In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduce...In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduced electron transfer(PET)effect.Two perylene diimide isomers PDI-P and PDI-B were designed and synthesized,and their molecular structures were characterized by high-resolution Fourier transform mass spectrometry(HRMS),nuclear magnetic resonance hydrogen and carbon spectroscopy(~1H and~(13)C NMR).The interaction between ionizing radiation and fluorescent molecules was simulated by HCl titration.The results show that combining PDIs and HCl can improve fluorescence through the retro-PET process.Despite the similarities in chemical structures,the fluorescent enhancement multiple of PDI-B with aromatic amine as electron donor is much higher than that of PDI-P with alkyl amine.In the direct irradiation experiments of ionizing radiation,the emission enhancement multiples of PDI-P and PDI-B are 2.01 and 45.4,respectively.Furthermore,density functional theory(DFT)and time-dependent density functional theory(TDDFT)calculations indicate that the HOMO and HOMO-1 energy ranges of PDI-P and PDI-B are 0.54 e V and 1.13 e V,respectively.A wider energy range has a stronger driving force on electrons,which is conducive to fluorescence quenching.Both femtosecond transient absorption spectroscopy(fs-TAS)and transient fluorescence spectroscopy(TFS)tests show that PDI-B has shorter charge separation lifetime and higher electron transfer rate constant.Although both isomers can significantly reduce LOD during PET process,PDI-B with aromatic amine has a wider detection range of 0.118—240 Gy due to its larger emission enhancement,which is a leap of three orders of magnitude.It breaks through the detection range of gamma radiation reported in existing studies,and provides theoretical support for the further study of sensitive and effective new materials for ionizing radiation detection.展开更多
Simulating the total ionizing dose(TID)of an electrical system using transistor-level models can be difficult and expensive,particularly for digital-integrated circuits(ICs).In this study,a method for modeling TID eff...Simulating the total ionizing dose(TID)of an electrical system using transistor-level models can be difficult and expensive,particularly for digital-integrated circuits(ICs).In this study,a method for modeling TID effects in complementary metaloxide semiconductor(CMOS)digital ICs based on the input/output buffer information specification(IBIS)was proposed.The digital IC was first divided into three parts based on its internal structure:the input buffer,output buffer,and functional area.Each of these three parts was separately modeled.Using the IBIS model,the transistor V-I characteristic curves of the buffers were processed,and the physical parameters were extracted and modeled using VHDL-AMS.In the functional area,logic functions were modeled in VHDL according to the data sheet.A golden digital IC model was developed by combining the input buffer,output buffer,and functional area models.Furthermore,the golden ratio was reconstructed based on TID experimental data,enabling the assessment of TID effects on the threshold voltage,carrier mobility,and time series of the digital IC.TID experiments were conducted using a CMOS non-inverting multiplexer,NC7SZ157,and the results were compared with the simulation results,which showed that the relative errors were less than 2%at each dose point.This confirms the practicality and accuracy of the proposed modeling method.The TID effect model for digital ICs developed using this modeling technique includes both the logical function of the IC and changes in electrical properties and functional degradation impacted by TID,which has potential applications in the design of radiation-hardening tolerance in digital ICs.展开更多
