstructure observation. The results show that soaking between 760 and 820℃ for more than 80 s, rapid cooling at the rate of more than 30℃/s from the quenching temperature between 620 and 680℃, and overaging lower than 300℃ are beneficial for the mechanical properties of DP steels. An appropriate proportion of the two phases is one of the key factors for the favorable properties of DP steels. If the volume fraction of martensite and, thereby, free dislocations are deficient, the tensile strength and n value of DP steels will decrease, whereas, the yield strength will increase. But if the volume fraction of martensite is excessive to make it become a dominant phase, the yield and tensile strength will increase, whereas, the elongation will decrease obviously. When rapid cooling rate is not fast enough, pearlite or cementite will appear, which will degrade the mechanical properties. Even though martensite is sufficient, if it is decomposed in high temperature tempering, the properties will he unsatisfied.展开更多
Here we present a novel approach of intercritical heat treatment for microstructure tailoring,in which intercritical annealing is introduced between conventional quenching and tempering.This induced a heterogeneous mi...Here we present a novel approach of intercritical heat treatment for microstructure tailoring,in which intercritical annealing is introduced between conventional quenching and tempering.This induced a heterogeneous microstructure consisting of soft intercritical ferrite and hard tempered martensite,resulting in a low yield ratio(YR)and high impact toughness in a high-strength low-alloy steel.The initial yielding and subsequent work hardening behavior of the steel during tensile deformation were modified by the presence of soft intercritical ferrite after intercritical annealing,in comparison to the steel with full martensitic microstructure.The increase in YR was related to the reduction in hardness difference between the soft and hard phases due to the precipitation of nano-carbides and the recovery of dislocations during tempering.The excellent low-temperature toughness was ascribed not only to the decrease in probability of microcrack initiation for the reduction of hardness difference between two phases,but also to the increase in resistance of microcrack propagation caused by the high density of high angle grain boundaries.展开更多
基金Sponsored by National Natural Science Foundation of China(No.51004037)Shenyang City Application Basic Research Project(No.F13-316-1-15)
文摘The effect of fast cooling rate on the microstructure and mechanical properties of low-carbon high-strength steel annealed in the intercritical region was investigated using a Gleeble 1500 thermomechanical simulator and a continuous annealing thermomeehanical simulator. The results showed that the microstructure consisted of ferrite and bainite as the main phases with a small amount of retained austenite and martensite islands at cooling rate of 5 and 50 ℃/s, respectively. Fast cooling after continuous annealing affected all constituents of the microstructure. The mechanical properties were improved considerably. Ultimate tensile strength (U-TS) increased and total elongation (TEL) decreased with increasing cooling rate in all specimens. The specimen 1 at a cooling rate of 5 ℃/s exhibited the maximum TEL and UTSxTEL (20% and 27 200 MPa%, respectively) because of the competition between weakening by presence of the retained austenite plus the carbon indigence by carbide precipitation, and strengthening by martensitic islands and precipitation. The maximum UTS and YS (1 450 and 951 MPa, respectively) were obtained for specimen 2 at a cooling rate of 50 ℃/s. This is attributed to the effect of dispersion strengthening of finer martensite islands and the effect of precipitation strengthening of carbide precipitates.
基金supported by the National Natural Science Foundation of China(No.50334010)the Doctor Degree Thesis Subsidization Item of Northeastern University(No.200302)
文摘A significant amount of austenite can be retained by rapid cooling following intercritical annealing and holding at the bainite transformation range in steel with comparatively low carbon and silicon contents. Retained austenite is blocky and very fine and moderately stabilized due to C enrichment. The elongation and the strength-ductility balance of the steel can be enhanced considerably due to strain-induced martensite transformation and transformation-induced plasticity (TRIP) of retained austenite.
文摘In this study, the intercritical annealing process for a typical low-carbon aluminum killed steel is investigated. A cold-rolled sheet was annealed at intercfitical temperatures ranging from 730 ℃ to 770 ℃ and then cooled in air or water. The annealed steel was then baked at 210 ℃, and its mechanical properties and microstructures were analyzed in detail. It is shown that after the air-cooling process,the strength of steel decreased and ductility increased with an increase in the annealing temperature. However, after water-cooling, the strength and ductility both increased with the increase of annealing temperature. These results are attributed to the property- optimization of the steel.
