期刊文献+
共找到356篇文章
< 1 2 18 >
每页显示 20 50 100
An Intelligent SDN-IoT Enabled Intrusion Detection System for Healthcare Systems Using a Hybrid Deep Learning and Machine Learning Approach 被引量:1
1
作者 R Arthi S Krishnaveni Sherali Zeadally 《China Communications》 SCIE CSCD 2024年第10期267-287,共21页
The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during the... The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches. 展开更多
关键词 deep neural network healthcare intrusion detection system IOT machine learning software-defined networks
下载PDF
Network Security Enhanced with Deep Neural Network-Based Intrusion Detection System
2
作者 Fatma S.Alrayes Mohammed Zakariah +2 位作者 Syed Umar Amin Zafar Iqbal Khan Jehad Saad Alqurni 《Computers, Materials & Continua》 SCIE EI 2024年第7期1457-1490,共34页
This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intr... This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intrusion detection performance,given the vital relevance of safeguarding computer networks against harmful activity.The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset,a popular benchmark for IDS research.The model performs well in both the training and validation stages,with 91.30%training accuracy and 94.38%validation accuracy.Thus,the model shows good learning and generalization capabilities with minor losses of 0.22 in training and 0.1553 in validation.Furthermore,for both macro and micro averages across class 0(normal)and class 1(anomalous)data,the study evaluates the model using a variety of assessment measures,such as accuracy scores,precision,recall,and F1 scores.The macro-average recall is 0.9422,the macro-average precision is 0.9482,and the accuracy scores are 0.942.Furthermore,macro-averaged F1 scores of 0.9245 for class 1 and 0.9434 for class 0 demonstrate the model’s ability to precisely identify anomalies precisely.The research also highlights how real-time threat monitoring and enhanced resistance against new online attacks may be achieved byDNN-based intrusion detection systems,which can significantly improve network security.The study underscores the critical function ofDNN-based IDS in contemporary cybersecurity procedures by setting the foundation for further developments in this field.Upcoming research aims to enhance intrusion detection systems by examining cooperative learning techniques and integrating up-to-date threat knowledge. 展开更多
关键词 MACHINE-LEARNING Deep-Learning intrusion detection system security PRIVACY deep neural network NSL-KDD Dataset
下载PDF
CNN Channel Attention Intrusion Detection SystemUsing NSL-KDD Dataset
3
作者 Fatma S.Alrayes Mohammed Zakariah +2 位作者 Syed Umar Amin Zafar Iqbal Khan Jehad Saad Alqurni 《Computers, Materials & Continua》 SCIE EI 2024年第6期4319-4347,共29页
Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,hi... Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances. 展开更多
关键词 intrusion detection system(IDS) NSL-KDD dataset deep-learning MACHINE-LEARNING CNN channel Attention network security
下载PDF
A Review of Generative Adversarial Networks for Intrusion Detection Systems: Advances, Challenges, and Future Directions
4
作者 Monirah Al-Ajlan Mourad Ykhlef 《Computers, Materials & Continua》 SCIE EI 2024年第11期2053-2076,共24页
The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Gener... The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Generative adversarial networks(GANs)have also garnered increasing research interest recently due to their remarkable ability to generate data.This paper investigates the application of(GANs)in(IDS)and explores their current use within this research field.We delve into the adoption of GANs within signature-based,anomaly-based,and hybrid IDSs,focusing on their objectives,methodologies,and advantages.Overall,GANs have been widely employed,mainly focused on solving the class imbalance issue by generating realistic attack samples.While GANs have shown significant potential in addressing the class imbalance issue,there are still open opportunities and challenges to be addressed.Little attention has been paid to their applicability in distributed and decentralized domains,such as IoT networks.Efficiency and scalability have been mostly overlooked,and thus,future works must aim at addressing these gaps. 展开更多
关键词 intrusion detection systems network security generative networks deep learning DATASET
下载PDF
Deep Transfer Learning Techniques in Intrusion Detection System-Internet of Vehicles: A State-of-the-Art Review
5
作者 Wufei Wu Javad Hassannataj Joloudari +8 位作者 Senthil Kumar Jagatheesaperumal Kandala N.V.P.SRajesh Silvia Gaftandzhieva Sadiq Hussain Rahimullah Rabih Najibullah Haqjoo Mobeen Nazar Hamed Vahdat-Nejad Rositsa Doneva 《Computers, Materials & Continua》 SCIE EI 2024年第8期2785-2813,共29页