Objective To investigate the fate and underlying mechanisms of G2 phase arrest in cancer cells elicited by ionizing radiation(IR).Methods Human melanoma A375 and 92-1 cells were treated with X-rays radiation or Aurora...Objective To investigate the fate and underlying mechanisms of G2 phase arrest in cancer cells elicited by ionizing radiation(IR).Methods Human melanoma A375 and 92-1 cells were treated with X-rays radiation or Aurora A inhibitor MLN8237(MLN)and/or p21 depletion by small interfering RNA(si RNA).Cell cycle distribution was determined using flow cytometry and a fluorescent ubiquitin-based cell cycle indicator(FUCCI)system combined with histone H3 phosphorylation at Ser10(p S10 H3)detection.Senescence was assessed using senescence-associated-β-galactosidase(SA-β-Gal),Ki67,andγH2AX staining.Protein expression levels were determined using western blotting.Results Tumor cells suffered severe DNA damage and underwent G2 arrest after IR treatment.The damaged cells did not successfully enter M phase nor were they stably blocked at G2 phase but underwent mitotic skipping and entered G1 phase as tetraploid cells,ultimately leading to senescence in G1.During this process,the p53/p21 pathway is hyperactivated.Accompanying p21 accumulation,Aurora A kinase levels declined sharply.MLN treatment confirmed that Aurora A kinase activity is essential for mitosis skipping and senescence induction.Conclusion Persistent p21 activation during IR-induced G2 phase blockade drives Aurora A kinase degradation,leading to senescence via mitotic skipping.展开更多
Nuclear safety is a global growing concern,where ionizing radiation(IR)is a major injury factor resulting in serious damage to organisms.The detection of IR is usually conducted with physical dosimeters;however,biolog...Nuclear safety is a global growing concern,where ionizing radiation(IR)is a major injury factor resulting in serious damage to organisms.The detection of IR is usually conducted with physical dosimeters;however,biological IR detection methods are deficient.Here,a living composite hydrogel consisting of engineered bacteria and gelatin/sodium alginate was 3D-printed for the biological detection of IR.Three strains of PrecA::egfp gene circuit-containing engineered Escherichia coli were constructed with IR-dependent fluorescence,and the DH5αstrain was finally selected due to its highest radiation response and fluorescence.Engineered bacteria were loaded in a series of gelatin/sodium alginate matrix hydrogels with different rheology,3D printability and bacterial applicability.A high-gelatin-content hydrogel containing 10%gelatin/1.25%sodium alginatewas optimal.The optimal living composite hydrogelwas 3D-printedwith the special bioink,which reported significant green fluorescence underγ-ray radiation.The living composite hydrogel provides a biological strategy for the detection of environmental ionizing radiation.展开更多
The total ionizing dose(TID) effect is a key cause for the degradation/failure of semiconductor device performance under energetic-particle irradiation. We developed a dynamic model of mobile particles and defects by ...The total ionizing dose(TID) effect is a key cause for the degradation/failure of semiconductor device performance under energetic-particle irradiation. We developed a dynamic model of mobile particles and defects by solving the rate equations and Poisson's equation simultaneously, to understand threshold voltage shifts induced by TID in silicon-based metal–oxide–semiconductor(MOS) devices. The calculated charged defect distribution and corresponding electric field under different TIDs are consistent with experiments. TID changes the electric field at the Si/SiO_(2) interface by inducing the accumulation of oxide charged defects nearby, thus shifting the threshold voltage accordingly. With increasing TID, the oxide charged defects increase to saturation, and the electric field increases following the universal 2/3 power law. Through analyzing the influence of TID on the interfacial electric field by different factors, we recommend that the radiation-hardened performance of devices can be improved by choosing a thin oxide layer with high permittivity and under high gate voltages.展开更多
AIM: To examine the protection of ferulic acid(FA) against ionizing radiation(IR)-induced lens injury in rats, as well as the underlying mechanisms.METHODS: FA(50 mg/kg) was administered to rats for 4 consecutive days...AIM: To examine the protection of ferulic acid(FA) against ionizing radiation(IR)-induced lens injury in rats, as well as the underlying mechanisms.METHODS: FA(50 mg/kg) was administered to rats for 4 consecutive days before they were given 10 Gy γ-radiation, as well as for 3 consecutive days afterward. Two weeks after radiation, the eye tissues were collected. Histological alterations were evaluated by hematoxylineosin staining. Enzyme linked immunosorbent assay(ELISA) was utilized to assess the activities of glutathione reductase(GR) and superoxide dismutase(SOD), as well as the levels of glutathione(GSH) and malondialdehyde(MDA) in the lenses. The protein and