文摘The success of obtaining both high strength and high formability in low-carbon quenched and partitioned( Q & P) steels depends on their microstructural constituents. In this regard,the effect of annealing temperature on the volume fraction and distribution of carbon in retained austenite in a low-carbon Q & P steel was studied. The microstructures of Q & P steels subjected to different annealing temperatures were studied in detail by electron microscopy,electron microprobe,and X-ray diffraction techniques. The results suggest that intercritical annealing is beneficial in increasing the volume fraction of retained austenite,which is a consequence of the distribution of alloying elements during intercritical annealing. Moreover,the mechanical properties of intercritically annealed Q & P steel,especially its ductility,are significantly enhanced.
基金Funded by the National High-tech Research and Development Program of China(863 Program)
文摘In order to investigate the carbide dissolution mechanism of high carbon-chromium bearing steel during the intercritical austenitization, the database of TCFE7 of Thermo-calc and MOBFE of DICTRA software were used to calculate the elements diffusion kinetic and the evolution law of volume fraction of carbide. DIL805 A dilatometer was used to simulate the intercritical heat treatment. The microstructure was observed by scanning electron microscopy(SEM), and the micro-hardness was tested. The experimental results indicate that the dissolution of carbide is composed of two stages: initial austenite growth governed by carbon diffusion which sharply moves up the micro-hardness of quenched martensite, and subsequent growth controlled by diffusion of Cr elements in M3 C. The volume fraction of M3 C decreases with the increasing holding time, and the metallographic analysis shows a great agreement with values calculated by software.
文摘Steels of constant manganese and carbon contents with silicon content of 0.34 %- 2.26% were cast. The as-cast steels were then hot rolled at 1 100 ℃ in five passes to reduce the cast ingot thickness from 80 to 4 mm, air cooled to room temperature and cold rolled to 2 mm in thickness. Dual phase microstructures with different volume fraction of martensite were obtained through the intercritical annealing of the steels at different temperatures for 15 min followed by water quenching. In addition to intercritical annealing temperature, silicon content also altered the volume fraction of martensite in dual phase steels. The partitioning of manganese in dual phase silicon steels was investigated using energy-dispersive spectrometer (EDS). The partitioning coefficient, defined as the ratio of the amounts of alloying element in the austenite to that in the adjacent ferrite, for manganese increased with increasing intercritieal annealing temperature and silicon content of steels. It was also found that the solubility of manganese in ferrite and austenite decreased with increasing intereritical temperature. The results were discussed by the diffusivity and the solubility of manganese in ferrite and austenite existed in dual phase silicon steels.
基金National Natural Science Foundation of China(Nos.51574107 and U1860105)Natural Science Foundation of Hebei Province(No.E2017209048)Science and Technology Research Project for Institutions of Higher Learning of Hebei Province(No.ZD2019064)for grant and financial support.
文摘The effect of intercritical deformation on retained austenite and tensile performance of a low-carbon Si-Mn steel in modified quenching and bainitic partitioning processes was evaluated.The results showed that the intercritical deformation can play a positive role in stabilizing and refining the retained austenite,and possessed promising potential in balancing tensile strength and ductility of multiphase high-strength steels.The experimental low-carbon Si-Mn steel exhibited multiphase configuration comprising polygonal ferrite,granular bainite and granular structure after two different modified quenching and bainitic partitioning processes,and the bainitic ferrite laths got refined by intercritical deformation.The volume fraction of retained austenite in film-like and blocky morphology was increased from 11.5%to 13.9%due to applied intercritical deformation,and the larger amount of retained austenite provided the sufficient transformation-induced plasticity effect and resulted in enhanced work hardening degree;in response,enhanced ultimate tensile strength 1260 MPa and fracture elongation 22.1%were obtained,leading to increased product of strength and elongation in value of 27.7 GPa% compared to 20.8 GPa% of undeformed structure.
基金financially supported by the National Natural Science Foundation of China(Nos.51771192,51371169 and U1708252)financial support from the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2016176)。
文摘A mesoscopic cellular automaton model was developed to study the microstructure evolution and solute redistribution of austenization during intercritical annealing of a C-Mn steel. This model enables a depiction of three-stage kinetics of the transformation combined with the thermodynamic analysis:(1) the rapid austenite growth accompanied with pearlite degeneration until the pearlite dissolves completely;(2) the slower austenite growth into ferrite with a rate limiting factor of carbon diffusion in austenite;and(3) the slow austenite growth in control of the manganese diffusion until the final equilibrium reached for ferrite and austenite. The effect of the annealing temperature on the transformation kinetics and solute partition is also quantitatively rationalized using this model.
