期刊文献+
共找到289篇文章
< 1 2 15 >
每页显示 20 50 100
Unique double-layer solid electrolyte interphase formed with fluorinated ether-based electrolytes for high-voltage lithium metal batteries 被引量:2
1
作者 Ruo Wang Jiawei Li +11 位作者 Bing Han Qingrong Wang Ruohong Ke Tong Zhang Xiaohu Ao Guangzhao Zhang Zhongbo Liu Yunxian Qian Fangfang Pan Iseult Lynch Jun Wang Yonghong Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期532-542,I0012,共12页
Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the... Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries. 展开更多
关键词 Lithium metal batteries High-voltage layered oxides Fluorinated ether-based electrolytes Solid electrolyte interphase Cathode electrolyte interphase
下载PDF
Rational design of F,N-rich artificial interphase via chemical prelithiation initiation strategy enabling high coulombic efficiency and stable micro-sized SiO anodes
2
作者 Quanyan Man Hengtao Shen +3 位作者 Chuanliang Wei Baojuan Xi Shenglin Xiong Jinkui Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期224-232,共9页
Silicon monoxide(SiO)is regarded as a potential candidate for anode materials of lithium-ion batteries(LIBs).Unfortunately,the application of SiO is limited by poor initial Coulombic efficiency(ICE)and unsteady solid ... Silicon monoxide(SiO)is regarded as a potential candidate for anode materials of lithium-ion batteries(LIBs).Unfortunately,the application of SiO is limited by poor initial Coulombic efficiency(ICE)and unsteady solid electrolyte interface(SEI),which induce low energy,short cycling life,and poor rate properties.To address these drawbacks of SiO,we achieve in-situ construction of robust and fast-ion conducting F,N-rich SEI layer on prelithiated micro-sized SiO(P-μSiO)via the simple and continuous treatment ofμSiO in mild lithium 4,4′-dimethylbiphenyl solution and nonflammable hexafluorocyclotriphosphazene solution.Chemical prelithiation eliminates irreversible capacity through pre-forming inactive lithium silicates.Meanwhile,the symbiotic F,N-rich SEI with good mechanical stability and fast Li^(+)permeability is conductive to relieve volume expansion ofμSiO and boost the Li+diffusion kinetics.Consequently,the P-μSiO realizes an impressive electrochemical performance with an elevated ICE of 99.57%and a capacity retention of 90.67%after 350 cycles.Additionally,the full cell with P-μSiO anode and commercial LiFePO_(4) cathode displays an ICE of 92.03%and a high reversible capacity of 144.97 mA h g^(-1).This work offers a general construction strategy of robust and ionically conductive SEI for advanced LIBs. 展开更多
关键词 Chemical prelithiation Silicon monoxide SEI Lithium-ion batteries interphase engineering
下载PDF
Regulating solid electrolyte interphase film on fluorinedoped hard carbon anode for sodium-ion battery
3
作者 Cuiyun Yang Wentao Zhong +4 位作者 Yuqiao Liu Qiang Deng Qian Cheng Xiaozhao Liu Chenghao Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期200-215,共16页
For the performance optimization strategies of hard carbon,heteroatom doping is an effective way to enhance the intrinsic transfer properties of sodium ions and electrons for accelerating the reaction kinetics.However... For the performance optimization strategies of hard carbon,heteroatom doping is an effective way to enhance the intrinsic transfer properties of sodium ions and electrons for accelerating the reaction kinetics.However,the previous work focuses mainly on the intrinsic physicochemical property changes of the material,but little attention has been paid to the resulting interfacial regulation of the electrode surface,namely the formation of solid electrolyte interphase(SEI)film.In this work,element F,which has the highest electronegativity,was chosen as the doping source to,more effectively,tune the electronic structure of the hard carbon.The effect of F-doping on the physicochemical properties of hard carbon was not only systematically analyzed but also investigated with spectroscopy,optics,and in situ characterization techniques to further verify that appropriate F-doping plays a positive role in constructing a homogenous and inorganic-rich SEI film.The experimentally demonstrated link between the electronic structure of the electrode and the SEI film properties can reframe the doping optimization strategy as well as provide a new idea for the design of electrode materials with low reduction kinetics to the electrolyte.As a result,the optimized sample with the appropriate F-doping content exhibits the best electrochemical performance with high capacity(434.53 mA h g^(-1)at 20mA g^(-1))and excellent rate capability(141 mAh g^(-1)at 400 mA g^(-1)). 展开更多