The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accide... The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accident prevention,cost reduction,and enhanced traffic regularity.Despite these benefits,IoV technology is susceptible to cyber-attacks,which can exploit vulnerabilities in the vehicle network,leading to perturbations,disturbances,non-recognition of traffic signs,accidents,and vehicle immobilization.This paper reviews the state-of-the-art achievements and developments in applying Deep Transfer Learning(DTL)models for Intrusion Detection Systems in the Internet of Vehicles(IDS-IoV)based on anomaly detection.IDS-IoV leverages anomaly detection through machine learning and DTL techniques to mitigate the risks posed by cyber-attacks.These systems can autonomously create specific models based on network data to differentiate between regular traffic and cyber-attacks.Among these techniques,transfer learning models are particularly promising due to their efficacy with tagged data,reduced training time,lower memory usage,and decreased computational complexity.We evaluate DTL models against criteria including the ability to transfer knowledge,detection rate,accurate analysis of complex data,and stability.This review highlights the significant progress made in the field,showcasing how DTL models enhance the performance and reliability of IDS-IoV systems.By examining recent advancements,we provide insights into how DTL can effectively address cyber-attack challenges in IoV environments,ensuring safer and more efficient transportation networks. 展开更多
关键词 Cyber-attacks internet of things internet of vehicles intrusion detection system
下载PDF
IDS-INT:Intrusion detection system using transformer-based transfer learning for imbalanced network traffic 被引量:3
6
作者 Farhan Ullah Shamsher Ullah +1 位作者 Gautam Srivastava Jerry Chun-Wei Lin 《Digital Communications and Networks》 SCIE CSCD 2024年第1期190-204,共15页
A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a... A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model. 展开更多
关键词 Network intrusion detection Transfer learning Features extraction Imbalance data Explainable AI CYBERSECURITY
下载PDF
GRU Enabled Intrusion Detection System for IoT Environment with Swarm Optimization and Gaussian Random Forest Classification
7
作者 Mohammad Shoab Loiy Alsbatin 《Computers, Materials & Continua》 SCIE EI 2024年第10期625-642,共18页
In recent years,machine learning(ML)and deep learning(DL)have significantly advanced intrusion detection systems,effectively addressing potential malicious attacks across networks.This paper introduces a robust method... In recent years,machine learning(ML)and deep learning(DL)have significantly advanced intrusion detection systems,effectively addressing potential malicious attacks across networks.This paper introduces a robust method for detecting and categorizing attacks within the Internet of Things(IoT)environment,leveraging the NSL-KDD dataset.To achieve high accuracy,the authors used the feature extraction technique in combination with an autoencoder,integrated with a gated recurrent unit(GRU).Therefore,the accurate features are selected by using the cuckoo search algorithm integrated particle swarm optimization(PSO),and PSO has been employed for training the features.The final classification of features has been carried out by using the proposed RF-GNB random forest with the Gaussian Naïve Bayes classifier.The proposed model has been evaluated and its performance is verified with some of the standard metrics such as precision,accuracy rate,recall F1-score,etc.,and has been compared with different existing models.The generated results that detected approximately 99.87%of intrusions within the IoT environments,demonstrated the high performance of the proposed method.These results affirmed the efficacy of the proposed method in increasing the accuracy of intrusion detection within IoT network systems. 展开更多
关键词 Machine learning intrusion detection IOT gated recurrent unit particle swarm optimization random forest Gaussian Naïve Bayes
下载PDF
A Lightweight Intrusion Detection System Using Convolutional Neural Network and Long Short-Term Memory in Fog Computing
8
作者 Hawazen Alzahrani Tarek Sheltami +2 位作者 Abdulaziz Barnawi Muhammad Imam Ansar Yaser 《Computers, Materials & Continua》 SCIE EI 2024年第9期4703-4728,共26页