m RNA levels of Bcl-2, caspase-3, Bax, heme oxygenase-1(HO-1), and glutamatecysteine ligase catalytic subunit(GCLC) were quantified using Western blot and quantitative reverse transcription polymerase chain reaction, respectively. With nuclear extracts, the nuclear factor erythroid-2 related factor(Nrf2) protein expressions in the nuclei were also measured.RESULTS: Rats exposed to IR showed lens histological alterations which could be alleviated by FA. FA treatment reversed apoptosis-related markers in IR-induced lens, as evidenced by lower levels of Bax and caspase-3 and higher level of Bcl-2. Furthermore, IR induced oxidative damage manifested by decreased GSH level, increased MDA level, and decreased SOD and GR activities. FA boosted nuclear translocation of Nrf2 and increased the expressions of HO-1 and GCLC to inhibit oxidative stress, as evidenced by an increase in GSH, a decrease in MDA, and an increase in GR and SOD activities.CONCLUSION: FA may work well in preventing and treating IR-induced cataract through promoting the Nrf2 signal pathway to attenuate oxidative damage and cell apoptosis.展开更多
The synergistic effect of total ionizing dose(TID) and single event gate rupture(SEGR) in SiC power metal–oxide–semiconductor field effect transistors(MOSFETs) is investigated via simulation. The device is found to ...The synergistic effect of total ionizing dose(TID) and single event gate rupture(SEGR) in SiC power metal–oxide–semiconductor field effect transistors(MOSFETs) is investigated via simulation. The device is found to be more sensitive to SEGR with TID increasing, especially at higher temperature. The microscopic mechanism is revealed to be the increased trapped charges induced by TID and subsequent enhancement of electric field intensity inside the oxide layer.展开更多
Both nMOS and pMOS transistors with two-edged and multi-finger layouts are fabricated in a standard commercial 0.6μm CMOS/bulk process to study their total ionizing dose (TID) radiation effects. The leakage current...Both nMOS and pMOS transistors with two-edged and multi-finger layouts are fabricated in a standard commercial 0.6μm CMOS/bulk process to study their total ionizing dose (TID) radiation effects. The leakage current, threshold voltage shift, and transconductance of the devices are monitored before and after T-ray irradiation. Different device bias conditions are used during irradiation. The experiment results show that TID radiation effects on nMOS devices are very sensitive to their layout structures. The impact of the layout on TID effects on pMOS devices is slight and can be neglected.展开更多
The quantification of ionizing energy deposition and non-ionizing energy deposition plays a critical role in precision neutron dosimetry and in the separation of the displacement damage effects and ionizing effects in...The quantification of ionizing energy deposition and non-ionizing energy deposition plays a critical role in precision neutron dosimetry and in the separation of the displacement damage effects and ionizing effects induced by neutron radiation on semiconductor devices. In this report, neutrons generated by the newly built China Spallation Neutron Source (CSNS) are simulated by Geant4 in semiconductor material silicon to calculate the ionizing and non-ionizing kerma factors. Furthermore, the integral method is applied to calculate neutron-induced ionizing at the CSNS and non-ionizing kerma factors according to the standard neutron nuclear database and the incident neutron spectrum. In addition, thermoluminescence dosimeters are utilized to measure the ionizing energy deposition and six series of bipolar junction transistors are used to measure the non-ionizing energy deposition based on their neutron damage constants. The calibrated kerma factors that were experimentally measured agreed well with the simulation and integral calculation results. This report describes a complete set of methods and fundamental data for the analysis of neutron-induced radiation effects at the CSNS on silicon-based semiconductor devices.展开更多