关键词 F-doping hard carbon reduction kinetics sodium-ion batteries solid electrolyte interphase film
下载PDF
In Situ Growth of 2D Metal–Organic Framework Ion Sieve Interphase for Reversible Zinc Anodes
4
作者 Jing Sun Qinping Jian +2 位作者 Bin Liu Pengzhu Lin Tianshou Zhao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期158-166,共9页
Zinc metal anodes are gaining popularity in aqueous electrochemical energy storage systems for their high safety,cost-effectiveness,and high capacity.However,the service life of zinc metal anodes is severely constrain... Zinc metal anodes are gaining popularity in aqueous electrochemical energy storage systems for their high safety,cost-effectiveness,and high capacity.However,the service life of zinc metal anodes is severely constrained by critical challenges,including dendrites,water-induced hydrogen evolution,and passivation.In this study,a protective two-dimensional metal–organic framework interphase is in situ constructed on the zinc anode surface with a novel gel vapor deposition method.The ultrathin interphase layer(~1μm)is made of layer-stacking 2D nanosheets with angstrom-level pores of around 2.1Å,which serves as an ion sieve to reject large solvent–ion pairs while homogenizes the transport of partially desolvated zinc ions,contributing to a uniform and highly reversible zinc deposition.With the shielding of the interphase layer,an ultra-stable zinc plating/stripping is achieved in symmetric cells with cycling over 1000 h at 0.5 mA cm−2 and~700 h at 1 mA cm^(−2),far exceeding that of the bare zinc anodes(250 and 70 h).Furthermore,as a proof-of-concept demonstration,the full cell paired with MnO_(2) cathode demonstrates improved rate performances and stable cycling(1200 cycles at 1 A g−1).This work provides fresh insights into interphase design to promote the performance of zinc metal anodes. 展开更多
关键词 2D MOF DESOLVATION interphase ion sieve zinc anode
下载PDF
In situ high-quality LiF/Li_(3)N inorganic and phenyl-based organic solid electrolyte interphases for advanced lithium–oxygen batteries
5
作者 Qianyan Wang Minsheng Wu +7 位作者 Yunkai Xu Chuyue Li Yuanjia Rong Yaling Liao Menglin Gao Xiaoping Zhang Weirong Chen Jun Lu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期29-38,共10页
Lithium metal shows a great advantage as the most promising anode for its unparalleled theoretical specific capacity and extremely low electrochemical potential.However,uncontrolled lithium dendrite growth and severe ... Lithium metal shows a great advantage as the most promising anode for its unparalleled theoretical specific capacity and extremely low electrochemical potential.However,uncontrolled lithium dendrite growth and severe side reactions of the reactive intermediates and organic electrolytes still limit the broad application of lithium metal batteries.Herein,we propose 4-nitrobenzenesulfonyl fluoride(NBSF)as an electrolyte additive for forming a stable organic-inorganic hybrid solid electrolyte interphase(SEI)layer on the lithium surface.The abundance of lithium fluoride and lithium nitride can guarantee the SEI layer's toughness and high ionic conductivity,achieving dendrite-free lithium deposition.Meanwhile,the phenyl group of NBSF significantly contributes to both the chemical stability of the SEI layer and the good adaptation to volume changes of the lithium anode.The lithium-oxygen batteries with NBSF exhibit prolonged cycle lives and excellent cycling stability.This simple approach is hoped to improve the development of the organic-inorganic SEI layer to stabilize the lithium anodes for lithium-oxygen batteries. 展开更多
关键词 lithium anode lithium-oxygen batteries reactive oxygen species solid electrolyte interphase
下载PDF
Activation mechanism of conventional electrolytes with amine solvents:Species evolution and hydride-containing interphase formation
6
作者 Jinlei Zhang Ning Yuan +5 位作者 Jing Liu Xiaosong Guo Xi Chen Zhenfang Zhou Zhonghua Zhang Guicun Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期615-622,共8页