The Internet of Things(IoT)links various devices to digital services and significantly improves the quality of our lives.However,as IoT connectivity is growing rapidly,so do the risks of network vulnerabilities and th... The Internet of Things(IoT)links various devices to digital services and significantly improves the quality of our lives.However,as IoT connectivity is growing rapidly,so do the risks of network vulnerabilities and threats.Many interesting Intrusion Detection Systems(IDSs)are presented based on machine learning(ML)techniques to overcome this problem.Given the resource limitations of fog computing environments,a lightweight IDS is essential.This paper introduces a hybrid deep learning(DL)method that combines convolutional neural networks(CNN)and long short-term memory(LSTM)to build an energy-aware,anomaly-based IDS.We test this system on a recent dataset,focusing on reducing overhead while maintaining high accuracy and a low false alarm rate.We compare CICIoT2023,KDD-99 and NSL-KDD datasets to evaluate the performance of the proposed IDS model based on key metrics,including latency,energy consumption,false alarm rate and detection rate metrics.Our findings show an accuracy rate over 92%and a false alarm rate below 0.38%.These results demonstrate that our system provides strong security without excessive resource use.The practicality of deploying IDS with limited resources is demonstrated by the successful implementation of IDS functionality on a Raspberry Pi acting as a Fog node.The proposed lightweight model,with a maximum power consumption of 6.12 W,demonstrates its potential to operate effectively on energy-limited devices such as low-power fog nodes or edge devices.We prioritize energy efficiency whilemaintaining high accuracy,distinguishing our scheme fromexisting approaches.Extensive experiments demonstrate a significant reduction in false positives,ensuring accurate identification of genuine security threats while minimizing unnecessary alerts. 展开更多
关键词 intrusion detection fog computing CNN LSTM energy consumption
下载PDF
Machine Learning Techniques for Intrusion Detection Systems in SDN-Recent Advances,Challenges and Future Directions 被引量:1
9
作者 Gulshan Kumar Hamed Alqahtani 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期89-119,共31页
Software-Defined Networking(SDN)enables flexibility in developing security tools that can effectively and efficiently analyze and detect malicious network traffic for detecting intrusions.Recently Machine Learning(ML)... Software-Defined Networking(SDN)enables flexibility in developing security tools that can effectively and efficiently analyze and detect malicious network traffic for detecting intrusions.Recently Machine Learning(ML)techniques have attracted lots of attention from researchers and industry for developing intrusion detection systems(IDSs)considering logically centralized control and global view of the network provided by SDN.Many IDSs have developed using advances in machine learning and deep learning.This study presents a comprehensive review of recent work ofML-based IDS in context to SDN.It presents a comprehensive study of the existing review papers in the field.It is followed by introducing intrusion detection,ML techniques and their types.Specifically,we present a systematic study of recent works,discuss ongoing research challenges for effective implementation of ML-based intrusion detection in SDN,and promising future works in this field. 展开更多
关键词 CONTROLLER intrusion detection intrusion detection system OpenFlow security software defined networking traffic analysis
下载PDF
Intrusion Detection System with Customized Machine Learning Techniques for NSL-KDD Dataset 被引量:1
10
作者 Mohammed Zakariah Salman A.AlQahtani +1 位作者 Abdulaziz M.Alawwad Abdullilah A.Alotaibi 《Computers, Materials & Continua》 SCIE EI 2023年第12期4025-4054,共30页
Modern networks are at risk from a variety of threats as a result of the enormous growth in internet-based traffic.By consuming time and resources,intrusive traffic hampers the efficient operation of network infrastru... Modern networks are at risk from a variety of threats as a result of the enormous growth in internet-based traffic.By consuming time and resources,intrusive traffic hampers the efficient operation of network infrastructure.An effective strategy for preventing,detecting,and mitigating intrusion incidents will increase productivity.A crucial element of secure network traffic is Intrusion Detection System(IDS).An IDS system may be host-based or network-based to monitor intrusive network activity.Finding unusual internet traffic has become a severe security risk for intelligent devices.These systems are negatively impacted by several attacks,which