Aim: To study the effect of the combined use of genistein and ionizing radiation (IR) on prostate DU145 cancer cells. Methods: DU145, an androgen-independent human prostate cancer cell line, was used in the experiment...Aim: To study the effect of the combined use of genistein and ionizing radiation (IR) on prostate DU145 cancer cells. Methods: DU145, an androgen-independent human prostate cancer cell line, was used in the experiment. Clonogenic assay was used to compare the survival of DU145 cells after treatments with genistein alone and in combination with graded IR. Apoptosis was assayed by DNA ladder and TUNEL stain. Cell cycle alterations were observed by flow cytometry and related protein expressions by immunoblotting. Results: Clonogenic assay demonstrated that genistein, even at low to medium concentrations, enhanced the radiosensitivity of DU145 cells. Twenty-four hours after treatment with IR and/or genistein, apoptosis was mainly seen with genistein at high concentrations and was minimally related to IR. At 72 h, apoptosis also occurred in treatment with lower concentration of genistein, especially when combined with IR. While both IR and genistein led to G2/M cell cycle arrest, combination of them further increased the DU145 cells at G2/M phase. This Gz/M arrest was largely maintained at 72 h, accompanied by increasing apoptosis and hyperdiploid cell population. Cell-cycle related protein analysis disclosed biphasic changes in cyclin B1 and less dramatically cdc-2, but stably elevated p21cipl levels with increasing genistein concentrations. Conclusion: Genistein enhanced the radiosensitivity of DU145 prostate cancer cells. The mechanisms might be involved in the increased apoptosis, prolonged cell cycle arrest and impaired damage repair.展开更多
Objective To investigate the effect of ionizing radiation on the expression of p16, CyclinDl, and CDK4 in mouse thymocytes and splenocytes. Methods Fluorescent staining and flow cytometry analysis were employed for th...Objective To investigate the effect of ionizing radiation on the expression of p16, CyclinDl, and CDK4 in mouse thymocytes and splenocytes. Methods Fluorescent staining and flow cytometry analysis were employed for the measurement of protein expression. Results In time course experiments, it was found that the expression of p16 protein was significantly increased at 8, 24, and 48 h for thymocytes (P<0.05, P<0.01, and P<0.05, respectively) and at 24 h for splenocytes (P<0.05) after whole body irradiation (WBI) with 2.0 Gy X-rays. However, the expression of CDK4 protein was significantly decreased from 8 h to 24 h for thymocytes (P<0.05,P<0.01) and from 8 h to 72 h for splenocytes (P<0.05-P<0.01). In dose effect experiments, it was found that the expression of p16 protein in thymocytes and splenocytes was significantly increased at 24 h after WBI with 1.0, 2.0, and 4.0 Gy (P<0.05-P<0.01), whereas the expression of CDK4 protein was significantly decreased with 2.0Gy for thymocytes (P<0.05) and 0.5-6.0 Gy for splenocytes (P<0.05-P<0.01). Results also showed that the expression of CyclinDl protein decreased markedly in both thymocytes and splenocytes after exposure. Conclusion The results indicate that the expression of p 16 protein in thymocytes and splenocytes can be induced by ionizing radiation, and the p16-CyclinD1/CDK4 pathway may play an important role for G1 arrest of thymocytes induced by X-rays.展开更多
On the basis of a detailed discussion of the development of total ionizing dose (TID) effect model, a new commercial-model-independent TID modeling approach for partially depleted silicon-on-insulator metal-oxide- s...On the basis of a detailed discussion of the development of total ionizing dose (TID) effect model, a new commercial-model-independent TID modeling approach for partially depleted silicon-on-insulator metal-oxide- semiconductor field effect transistors is developed. An exponential approximation is proposed to simplify the trap charge calculation. Irradiation experiments with 60Co gamma rays for IO and core devices are performed to validate the simulation results. An excellent agreement of measurement with the simulation results is observed.展开更多