Rechargeable magnesium(Mg)-metal batteries have brought great expect to overcome the safety and energy density concerns of typical lithium-ion batteries.However,interracial passivation of the Mgmetal anode impairs the... Rechargeable magnesium(Mg)-metal batteries have brought great expect to overcome the safety and energy density concerns of typical lithium-ion batteries.However,interracial passivation of the Mgmetal anode impairs the reversible Mg plating/stripping chemistries,resulting in low Coulombic efficiency and large overpotential.In this work,a facile isobutylamine(IBA)-assisted activation strategy has been proposed and the fundamental mechanism has been unveiled in a specific way of evolving active species and forming MgH_(2)-based solid-electrolyte interphase.After introducing IBA into a typical electrolyte of magnesium bis(trifluoromethanesulfo nyl) imide(Mg(TFSI)_(2)) in diglyme(G2) solvents,electrolyte species of [Mg^(2+)(IBA)5]^(2+) and protonated amine-based cations of [(IBA)H]^(+) have been detected by nuclear magnetic resonance and mass spectra.This not only indicates direct solvation of IBA toward Mg^(2+)but also suggests its ionization,which is central to mitigating the decomposition of G2 and TFSI anions by forming neutrally charged [(IBAH^(+))(TFSI^(-))]~0 and other complex ions.A series of experiments,including cryogenic-electron microscopy,D_(2)O titration-mass spectra,and time of flight secondary ion mass spectrometry results,reveal a thin,non-passivated,and MgH_(2)-containing interphase on the Mg-metal anode.Besides,uniform and dendrite-free Mg electrodeposits have been revealed in composite electrolytes.Benefiting from the activation effects of IBA,the composite electrolyte displays superior electrochemical performance(overpotential is approximately 0.16 V versus 2.00 V for conventional electrolyte;Coulombic efficiency is above 90% versus <10% for conventional electrolyte).This work offers a fresh direction to advanced electrolyte design for next-generation rechargeable batteries. 展开更多
关键词 Rechargeable magnesium batteries Amine solvents IONIZATION MgH_(2)-based solid-electrolyte interphase
下载PDF
Synergetic Control of Li^(+)Transport Ability and Solid Electrolyte Interphase by Boron-Rich Hexagonal Skeleton Structured All-Solid-State Polymer Electrolyte
7
作者 Yanan Li Shunchao Ma +7 位作者 Yuehua Zhao Silin Chen Tingting Xiao Hongxing Yin Huiyu Song Xiumei Pan Lina Cong Haiming Xie 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期154-163,共10页
High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incom... High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incomplete solid electrolyte interphase(SEI)formation on the Li anode because it suffers from the absence of appropriate inorganic components entirely derived from anions decomposition.Herein,a boron-rich hexagonal polymer structured all-solid-state polymer electrolyte(BSPE+10%LiBOB)with regulated intermolecular interaction is proposed to trade off a high Li^(+)transference number against stable SEI properties.The Li^(+)transference number of the as-prepared electrolyte is increased from 0.23 to 0.83 owing to the boron-rich cross-linker(BC)addition.More intriguingly,for the first time,the experiments combined with theoretical calculation results reveal that BOB^(-)anions have stronger interaction with B atoms in polymer chain than TFSI^(-),which significantly induce the TFSI^(-)decomposition and consequently increase the amount of LiF and Li3N in the SEI layer.Eventually,a LiFePO_(4)|BSPE+10%LiBOBlLi cell retains 96.7%after 400 cycles while the cell without BC-resisted electrolyte only retains 40.8%.BSPE+10%LiBOB also facilitates stable electrochemical cycling of solid-state Li-S cells.This study blazes a new trail in controlling the Li^(+)transport ability and SEI properties,synergistically. 展开更多
关键词 all-solid-state electrolyte boron-rich polymer lithium metal batteries lithium-ion transference number solid electrolyte interphase layer
下载PDF
Stabilization of cathode electrolyte interphase for aqueous zinc-ion batteries
8
作者 Zhenjie Yao Wenyao Zhang Junwu Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期359-386,共28页
Aqueous zinc-ion battery systems are attractive for next-generation energy storage devices,however,the unstable electrode electrolyte interphase,especially cathode electrolyte interphase(CEI),has induced rapid capacit... Aqueous zinc-ion battery systems are attractive for next-generation energy storage devices,however,the unstable electrode electrolyte interphase,especially cathode electrolyte interphase(CEI),has induced rapid capacity attenuation,insufficient cycle life,and severe safety issues.Evolving the researching of CEI formation,composition,dynamic structure,and reaction mechanisms would help in understanding the fundamental electrochemistry at CEI such as electron and ion transport processes,further strengthening the specific capacity,rate,and cycle performance of the cathode materials.In this review,we summarized the latest progress in understanding interfacial reaction mechanisms and ion dynamic behavior,emphasizing the impact of surface-specific adsorption and solvation