基金financial support from Cross-ministerial Strategic Innovation Promotion Program(SIP)supported by the Cabinet Office of Japanese government and the Elements Strategy Initiative for Structural Materials(ESISM)in Kyoto University supported by the Ministry of Education,Culture,Sports,Science and Technology(MEXT),Japansupport by the Fundamental Research Funds for the Central Universities under grant No.N180204015。
文摘The so-called bimodal microstructure of Ti-6 Al-4 V alloy,composed of primaryαgrains(α_(p))and transformed β areas(β_(trans)),can be regarded as a"dual-phase"structure to some extent,the mechanical properties of which are closely related to the sizes,volume fractions,distributions as well as nanohardness of the two constituents.In this study,the volume fractions of primaryαgrains(vol.%(α_(p)))were systematically modified in three series of bimodal microstructures with fixed primaryαgrain sizes(0.8μm,2.4μm and 5.0μm),by changing the intercritical annealing temperature(T_(int)).By evaluating the tensile properties at room temperature,it was found that with increasing T_(int)(decreasing vol.%(α_(p))),the yield strength of bimodal microstructures monotonically increased,while the uniform elongation firstly increased with T_(int)until 910°C and then drastically decreased afterwards,thereby dividing the T_(int)into two regions,namely region I(830-910°C)and region II(910-970℃).The detailed deformation behaviors within the two regions were studied and compared,from the perspectives of strain distribution analysis,slip system analysis as well as dislocation analysis.For bimodal microstructures in region I,due to the much lower nano-hardness ofβ_(trans)thanα_(p),there was a clear strain partitioning between the two constituents as well as a strain gradient from theα_(p)/β_(trans)interface to the grain interior ofα_(p).This activated a large number of geometrically necessary dislocations(GNDs)near the interface,mostly with components,which contributed greatly to the extraordinary work-hardening abilities of bimodal microstructures in region I.With increasing T_(int),theα_(p)/β_(trans)interface length density gradually increased and so was the density of GNDs with components,which explained the continuous increase of uniform elongation with T_(int)in this region.For bimodal microstructures in region II,where the nano-hardness ofβ_(trans)andα_(p)were comparable,neither a clear strain-partitioning tendency nor a strain gradient across theα_(p)/β_(trans)interface was observed.Consequently,only statistically stored dislocations(SSDs)with component were activated insideα_(p).The absence of dislocations together with a decreased volume fraction ofα_(p)resulted into a dramatic loss of uniform elongation for bimodal microstructures in region II.
文摘The effect of final hot rolling in the intercritical (α+γ) region on microstructure and properties is very specific to the individual processing conditions and the chemical composition of a steel.S460 is a plate steel processed in this way.To reproduce at the laboratory scale,a multi-stage simulation was developed which included a high temperature austenite deformation and an isothermal hold.The effect of the applied cooling rate following intercritical deformation was investigated.At 1K/s (typical industrial cooling) the microstructure was similar to the reference sample,but included an intragranular ferrite fraction.This was due to differences in processing history,and considered to be linked to a larger prior austenite grain size.At an accelerated cooling rate (15K/s),acicular ferrite formed on shear bands within the strained austenite phase.EBSD scans have been completed to provide further information about the microstructures,with band contrast able to identify the pearlite phase at the slowest cooling rate.This is a starting point from which to focus on the ferrite morphologies.
基金financially supported by the National Natural Science Foundation of China(No.51401050)the Fundamental Research Funding for the Central Universities(No.N160204001)supported by the Australian Research Council(ARC)Laureate Fellowship(Prof.Hodgson)
文摘The transformation behavior, microstructural evolution and mechanical properties were compared in a coldrolled Nb–Mo microalloyed 6.5Mn alloy after intercritical annealing(IA) and quenching and partitioning(Q & P),respectively. The thermodynamic calculation and theoretical analysis were used to determine the optimal heat treatment parameters. The Q & P samples exhibited relatively higher strength with relatively low ductility, mainly due to the hard martensite matrix, which resulted in continuous yielding behavior upon loading, whereas the IA samples showed the significantly improved ductility, which benefited from the more sufficient transformation-induced plasticity(TRIP) effects and the softer ultrafine ferrite matrix. The dependence of yield point elongation(YPE) of IA samples on grain size demonstrated that the YPE value was in the reverse proportional relationship to the average grain size, which agreed well with theoretical analysis.