are slowing computation.In addition,networked communication anomalies and breaches must be detected using Machine Learning(ML).This paper uses the NSL-KDD data set to propose a novel IDS based on Artificial Neural Networks(ANNs).As a result,the ML model generalizes sufficiently to perform well on untried data.The NSL-KDD dataset shall be utilized for both training and testing.In this paper,we present a custom ANN model architecture using the Keras open-source software package.The specific arrangement of nodes and layers,along with the activation functions,enhances the model’s ability to capture intricate patterns in network data.The performance of the ANN is carefully tested and evaluated,resulting in the identification of a maximum detection accuracy of 97.5%.We thoroughly compared our suggested model to industry-recognized benchmark methods,such as decision classifier combinations and ML classifiers like k-Nearest Neighbors(KNN),Deep Learning(DL),Support Vector Machine(SVM),Long Short-Term Memory(LSTM),Deep Neural Network(DNN),and ANN.It is encouraging to see that our model consistently outperformed each of these tried-and-true techniques in all evaluations.This result underlines the effectiveness of the suggested methodology by demonstrating the ANN’s capacity to accurately assess the effectiveness of the developed strategy in identifying and categorizing instances of network intrusion. 展开更多
关键词 Artificial neural networks intrusion detection system CLASSIFICATION NSL-KDD dataset machine and deep-learning neural network
下载PDF
Enhanced Coyote Optimization with Deep Learning Based Cloud-Intrusion Detection System 被引量:1
11
作者 Abdullah M.Basahel Mohammad Yamin +1 位作者 Sulafah M.Basahel E.Laxmi Lydia 《Computers, Materials & Continua》 SCIE EI 2023年第2期4319-4336,共18页
Cloud Computing(CC)is the preference of all information technology(IT)organizations as it offers pay-per-use based and flexible services to its users.But the privacy and security become the main hindrances in its achi... Cloud Computing(CC)is the preference of all information technology(IT)organizations as it offers pay-per-use based and flexible services to its users.But the privacy and security become the main hindrances in its achievement due to distributed and open architecture that is prone to intruders.Intrusion Detection System(IDS)refers to one of the commonly utilized system for detecting attacks on cloud.IDS proves to be an effective and promising technique,that identifies malicious activities and known threats by observing traffic data in computers,and warnings are given when such threatswere identified.The current mainstream IDS are assisted with machine learning(ML)but have issues of low detection rates and demanded wide feature engineering.This article devises an Enhanced Coyote Optimization with Deep Learning based Intrusion Detection System for Cloud Security(ECODL-IDSCS)model.The ECODL-IDSCS model initially addresses the class imbalance data problem by the use of Adaptive Synthetic(ADASYN)technique.For detecting and classification of intrusions,long short term memory(LSTM)model is exploited.In addition,ECO algorithm is derived to optimally fine tune the hyperparameters related to the LSTM model to enhance its detection efficiency in the cloud environment.Once the presented ECODL-IDSCS model is tested on benchmark dataset,the experimental results show the promising performance of the ECODL-IDSCS model over the existing IDS models. 展开更多
关键词 intrusion detection system cloud security coyote optimization algorithm class imbalance data deep learning
下载PDF
Internet of Things Intrusion Detection System Based on Convolutional Neural Network 被引量:1
12
作者 Jie Yin Yuxuan Shi +5 位作者 Wen Deng Chang Yin Tiannan Wang Yuchen Song Tianyao Li Yicheng Li 《Computers, Materials & Continua》 SCIE EI 2023年第4期2119-2135,共17页
In recent years, the Internet of Things (IoT) technology has developedby leaps and bounds. However, the large and heterogeneous networkstructure of IoT brings high management costs. In particular, the low costof IoT d... In recent years, the Internet of Things (IoT) technology has developedby leaps and bounds. However, the large and heterogeneous networkstructure of IoT brings high management costs. In particular, the low costof IoT devices exposes them to more serious security concerns. First, aconvolutional neural network intrusion detection system for IoT devices isproposed. After cleaning and preprocessing the NSL-KDD dataset, this paperuses feature engineering methods to select appropriate features. Then, basedon the combination of DCNN and machine