Machine learning methods have proven to be powerful in various research fields.In this paper,we show that research on radiation effects could benefit from such methods and present a machine learning-based scientific d...Machine learning methods have proven to be powerful in various research fields.In this paper,we show that research on radiation effects could benefit from such methods and present a machine learning-based scientific discovery approach.The total ionizing dose(TID)effects usually cause gain degradation of bipolar junction transistors(BJTs),leading to functional failures of bipolar integrated circuits.Currently,many experiments of TID effects on BJTs have been conducted at different laboratories worldwide,producing a large amount of experimental data which provides a wealth of information.However,it is difficult to utilize these data effectively.In this study,we proposed a new artificial neural network(ANN)approach to analyze the experimental data of TID effects on BJTs An ANN model was built and trained using data collected from different experiments.The results indicate that the proposed ANN model has advantages in capturing nonlinear correlations and predicting the data.The trained ANN model suggests that the TID hardness of a BJT tends to increase with base current I.A possible cause for this finding was analyzed and confirmed through irradiation experiments.展开更多
AIM To investigate whether autophagic cell death is involved in hyperthermic sensitization to ionizing radiation in human hepatocellular carcinoma cells, and to explore the underlying mechanism.METHODS Human hepatocel...AIM To investigate whether autophagic cell death is involved in hyperthermic sensitization to ionizing radiation in human hepatocellular carcinoma cells, and to explore the underlying mechanism.METHODS Human hepatocellular carcinoma cells were treated with hyperthermia and ionizing radiation. MTT and clonogenic assays were performed to determine cell survival. Cell autophagy was detected using acridine orange staining and flow cytometric analysis, and the expression of autophagy-associated proteins, LC3 and p62, was determined by Western blot analysis. Intracellular reactive oxygen species(ROS) were quantified using the fluorescent probe DCFH-DA.RESULTS Treatment with hyperthermia and ionizing radiation significantly decreased cell viability and surviving fraction as compared with hyperthermia or ionizing radiation alone. Cell autophagy was significantly increased after ionizing radiation combined with hyperthermia treatment, as evidenced by increased formation of acidic vesicular organelles, increased expression of LC3 II and decreased expression of p62. Intracellular ROS were also increased after combined treatment with hyperthermia and ionizing radiation. Pretreatment with N-acetylcysteine, an ROS scavenger, markedly inhibited the cytotoxicity and cell autophagy induced by hyperthermia and ionizing radiation.CONCLUSION Autophagic cell death is involved in hyperthermic sensitization of cancer cells to ionizing radiation, and its induction may be due to the increased intracellular ROS.展开更多
The 1-Mb and 4-Mb commercial toggle magnetoresistive random-access memories(MRAMs) with 0.13 μm and 0.18-μm complementary metal–oxide–semiconductor(CMOS) process respectively and different magnetic tunneling j...The 1-Mb and 4-Mb commercial toggle magnetoresistive random-access memories(MRAMs) with 0.13 μm and 0.18-μm complementary metal–oxide–semiconductor(CMOS) process respectively and different magnetic tunneling junctions(MTJs) are irradiated with a Cobalt-60 gamma source. The electrical functions of devices during the irradiation and the room temperature annealing behavior are measured. Electrical failures are observed until the dose accumulates to 120-krad(Si) in 4-Mb MRAM while the 1-Mb MRAM keeps normal. Thus, the 0.13-μm process circuit exhibits better radiation tolerance than the 0.18-μm process circuit. However, a small quantity of read bit-errors randomly occurs only in 1-Mb MRAM during the irradiation while their electrical function is normal. It indicates that the store states of MTJ may be influenced by gamma radiation, although the electrical transport and magnetic properties are inherently immune to the radiation. We propose that the magnetic Compton scattering in the interaction of gamma ray with magnetic free layer may be the origin of the read bit-errors. Our results are useful for MRAM toward space application.展开更多
The influence of combined total ionization dose(TID)and radiated electromagnetic interference(EMI)in a commercial analog-to-digital converter(ADC)was studied.The degradation of the direct-current response,the static p...The influence of combined total ionization dose(TID)and radiated electromagnetic interference(EMI)in a commercial analog-to-digital converter(ADC)was studied.The degradation of the direct-current response,the static parameters,and the dynamic parameters caused by the TID and EMI separately and synergistically is presented.The experimental results demonstrate that the increase in TID intensifies data error and the signal-tonoise ratio(SNR)degradation caused by radiated EMI.The cumulative distribution function of EMI failure with respect to data error and SNR with different TIDs was extracted.The decreasing trend of the threshold was acquired with a small sample size of five for each TID group.The result indicates that the ADC is more sensitive in a compound radiation environment.展开更多