基金financially supported by the National Natural Science Foundation of China (No. 51174251)the National Basic Research Program of China (No. 2010CB630803)
文摘Intercritical annealing(IA) at various temperatures followed by quenching and partitioning(IAQP) treatments was conducted on a cold-rolled Fe-0.2C-1.42Si-l.87Mn(wt%) sheet steel.Optimized microstructure and enhanced mechanical properties were achieved through appropriate adjustment of IA temperatures.The steel which was annealed at1,033 K for 600 s,then quenched to 573 K and partitioned at 693 K for 20 min,designated as 1033 QP steel,exhibits maximum 16.3 vol% retained austenite(RA) with good mechanical properties(ultimate tensile strength 886 MPa and total elongation 27%).It was found that the thermal and mechanical stabilities of RA are mainly influenced by the combined effect of its average carbon content and amount of adjacent martensite.Furthermore,the transformation-induced plasticity effect increased the peak n-values observed at the second stage of the work hardening of IAQP steels.
基金the financial support from the National Science Foundation of China(No.51201167)the Youth Innovation Promotion Association Chinese Academy of Sciences and National Science and Technology Major Project(No.2011ZX06004-016)
文摘The phase transformation from martensite to austenite during intercritical tempering with high heating rate in a low carbon martensitic stainless steel Fe-13%Cr-4%Ni-Mo has been investigated to clarify the microstructure evolution in some regions of the weld joint heat affected zone (HAZ). The experimental results indicate that the start and finish temperatures of the martensite to austenite transformation keep constant when the heating rate is higher than 10 K/s, and the transformation is much faster than nickel diffusion. The mechanism of the martensite to austenite transformation changes from diffusion to diffusionless during the intercritical tempering when the heating rate is higher than 10 K/s. The diffusionless transformation and higher As temperature render it difficult for any austenite to remain at room temperature during the intercritical tempering with high heating rate that occurs in the HAZ. Adding a proper intercritical tempering with low heating rate can induce some reversed austenite in the rapid heated sample.
基金supported by the National Natural Science Foundation of China (No. 51031001)
文摘A new Mn-Si-Al-Mo-Nb transformation-induced plasticity steel was annealed by intercritical annealing for different durations to investigate the partitioning of C element and the volume fraction change of the microstructural constituents. Direct experimental evidence confirms the partitioning of C elements in different phases during heat treatment by Electron probe microanalysis and X ray diffraction. The distribution of the precipitates was investigated as well. It was revealed that the microstructures and mechanical properties of the investigated steels were affected by the intercritical annealing time. According to the present experiment, the volume fraction of retained austenite and the product of tensile strength and total elongation of investigated steel decrease with increasing intercritical annealing time. It was observed that high tensile strength of 1,103 MPa, total elongation of 21.3%, and strength-ductility product of 23,493.9 MPa % could be successfully produced in this experimental steel at intercritical annealing temperature of 830 ℃, holding for 1 min, and isothermal bainite treatment of 440 ℃ for 5 min holding time.
文摘2k factorial design is employed to find the mathematical relation between the carbon content and intercritical annealing temperature (IAT) in order to predict the responses namely martensite volume fraction (MVF), microhardness (H), yield strength (YS), ultimate tensile strength (UTS), total elongation (TEL), yield ratio (YR) and Charpy impact energy (CIE) in dual phase (DP) steels. Steels containing different carbon contents (0.085% C and 0.380% C) had been chosen for this purpose. The main advantages of factorial design are its easy implementation and the effective computation compared with the other optimization techniques, which were employed for predicting mentioned responses in the literature. To verify the proposed approach based on factorial design, experiments for verification were performed. The results of the verification experiments and the mathematical models are in accordance with each other and the literature.