learning, this paper designs acloud-based loss function, which adopts a regularization method to preventoverfitting. The model consists of one input layer, two convolutional layers,two pooling layers and three fully connected layers and one output layer.Finally, a framework that can fully consider the user’s privacy protection isproposed. The framework can only exchange model parameters or intermediateresults without exchanging local individuals or sample data. This paperfurther builds a global model based on virtual fusion data, so as to achievea balance between data privacy protection and data sharing computing. Theperformance indicators such as accuracy, precision, recall, F1 score, and AUCof the model are verified by simulation. The results show that the model ishelpful in solving the problem that the IoT intrusion detection system cannotachieve high precision and low cost at the same time. 展开更多
关键词 Internet of things intrusion detection system convolutional neural network federated learning
下载PDF
An Intelligent Intrusion Detection System in Smart Grid Using PRNN Classifier 被引量:1
13
作者 P.Ganesan S.Arockia Edwin Xavier 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期2979-2996,共18页
Typically,smart grid systems enhance the ability of conventional power system networks as it is vulnerable to several kinds of attacks.These vulnerabil-ities might cause the attackers or intruders to collapse the enti... Typically,smart grid systems enhance the ability of conventional power system networks as it is vulnerable to several kinds of attacks.These vulnerabil-ities might cause the attackers or intruders to collapse the entire network system thus breaching the confidentiality and integrity of smart grid systems.Thus,for this purpose,Intrusion detection system(IDS)plays a pivotal part in offering a reliable and secured range of services in the smart grid framework.Several exist-ing approaches are there to detect the intrusions in smart grid framework,however they are utilizing an old dataset to detect anomaly thus resulting in reduced rate of detection accuracy in real-time and huge data sources.So as to overcome these limitations,the proposed technique is presented which employs both real-time raw data from the smart grid network and KDD99 dataset thus detecting anoma-lies in the smart grid network.In the grid side data acquisition,the power trans-mitted to the grid is checked and enhanced in terms of power quality by eradicating distortion in transmission lines.In this approach,power quality in the smart grid network is enhanced by rectifying the fault using a FACT device termed UPQC(Unified Power Quality Controller)and thereby storing the data in cloud storage.The data from smart grid cloud storage and KDD99 are pre-pro-cessed and are optimized using Improved Aquila Swarm Optimization(IASO)to extract optimal features.The probabilistic Recurrent Neural Network(PRNN)classifier is then employed for the prediction and classification of intrusions.At last,the performance is estimated and the outcomes are projected in terms of grid voltage,grid current,Total Harmonic Distortion(THD),voltage sag/swell,accu-racy,precision,recall,F-score,false acceptance rate(FAR),and detection rate of the classifier.The analysis is compared with existing techniques to validate the proposed model efficiency. 展开更多
关键词 intrusion detection system anomaly detection smart grid power quality enhancement unified power quality controller harmonics elimination fault rectification improved aquila swarm optimization detection rate
下载PDF
Intelligent Intrusion Detection System for Industrial Internet of Things Environment 被引量:1
14
作者 R.Gopi R.Sheeba +4 位作者 K.Anguraj T.Chelladurai Haya Mesfer Alshahrani Nadhem Nemri Tarek Lamoudan 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1567-1582,共16页
Rapid increase in the large quantity of industrial data,Industry 4.0/5.0 poses several challenging issues such as heterogeneous data generation,data sensing and collection,real-time data processing,and high request ar... Rapid increase in the large quantity of industrial data,Industry 4.0/5.0 poses several challenging issues such as heterogeneous data generation,data sensing and collection,real-time data processing,and high request arrival rates.The classical intrusion detection system(IDS)is not a practical solution to the Industry 4.0 environment owing to the resource limitations and complexity.To resolve these issues,this paper designs a new Chaotic Cuckoo Search Optimiza-tion Algorithm(CCSOA)with optimal wavelet kernel extreme learning machine(OWKELM)named CCSOA-OWKELM technique for