behaviors on the interface's ultimate structure and chemical composition.Subsequently,the significant challenges that persist in CEI formation mechanisms,such as cathodic dissolution,by-product formation,electrostatic interactions,constrained electrochemical windows,oxygen evolution reaction,overpotentials,phase transitions,and additional factors,were discussed.These challenges are explored to identify triggers contributing to the depletion of active materials and alterations in the composition or state of the CEI.Ultimately,with a deep comprehension of interfacial behaviors,the review articulates innovative optimization strategies through a detailed categorization of approaches in electrolyte engineering,cathode engineering,and artificial CEI development.Furthermore,future challenges and development directions of CEI are presented.We hope to offer insights for constructing robust CEI films to achieve high performance aqueous zinc-ion batteries. 展开更多
关键词 Aqueous zinc-ion batteries Cathode-electrolyte interphase Energy storage
下载PDF
Unravelling the ion transport and the interphase properties of a mixed olivine cathode for Na-ion battery
9
作者 Luca Minnetti Leonardo Sbrascini +3 位作者 Antunes Staffolani Vittorio Marangon Francesco Nobili Jusef Hassoun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期300-317,共18页
The replacement of Li by Na in an analogue battery to the commercial Li-ion one appears a sustainable strategy to overcome the several concerns triggered by the increased demand for the electrochemical energy storage.... The replacement of Li by Na in an analogue battery to the commercial Li-ion one appears a sustainable strategy to overcome the several concerns triggered by the increased demand for the electrochemical energy storage.However,the apparently simple change of the alkali metal represents a challenging step which requires notable and dedicated studies.Therefore,we investigate herein the features of a NaFe_(0.6)Mn_(0.4)PO_(4)(NFMP)cathode with triphylite structure achieved from the conversion of a LiFe_(0.6)Mn_(0.4)PO_(4)(LFMP)olivine for application in Na-ion battery.The work initially characterizes the structure,morphology and performances in sodium cell of NFMP,achieving a maximum capacity exceeding 100 mAh g^(−1)at a temperature of 55℃,adequate rate capability,and suitable retention confirmed by ex-situ measurements.Subsequently,the study compares in parallel key parameters of the NFMP and LFMP such as Na^(+)/Li^(+)ions diffusion,interfacial characteristics,and reaction mechanism in Na/Li cells using various electrochemical techniques.The data reveal that relatively limited modifications of NFMP chemistry,structure and morphology compared to LFMP greatly impact the reaction mechanism,kinetics and electrochemical features.These changes are ascribed to the different physical and chemical features of the two compounds,the slower mobility of Na^(+)with respect to Li^(+),and a more resistive electrode/electrolyte interphase of sodium compared with lithium.Relevantly,the study reveals analogue trends of the charge transfer resistance and the ion diffusion coefficient in NFMP and LFMP during the electrochemical process in half-cell.Hence,the NFMP achieved herein is suggested as a possible candidate for application in a low-cost,efficient,and environmentally friendly Na-ion battery. 展开更多
关键词 NaFe_(0.6)Mn_(0.4)PO_(4)NFMP Olivine Na-ion lon transport interphase
下载PDF
Revealing the F_actin Networks in Interphase Nuclei of Garlic Clove Cells by Confocal Fluorescence Microscopy 被引量:2
10
作者 王冬梅 王学臣 张伟成 《Acta Botanica Sinica》 CSCD 2000年第11期1167-1171,共5页
The interphase nuclei of parenchyma cells and epidermal cells of garlic ( Allium sativum L.) clove were labelled with rabbit anti_actin antibody and FITC_conjugated goat anti_rabbit IgG antibody. The authors observ... The interphase nuclei of parenchyma cells and epidermal cells of garlic ( Allium sativum L.) clove were labelled with rabbit anti_actin antibody and FITC_conjugated goat anti_rabbit IgG antibody. The authors observed results with fluorescence microscopy and confocal laser scanning microscopy. The nuclei showed prominent green_yellow fluorescence, indicating the presence of actin in the nuclei. Fluorescence examination with TRITC_phalloidin showed distinctive red fluorescence in the nuclei, indicating that F_actin is present in the nuclei. Confocal laser scanning microscopy indicated the presence of F_actin containing network structures in the nuclei, but the network structures were absent and the nuclei still showed red fluorescence when the cells were treated with cytochalasin D before fixation; the red fluorescence in the nuclei was hard to be observed when the cells were treated with unlabelled phalloidin before the cells were stained with TRITC_phalloidin. These results indicate that F_actin is in the nuclei and forms network structures in the nuclei of garlic cells. 展开更多