基金financially supported by the National Key Research and Development Program of China(Grant No.2017YFB0304901)
文摘In this study, the effect of pre-deformation at recrystallization and non-recrystallization zone on the grain ultrafining by the subsequent intercritical deformation (ID) was investigated on low-carbon microalloyed steel. The results showed that ultrafine grain microstructure with an average size of - 1.0 μm was fabricated through pre-deformation in the recrys- tallization zone followed by ID. When pre-deformed at the non-recrystallization zone prior to ID, the grain size increased to 1.6 μm with a heterogeneous distribution along with the well-developed dynamic recovery of ferrite. The grain ultrafining mechanism was attributed to the combined action of the deformation-induced ferrite transformation and the continuous dynamic recrystallization. In particular, the continuous dynamic recrystallization process during ID occurred on the pro-eutectoid ferrite as a result of the subgrain rotation mechanism and the absorbing dislocations mechanism.
基金Item Sponsored by National Basic Research Program of China(2010CB630800,2015CB921700)National Natural Science Foundation of China(51001064,51471096)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education of China(20100002120047)Tsinghua University Initiative Scientific Research Program(20141081200)
文摘Mn distribution and austenite morphology at the early stage of intercritical annealing of 5Mn steel were investigated. It was experimentally demonstrated that a newly formed 20 nm-thick austenite was formed without the partitioning of Mn. The elemental analysis confirmed that the growth of austenite should be controlled by the diffusion of C prior to the diffusion of Mn at a low heating rate. The austenite growth started under negligible-partitioning local equilibrium mode and then switched to partitioning local equilibrium mode. Mn segregation at the γ/α interface suggested that the collector plate mechanism was the essential way of Mn partitioning at the early stage of austenite growth.
文摘Pre-quenching prior to intercritical annealing quenching and partitioning(Q-P)process was proposed to enhance the volume fraction of retained austenite and the mechanical properties of a low-carbon Si Mn steel.The intercritical austenite exhibited a lath morphology due to the martensitic microstructure maintained prior to intercritical annealing.Consequently,the alloy element enrichment of intercritical austenite,in which the alloy element was aggregated at the austenitic boundaries and further diffused inside,improved the stability of intercritical austenite and decreased the M_(s) of it.As a result,the fraction of retained austenite in steel was increased,which improved the mechanical properties of the experimental Q-P steel.
文摘A cold rolled dual phase (DP) steel with the C-Si-Mn alloy system was trial-produced in the laboratory, utilizing a Gleeble-3800 thermal simulator. The effects of continuous annealing parameters on the mechanical properties and microstructures of the DP steel were investigated by mechanical testing and microstructure observation. The results show that soaking between 760 and 820℃ for more than 80 s, rapid cooling at the rate of more than 30℃/s from the quenching temperature between 620 and 680℃, and overaging lower than 300℃ are beneficial for the mechanical properties of DP steels. An appropriate proportion of the two phases is one of the key factors for the favorable properties of DP steels. If the volume fraction of martensite and, thereby, free dislocations are deficient, the tensile strength and n value of DP steels will decrease, whereas, the yield strength will increase. But if the volume fraction of martensite is excessive to make it become a dominant phase, the yield and tensile strength will increase, whereas, the elongation will decrease obviously. When rapid cooling rate is not fast enough, pearlite or cementite will appear, which will degrade the mechanical properties. Even though martensite is sufficient, if it is decomposed in high temperature tempering, the properties will he unsatisfied.
基金This work was financially supported by the National Key Research and Development Program of China(No.2017YFB 0304800)One of the authors,H.Guo,would like to express her gratitude for the financial support of China Scholarship Council(award for one year visiting at Northwestern University in the USA,No.201706465056).
文摘Here we present a novel approach of intercritical heat treatment for microstructure tailoring,in which intercritical annealing is introduced between conventional quenching and tempering.This induced a heterogeneous microstructure consisting of soft intercritical ferrite and hard tempered martensite,resulting in a low yield ratio(YR)and high impact toughness in a high-strength low-alloy steel.The initial yielding and subsequent work hardening behavior of the steel during tensile deformation were modified by the presence of soft intercritical ferrite after intercritical annealing,in comparison to the steel with full martensitic microstructure.The increase in YR was related to the reduction in hardness difference between the soft and hard phases due to the precipitation of nano-carbides and the recovery of dislocations during tempering.The excellent low-temperature toughness was ascribed not only to the decrease in probability of microcrack initiation for the reduction of hardness difference between two phases,but also to the increase in resistance of microcrack propagation caused by the high density of high angle grain boundaries.