IDS on the Industry 4.0 platform.The CCSOA-OWKELM technique focuses on the design of feature selection with classification approach to achieve minimum computation complex-ity and maximum detection accuracy.The CCSOA-OWKELM technique involves the design of CCSOA based feature selection technique,which incorpo-rates the concepts of chaotic maps with CSOA.Besides,the OWKELM technique is applied for the intrusion detection and classification process.In addition,the OWKELM technique is derived by the hyperparameter tuning of the WKELM technique by the use of sunflower optimization(SFO)algorithm.The utilization of CCSOA for feature subset selection and SFO algorithm based hyperparameter tuning leads to better performance.In order to guarantee the supreme performance of the CCSOA-OWKELM technique,a wide range of experiments take place on two benchmark datasets and the experimental outcomes demonstrate the promis-ing performance of the CCSOA-OWKELM technique over the recent state of art techniques. 展开更多
关键词 intrusion detection system artificial intelligence machine learning industry 4.0 internet of things
下载PDF
A Novel MegaBAT Optimized Intelligent Intrusion Detection System in Wireless Sensor Networks 被引量:1
15
作者 G.Nagalalli GRavi 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期475-490,共16页
Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like d... Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like data sensing,data processing,and communication.In thefield of medical health care,these network plays a very vital role in transmitting highly sensitive data from different geographic regions and collecting this information by the respective network.But the fear of different attacks on health care data typically increases day by day.In a very short period,these attacks may cause adversarial effects to the WSN nodes.Furthermore,the existing Intrusion Detection System(IDS)suffers from the drawbacks of limited resources,low detection rate,and high computational overhead and also increases the false alarm rates in detecting the different attacks.Given the above-mentioned problems,this paper proposes the novel MegaBAT optimized Long Short Term Memory(MBOLT)-IDS for WSNs for the effective detection of different attacks.In the proposed framework,hyperpara-meters of deep Long Short-Term Memory(LSTM)were optimized by the meta-heuristic megabat algorithm to obtain a low computational overhead and high performance.The experimentations have been carried out using(Wireless Sensor NetworkDetection System)WSN-DS datasets and performance metrics such as accuracy,recall,precision,specificity,and F1-score are calculated and compared with the other existing intelligent IDS.The proposed framework provides outstanding results in detecting the black hole,gray hole,scheduling,flooding attacks and significantly reduces the time complexity,which makes this system suitable for resource-constraint WSNs. 展开更多
关键词 Wireless sensor network intrusion detection systems long short term memory megabat optimization
下载PDF
Multi-Attack Intrusion Detection System for Software-Defined Internet of Things Network
16
作者 Tarcizio Ferrao Franklin Manene Adeyemi Abel Ajibesin 《Computers, Materials & Continua》 SCIE EI 2023年第6期4985-5007,共23页
Currently,the Internet of Things(IoT)is revolutionizing communi-cation technology by facilitating the sharing of information between different physical devices connected to a network.To improve control,customization,f... Currently,the Internet of Things(IoT)is revolutionizing communi-cation technology by facilitating the sharing of information between different physical devices connected to a network.To improve control,customization,flexibility,and reduce network maintenance costs,a new Software-Defined Network(SDN)technology must be used in this infrastructure.Despite the various advantages of combining SDN and IoT,this environment is more vulnerable to various attacks due to the centralization of control.Most methods to ensure IoT security are designed to detect Distributed Denial-of-Service(DDoS)attacks,but they often lack mechanisms to mitigate their severity.This paper proposes a Multi-Attack Intrusion Detection System(MAIDS)for Software-Defined IoT Networks(SDN-IoT).The proposed scheme uses two machine-learning algorithms to improve detection efficiency and provide a mechanism to prevent false alarms.First,a comparative analysis of the most commonly used machine-learning algorithms to secure the SDN was performed on two datasets:the Network Security Laboratory Knowledge Discovery in Databases(NSL-KDD)and the Canadian Institute for