关键词 interphase nucleus F_actin TRITC_phalloidin cytochalasin D confocal laser scanning microscopy Allium sativum
下载PDF
EFFECT OF INTERPHASE LIFT FORCE ON THE FLUID FLOW IN AN AIR-STIRRED CYLINDRICAL VESSEL 被引量:6
11
作者 L.F. Zhang K.K. Cai Y. Qu and Y.S. Shen Postdoctoral Fellow of Japan Science Promotion Society Taniguchi Lab., Department of Metallurgy, Graduate School of Engineering, Tohoku University, Sendai980-8579, Japan School of Metallurgy, University of Scien 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第4期921-931,共11页
In the present paper, based on the two-phase model (Eulerian model), the two dimensional fluid flow liz air-stirred water systems is simulated, and the effect of interphase lift force on the fluid flow is specially d... In the present paper, based on the two-phase model (Eulerian model), the two dimensional fluid flow liz air-stirred water systems is simulated, and the effect of interphase lift force on the fluid flow is specially discussed. In the Eulerian two-phase model, gas and liquid phase are considered to be two different continuous fluids interacting with each other through the finite inter-phase areas. The exchange between the phases is represented by source terms in conversation equations. Turbulence is assumed to be a property of the liquid phase, k - ε model is used to describe the behavior of the liquid phase. The dispersion of phases due to turbulence is represented by introducing a diffusion term in mass consecrvation equation. The contribution of bubble movement to the turbulent energy and its dissipation rate is taken into accounted by adding extra volumetric source terms to the equations of turbulent enemy and its dissipation rate. The comparison between the mathematical simulation and experiment data indicates that the interphase lift force has a big effect on the flow behavior, and considering both drug force and lift force as interphase forces is important to accurately simulate the gas-water two-phase fluid flow in air-stirred systems. The interphase lift force makes bubbles move away from the centerline, the gas concentration is decreased near the centerline, and increased near the wall. The lift force is smaller than drug force at the same place, especially far away from the centerline. 展开更多
关键词 two-phase Eulerian model interphase lift force interphase drag force mathematical simulation
下载PDF
Constructing Bidirectional Fluorine-Rich Electrode/Electrolyte Interphase Via Solvent Redistribution toward Long-Term Sodium Battery 被引量:1
12
作者 Xinxin Zhao Zhenyi Gu +6 位作者 Jinzhi Guo Xiaotong Wang Haojie Liang Dan Xie Wenhao Li Wanqing Jia Xinglong Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期455-462,共8页
The high concentration electrolytes with specific solvation structure could passivate the electrodes to prolong battery cycle life but at the expense of increased cost,which limits the wide application in commercializ... The high concentration electrolytes with specific solvation structure could passivate the electrodes to prolong battery cycle life but at the expense of increased cost,which limits the wide application in commercialization.The regular concentration(1_(M))electrolytes with suitable properties(viscosity,ionic conductivity,etc.)are cost-guaranteed,but undesired reactions would always occur and lead to battery degradation during long cycles.To promote the long-term cycle stability in a cost-effective way,this work constructs bidirectional fluorine-rich electrode/electrolyte interphase(EEI)by redistribution of solvents and electrochemical induction.The fluorinated effect with reasonable zoning planning restricts morphological disintegration,meanwhile,forms spatial confinement on cathode.In particular,the obtained cathode electrolyte interphase(CEI)gets the ample ability of Na^(+)transport,which benefits from the fluorinated organics arranged in the epitaxy and the hemi-carbonate content acting on the thickness.Thus,the electrochemical long cycling performance of F-NVPOFⅡF-CC full cells is significantly enhanced(the decay rate at 1 C per cycle is as low as 0.01%).Such a fluorine-rich EEI engineering is expected to take transitional layers against the degradation of cells and make ultra-long cycle batteries possible. 展开更多