The synergistic effect of total ionizing dose(TID) on single event effect(SEE) in SiGe heterojunction bipolar transistor(HBT) is investigated in a series of experiments. The SiGe HBTs after being exposed to 60 C...The synergistic effect of total ionizing dose(TID) on single event effect(SEE) in SiGe heterojunction bipolar transistor(HBT) is investigated in a series of experiments. The SiGe HBTs after being exposed to 60 Co g irradiation are struck by pulsed laser to simulate SEE. The SEE transient currents and collected charges of the un-irradiated device are compared with those of the devices which are irradiated at high and low dose rate with various biases. The results show that the SEE damage to un-irradiated device is more serious than that to irradiated SiGe HBT at a low applied voltage of laser test. In addition, the g irradiations at forward and all-grounded bias have an obvious influence on SEE in the SiGe HBT, but the synergistic effect after cutting off the g irradiation is not significant. The influence of positive oxide-trap charges induced by TID on the distortion of electric field in SEE is the major factor of the synergistic effect. Moreover, the recombination of interface traps also plays a role in charge collection.展开更多
Objective:To discuss effect of ionizing radiation on transcription of colorectal cancer multidrug resistance(MDR) 1 gene of HCT-8 cells.Methods:Total RNA was extracted by guanidine thiocyanate one-step method.Northern...Objective:To discuss effect of ionizing radiation on transcription of colorectal cancer multidrug resistance(MDR) 1 gene of HCT-8 cells.Methods:Total RNA was extracted by guanidine thiocyanate one-step method.Northern blot was applied to detect transcription level of MDR1 gene.The expression of P-gp protein was detected by flow cytometry.Results:The expression of MDRl of normal colorectal cancer HCT-8 cells was low.It was increased by 8.35 times under stimulus with 2 Gy.When treated with low doses in advance,high expressed MDR was decreased significantly under 0.05,0.1 Gy,which was 69.00%,62.89%in 2 Cy group and 5.77 times,5.25 times in sham irradiation group.No obvious difference was detected between(0.2+2) Gy group and 2 Gy group.Compared with sham irradiation group,the percentage of P-gp positive cells after radiation of a high 2 Gy dose was increased significantly(P【0.01).When treated with high radiation dose following low radiation dose(0.05 Gy,0.1 Gy) in advance,the percentage of P-gp positive cells were also increased significantly.The percentage of P-gp positive cells were increased obviously in 0.2 Gy and 2 Gy groups.Compared with simple high radiation 2 Gy group,the percentage of P-gp positive cells was decreased significantly(P【0.05).Conclusions: Low radiation dose can reverse multidrug resistance of colorectal cancer cells caused by high radiation dose.展开更多
Surveying ionizing radiations of the surrounding with a smartphone provides a low-cost and convenient utility for the general public. We developed a smartphone application(App) that uses the built-in camera with a CMO...Surveying ionizing radiations of the surrounding with a smartphone provides a low-cost and convenient utility for the general public. We developed a smartphone application(App) that uses the built-in camera with a CMOS sensor and a radiation signal extraction algorithm.After a calibration through a series of radiation exposures,the App could display radiation dose rate and cumulative dose in real time without requiring covering the camera lens. A smartphone with this App can be used as a fast survey tool for ionizing radiations.展开更多