Cyberse-curity Intrusion Detection Systems(CICIDS2017),to select the most suitable algorithms for the proposed scheme and for securing SDN-IoT systems.The algorithms evaluated include Extreme Gradient Boosting(XGBoost),K-Nearest Neighbor(KNN),Random Forest(RF),Support Vector Machine(SVM),and Logistic Regression(LR).Second,an algorithm for selecting the best dataset for machine learning in Intrusion Detection Systems(IDS)was developed to enable effective comparison between the datasets used in the development of the security scheme.The results showed that XGBoost and RF are the best algorithms to ensure the security of SDN-IoT and to be applied in the proposed security system,with average accuracies of 99.88%and 99.89%,respectively.Furthermore,the proposed security scheme reduced the false alarm rate by 33.23%,which is a significant improvement over prevalent schemes.Finally,tests of the algorithm for dataset selection showed that the rates of false positives and false negatives were reduced when the XGBoost and RF algorithms were trained on the CICIDS2017 dataset,making it the best for IDS compared to the NSL-KDD dataset. 展开更多
关键词 Dataset selection false alarm intrusion detection systems IoT security machine learning SDN-IoT security software-defined networks
下载PDF
Augmenting IoT Intrusion Detection System Performance Using Deep Neural Network
17
作者 Nasir Sayed Muhammad Shoaib +3 位作者 Waqas Ahmed Sultan Noman Qasem Abdullah M.Albarrak Faisal Saeed 《Computers, Materials & Continua》 SCIE EI 2023年第1期1351-1374,共24页
Due to their low power consumption and limited computing power,Internet of Things(IoT)devices are difficult to secure.Moreover,the rapid growth of IoT devices in homes increases the risk of cyber-attacks.Intrusion det... Due to their low power consumption and limited computing power,Internet of Things(IoT)devices are difficult to secure.Moreover,the rapid growth of IoT devices in homes increases the risk of cyber-attacks.Intrusion detection systems(IDS)are commonly employed to prevent cyberattacks.These systems detect incoming attacks and instantly notify users to allow for the implementation of appropriate countermeasures.Attempts have been made in the past to detect new attacks using machine learning and deep learning techniques,however,these efforts have been unsuccessful.In this paper,we propose two deep learning models to automatically detect various types of intrusion attacks in IoT networks.Specifically,we experimentally evaluate the use of two Convolutional Neural Networks(CNN)to detect nine distinct types of attacks listed in the NF-UNSW-NB15-v2 dataset.To accomplish this goal,the network stream data were initially converted to twodimensional images,which were then used to train the neural network models.We also propose two baseline models to demonstrate the performance of the proposed models.Generally,both models achieve high accuracy in detecting the majority of these nine attacks. 展开更多
关键词 Internet of things intrusion detection system deep learning convolutional neural network supervised learning
下载PDF
A Comprehensive Analysis of Datasets for Automotive Intrusion Detection Systems
18
作者 Seyoung Lee Wonsuk Choi +2 位作者 InsupKim Ganggyu Lee Dong Hoon Lee 《Computers, Materials & Continua》 SCIE EI 2023年第9期3413-3442,共30页
Recently,automotive intrusion detection systems(IDSs)have emerged as promising defense approaches to counter attacks on in-vehicle networks(IVNs).However,the effectiveness of IDSs relies heavily on the quality of the ... Recently,automotive intrusion detection systems(IDSs)have emerged as promising defense approaches to counter attacks on in-vehicle networks(IVNs).However,the effectiveness of IDSs relies heavily on the quality of the datasets used for training and evaluation.Despite the availability of several datasets for automotive IDSs,there has been a lack of comprehensive analysis focusing on assessing these datasets.This paper aims to address the need for dataset assessment in the context of automotive IDSs.It proposes qualitative and quantitative metrics that are independent of specific automotive IDSs,to evaluate the quality of datasets.These metrics take into consideration various aspects such as dataset description,collection environment,and attack complexity.This paper evaluates eight commonly used datasets for automotive IDSs using the proposed metrics.The evaluation reveals biases in the datasets,particularly in terms of limited contexts and lack of diversity.Additionally,it highlights that the attacks in the datasets were mostly injected without considering normal behaviors,which poses challenges for training and evaluating machine learning-based IDSs.This paper emphasizes the importance of addressing the identified limitations in existing datasets to improve the performance and adaptability of automotive IDSs.The proposed metrics can serve as valuable guidelines for researchers and practitioners in selecting and constructing high-quality datasets for automotive security applications.Finally,this paper presents the requirements for high-quality datasets,including the need for representativeness,diversity,and balance. 展开更多