关键词 electrolyte/electrode interphase fluoroethylene carbonate interphase regulation organic fluorinated species sodium ion batteries
下载PDF
Effects of dip-coated BN interphase on mechanical properties of SiC_f/SiC composites prepared by CVI process 被引量:2
13
作者 周洋 周万城 +1 位作者 罗发 朱冬梅 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1400-1406,共7页
BN interphase was successfully synthesized on SiC fiber fabrics by dip-coating process using boric acid and urea as precursors under N2 atmosphere. The morphology of BN interphase was observed by SEM, and the structur... BN interphase was successfully synthesized on SiC fiber fabrics by dip-coating process using boric acid and urea as precursors under N2 atmosphere. The morphology of BN interphase was observed by SEM, and the structure was characterized by XRD and FT-IR spectra. The SiCf/SiC composites with dip-coated BN interphase were fabricated by chemical vapor infiltration (CVI) process, and the effects ofBN interphase on the mechanical properties of composites were investigated. The results show that the SiC fibers are fully covered by BN interphase with smooth surface and turbostratic structure (t-BN), and the thickness is about 0.4 μm. The flexural strengths of SiCf/SiC composites with and without BN interphase are about 180 and 95 MPa, respectively. Compared with the as-received SiCf/SiC composites, the composites with BN interphase exhibit an obvious toughened fracture behavior. From the microstructural analysis, it can be confirmed that the BN interphase plays a key part in protecting the fibers from chemical attack during matrix infiltration and weakening interfacial bonding, which can improve the mechanical properties of SiCf/SiC composites remarkably. 展开更多
关键词 SiCf/SiC composites BN interphase DIP-COATING CVI mechanical properties
下载PDF
A review on the failure and regulation of solid electrolyte interphase in lithium batteries 被引量:20
14
作者 Jun-Fan Ding Rui Xu +3 位作者 Chong Yan Bo-Quan Li Hong Yuan Jia-Qi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期306-319,I0007,共15页
Solid electrolyte interphase(SEI)has been widely recognized as the most important and the least understood component in lithium batteries.Considering the intrinsic instability in both chemical and mechanical,the failu... Solid electrolyte interphase(SEI)has been widely recognized as the most important and the least understood component in lithium batteries.Considering the intrinsic instability in both chemical and mechanical,the failure of SEI is inevitable and strongly associated with the performance decay of practical working batteries.In this Review,the failure mechanisms and the corresponding regulation strategies of SEI are focused.Firstly,the fundamental properties of SEI,including the formation principles,and the typical composition and structures are briefly introduced.Moreover,the common SEI failure modes involving thermal failure,chemical failure,and mechanical failure are classified and discussed,respectively.Beyond that,the regulation strategies of SEI with respect to different failure modes are further concluded.Finally,the future endeavor in further disclosing the mysteries of SEI is prospected. 展开更多
关键词 Solid electrolyte interphase Failure mechanism Regulation strategy Lithium batteries
下载PDF
The influence of formation temperature on the solid electrolyte interphase of graphite in lithium ion batteries 被引量:10
15
作者 Chong Yan Yu-Xing Yao +4 位作者 Wen-Long Cai Lei Xu Stefan Kaskel Ho Seok Park Jia-Qi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期335-338,共4页
Lithium-ion battery has greatly changed our lifestyle and the solid electrolyte interphase(SEI)covered on the graphite anode determines the service life of a battery.The formation method and the formation temperature ... Lithium-ion battery has greatly changed our lifestyle and the solid electrolyte interphase(SEI)covered on the graphite anode determines the service life of a battery.The formation method and the formation temperature at initial cycle of a battery determine the feature of the SEI.Herein,we investigate the gap of formation behavior in both a half cell(graphite matches with lithium anode)and a full cell(graphite matches with NCM,short for LiNixCoyMn1-x-yO2)at different temperatures.We conclude that high temperature causes severe side reactions and low temperature will result in low ionic conductive SEI layer,the interface formed at room temperature owns the best ionic conductivity and stability. 展开更多
关键词 Graphite anode Fast charging Solid electrolyte interphase(SEI) Full battery Formation temperature
下载PDF