关键词 Controller area network(CAN) intrusion detection system(IDS) automotive security machine learning(ML) DATASET
下载PDF
Securing Cloud Computing from Flash Crowd Attack Using Ensemble Intrusion Detection System
19
作者 Turke Althobaiti Yousef Sanjalawe Naeem Ramzan 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期453-469,共17页
Flash Crowd attacks are a form of Distributed Denial of Service(DDoS)attack that is becoming increasingly difficult to detect due to its ability to imitate normal user behavior in Cloud Computing(CC).Botnets are often... Flash Crowd attacks are a form of Distributed Denial of Service(DDoS)attack that is becoming increasingly difficult to detect due to its ability to imitate normal user behavior in Cloud Computing(CC).Botnets are often used by attackers to perform a wide range of DDoS attacks.With advancements in technology,bots are now able to simulate DDoS attacks as flash crowd events,making them difficult to detect.When it comes to application layer DDoS attacks,the Flash Crowd attack that occurs during a Flash Event is viewed as the most intricate issue.This is mainly because it can imitate typical user behavior,leading to a substantial influx of requests that can overwhelm the server by consuming either its network bandwidth or resources.Therefore,identifying these types of attacks on web servers has become crucial,particularly in the CC.In this article,an efficient intrusion detection method is proposed based on White Shark Optimizer and ensemble classifier(Convolutional Neural Network(CNN)and LighGBM).Experiments were conducted using a CICIDS 2017 dataset to evaluate the performance of the proposed method in real-life situations.The proposed IDS achieved superior results,with 95.84%accuracy,96.15%precision,95.54%recall,and 95.84%F1 measure.Flash crowd attacks are challenging to detect,but the proposed IDS has proven its effectiveness in identifying such attacks in CC and holds potential for future improvement. 展开更多
关键词 Cloud computing CNN flash crowd attack intrusion detection system LightGBM White Shark Optimizer
下载PDF
An Efficient Cyber Security and Intrusion Detection System Using CRSR with PXORP-ECC and LTH-CNN
20
作者 Nouf Saeed Alotaibi 《Computers, Materials & Continua》 SCIE EI 2023年第8期2061-2078,共18页
Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack... Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack the required level of security to prevent sophisticated attacks.This problem can result in the system being vulnerable to attacks,which can lead to the loss of sensitive data and potential system failure.Therefore,this paper proposes an Intrusion Detection System using Logistic Tanh-based Convolutional Neural Network Classification(LTH-CNN).Here,the Correlation Coefficient based Mayfly Optimization(CC-MA)algorithm is used to extract the input characteristics for the IDS from the input data.Then,the optimized features are utilized by the LTH-CNN,which returns the attacked and non-attacked data.After that,the attacked data is stored in the log file and non-attacked data is mapped to the cyber security and data security phases.To prevent the system from cyber-attack,the Source and Destination IP address is converted into a complex binary format named 1’s Complement Reverse Shift Right(CRSR),where,in the data security phase the sensed data is converted into an encrypted format using Senders Public key Exclusive OR Receivers Public Key-Elliptic Curve Cryptography(PXORP-ECC)Algorithm to improve the data security.TheNetwork Security Laboratory-Knowledge Discovery inDatabases(NSLKDD)dataset and real-time sensor are used to train and evaluate the proposed LTH-CNN.The suggested model is evaluated based on accuracy,sensitivity,and specificity,which outperformed the existing IDS methods,according to the results of the experiments. 展开更多
关键词 intrusion detection system logistic tanh-based convolutional neural network classification(LTH-CNN) correlation coefficient based mayfly optimization(CC-MA) cyber security
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部