Towards high-performance lithium metal anodes via the modification of solid electrolyte interphases 被引量:9
16
作者 Zhen Hou Jiaolong Zhang +3 位作者 Wenhui Wang Qianwen Chen Baohua Li Chaolin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第6期7-17,I0001,共12页
Li metal has been regarded as one of the most promising anodes for high-energy-density storage systems due to its high theoretical capacity and lowest electrochemical potential.Unfortunately,an unstable and non-unifor... Li metal has been regarded as one of the most promising anodes for high-energy-density storage systems due to its high theoretical capacity and lowest electrochemical potential.Unfortunately,an unstable and non-uniform solid electrolyte interphase(SEI)deriving from the spontaneous reaction between Li metal anode and electrolyte causes uneven Li deposition,resulting in the growth of Li dendrites and low Coulombic efficiency,which have greatly hindered the practical application of Li metal batteries.Thus,the construction of a stable SEI is an effective approach to suppress the growth of Li dendrites and enhance the electrochemical performances of Li metal anode.In this review,we firstly introduce the formation process of inferior SEI of Li metal anode and the corresponding challenges caused by the unstable SEI.Next,recent progresses to modify SEI layer through the regulation of electrolyte compositions and exsitu protective coating are summarized.Finally,the remained issues,challenges,and perspectives are also proposed on the basis of current research status and progress. 展开更多
关键词 Li metal ANODE Coulombic efficiency DENDRITES Solid ELECTROLYTE interphaseS Coating
下载PDF
Feasible engineering of cathode electrolyte interphase enables the profoundly improved electrochemical properties in dual-ion battery 被引量:8
17
作者 Wen-Hao Li Hao-Jie Liang +5 位作者 Xian-Kun Hou Zhen-Yi Gu Xin-Xin Zhao Jin-Zhi Guo Xu Yang Xing-Long Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期416-423,共8页
Dual-ion battery(DIB) composed of graphite cathode and lithium anode is regarded as an advanced secondary battery because of the low cost, high working voltage and environmental friendliness. However,DIB operated at h... Dual-ion battery(DIB) composed of graphite cathode and lithium anode is regarded as an advanced secondary battery because of the low cost, high working voltage and environmental friendliness. However,DIB operated at high potential(usually ≥ 4.5 V versus Li+/Li) is confronted with severe challenges including electrolyte decomposition on cathode interface, and structural deterioration of graphite accompanying with anions de-/intercalation, hinder its cyclic life. To address those drawbacks and preserve the DIB virtues, a feasible and scalable surface modification is achieved for the commercial graphite cathode of mesocarbon microbead. In/ex-situ studies reveal that, such an interfacial engineering facilitates and reconstructs the formation of chemically stable cathode electrolyte interphase with better flexibility alleviating the decomposition of electrolyte, regulating the anions de-/intercalation behavior in graphite with the retainment of structural integrity and without exerting considerable influence on kinetics of anions diffusion. As a result, the modified mesocarbon microbead exhibits a much-extended cycle life with high capacity retention of 82.3% even after 1000 cycles. This study demonstrates that the interface modification of electrode and coating skeleton play important roles on DIB performance improvement, providing the feasible basis for practical application of DIB owing to the green and scalable coating procedures. 展开更多
关键词 Dual-ion battery Cathode electrolyte interphase Graphite CATHODE
下载PDF
PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performance batteries 被引量:5
18
作者 Qiuli Yang Wenli Li +7 位作者 Chen Dong Yuyan Ma Yuxin Yin Qibing Wu Zhitao Xu Wei Ma Cheng Fan Kening Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第3期83-90,共8页
Lithium metal anode is a promising electrode with high theoretical specific capacity and low electrode potential.However,its unstable interface and low Coulombic efficiency,resulting from the dendritic growth of lithi... Lithium metal anode is a promising electrode with high theoretical specific capacity and low electrode potential.However,its unstable interface and low Coulombic efficiency,resulting from the dendritic growth of lithium,limits its commercial application.PIM-1(PIM:polymer of intrinsic microporosity),which is a polymer with abundant micropores,exhibits high rigidity and flexibility with contorted spirocenters in the backbone,and is an ideal candidate for artificial solid electrolyte interphases(SEI).In this work,a PIM-1 membrane was synthesized and fabricated as a protective membrane on the surface of an electrode to facilitate the uniform flux of Li ions and act as a stable interface for the lithium plating/stripping process.Nodule-like lithium with rounded edges was observed under the PIM-1 membrane.The Li@PIM-1 electrode delivered a high average Coulombic efficiency(99.7%),excellent cyclability(80%capacity retention rate after 600 cycles at 1 C),and superior rate capability(125.3 m Ah g-1 at 10 C).Electrochemical impedance spectrum(EIS)showed that the PIM-1 membrane could lower the diffusion rate of Li+significantly and change the rate-determining step from charge transfer to Li+diffusion.Thus,the PIM-1 membrane is proven to act as an artificial SEI to facilitate uniform and stable deposition of lithium,in favor of obtaining a compact and dense Li-plating pattern.This work extends the application of PIMs in the field of lithium batteries and provides ideas for the construction of artificial SEI. 展开更多
关键词 LITHIUM metal anodes Artificial solid ELECTROLYTE interphase PIM-1 Diffusion-limited
下载PDF
Critical Review on cathode-electrolyte Interphase Toward High-Voltage Cathodes for Li-Ion Batteries 被引量:7
19
作者 Jijian Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第10期197-218,共22页
The thermal stability window of current commercial carbonate-based electrolytes is no longer sufficient to meet the ever-increasing cathode working voltage requirements of high energy density lithium-ion batteries.It ... The thermal stability window of current commercial carbonate-based electrolytes is no longer sufficient to meet the ever-increasing cathode working voltage requirements of high energy density lithium-ion batteries.It is crucial to construct a robust cathode-electrolyte interphase(CEI)for high-voltage cathode electrodes to separate the electrolytes from the active cathode materials and thereby suppress the side reactions.Herein,this review presents a brief historic evolution of the mechanism of CEI formation and compositions,the state-of-art characterizations and modeling associated with CEI,and how to construct robust CEI from a practical electrolyte design perspective.The focus on electrolyte design is categorized into three parts:CEI-forming additives,anti-oxidation solvents,and lithium salts.Moreover,practical considerations for electrolyte design applications are proposed.This review will shed light on the future electrolyte design which enables aggressive high-voltage cathodes. 展开更多
关键词 Cathode-electrolyte interphase High-voltage cathodes Interfacial chemistry Electrolyte design Batteries.
下载PDF
Hierarchically porous Cu current collector with lithiophilic CuxO interphase towards high-performance lithium metal batteries 被引量:5
20
作者 Yaya Wang Zexu Zhao +4 位作者 Wei Zeng Xingbo Liu Lei Wang Jian Zhu Bingan Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期292-299,共8页
Lithium metal is one of the most promising anode materials for next-generation electrochemical energy storage due to low electrochemical potential and high specific capacity.However,large volume change and uncontrolla... Lithium metal is one of the most promising anode materials for next-generation electrochemical energy storage due to low electrochemical potential and high specific capacity.However,large volume change and uncontrollable formation of lithium dendrite during cycling severely hinder the practical application of rechargeable Li metal batteries.Herein,we report a hierarchically porous Cu covered with lithiophilic CuxO(HPCu-CuxO) via femtosecond laser strategy in about 2 min as current collector for highperformance Li metal batteries.With precisely tunable pore volume and depth as well as lithiophilic CuxO interphase,the HPCu-CuxO not only guides homogeneous Li nucleation,resulting in a smooth and dendrite-free lithium surface,but also provides space to alleviate the volume expansion of Li metal anode,achieving excellent structure stability.Consequently,highly stable Coulombic efficiency and ultralow overpotential of 15 mV even up to 1000 h were achieved at the current density of 1 mA cm^(-2).Moreover,the resultant Li@HPCu-CuxO//LiFePO_(4) full battery delivered outstanding cycle stability and rate capability.These results offer a pathway toward high-energy-density and safe rechargeable Li metal batteries. 展开更多
关键词 Lithium metal batteries Femtosecond laser strategy Hierarchically porous structure Lithiophilic CuxO interphase
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部