Objective To investigate the function of primary cilia in regulating the cellular response to temozolomide(TMZ)and ionizing radiation(IR)in glioblastoma(GBM).Methods GBM cells were treated with TMZ or X-ray/carbon ion...Objective To investigate the function of primary cilia in regulating the cellular response to temozolomide(TMZ)and ionizing radiation(IR)in glioblastoma(GBM).Methods GBM cells were treated with TMZ or X-ray/carbon ion.The primary cilia were examined by immunostaining with Arl13 b andγ-tubulin,and the cellular resistance ability was measured by cell viability assay or survival fraction assay.Combining with cilia ablation by IFT88 depletion or chloral hydrate and induction by lithium chloride,the autophagy was measured by acridine orange staining assay.The DNA damage repair ability was estimated by the kinetic curve ofγH2 AX foci,and the DNAdependent protein kinase(DNA-PK)activation was detected by immunostaining assay.Results Primary cilia were frequently preserved in GBM,and the induction of ciliogenesis decreased cell proliferation.TMZ and IR promoted ciliogenesis in dose-and time-dependent manners,and the suppression of ciliogenesis significantly enhanced the cellular sensitivity to TMZ and IR.The inhibition of ciliogenesis elevated the lethal effects of TMZ and IR via the impairment of autophagy and DNA damage repair.The interference of ciliogenesis reduced DNA-PK activation,and the knockdown of DNA-PK led to cilium formation and elongation.Conclusion Primary cilia play a vital role in regulating the cellular sensitivity to TMZ and IR in GBM cells through mediating autophagy and DNA damage repair.展开更多
基金financial support from the National Natural Science Foundation of China(Grant No.21801016)the Science and Technology on Applied Physical Chemistry Laboratory(Grant No.6142602220304)。
文摘In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduced electron transfer(PET)effect.Two perylene diimide isomers PDI-P and PDI-B were designed and synthesized,and their molecular structures were characterized by high-resolution Fourier transform mass spectrometry(HRMS),nuclear magnetic resonance hydrogen and carbon spectroscopy(~1H and~(13)C NMR).The interaction between ionizing radiation and fluorescent molecules was simulated by HCl titration.The results show that combining PDIs and HCl can improve fluorescence through the retro-PET process.Despite the similarities in chemical structures,the fluorescent enhancement multiple of PDI-B with aromatic amine as electron donor is much higher than that of PDI-P with alkyl amine.In the direct irradiation experiments of ionizing radiation,the emission enhancement multiples of PDI-P and PDI-B are 2.01 and 45.4,respectively.Furthermore,density functional theory(DFT)and time-dependent density functional theory(TDDFT)calculations indicate that the HOMO and HOMO-1 energy ranges of PDI-P and PDI-B are 0.54 e V and 1.13 e V,respectively.A wider energy range has a stronger driving force on electrons,which is conducive to fluorescence quenching.Both femtosecond transient absorption spectroscopy(fs-TAS)and transient fluorescence spectroscopy(TFS)tests show that PDI-B has shorter charge separation lifetime and higher electron transfer rate constant.Although both isomers can significantly reduce LOD during PET process,PDI-B with aromatic amine has a wider detection range of 0.118—240 Gy due to its larger emission enhancement,which is a leap of three orders of magnitude.It breaks through the detection range of gamma radiation reported in existing studies,and provides theoretical support for the further study of sensitive and effective new materials for ionizing radiation detection.
基金This work was supported by the special fund of the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect(No.SKLIPR2011).
文摘Simulating the total ionizing dose(TID)of an electrical system using transistor-level models can be difficult and expensive,particularly for digital-integrated circuits(ICs).In this study,a method for modeling TID effects in complementary metaloxide semiconductor(CMOS)digital ICs based on the input/output buffer information specification(IBIS)was proposed.The digital IC was first divided into three parts based on its internal structure:the input buffer,output buffer,and functional area.Each of these three parts was separately modeled.Using the IBIS model,the transistor V-I characteristic curves of the buffers were processed,and the physical parameters were extracted and modeled using VHDL-AMS.In the functional area,logic functions were modeled in VHDL according to the data sheet.A golden digital IC model was developed by combining the input buffer,output buffer,and functional area models.Furthermore,the golden ratio was reconstructed based on TID experimental data,enabling the assessment of TID effects on the threshold voltage,carrier mobility,and time series of the digital IC.TID experiments were conducted using a CMOS non-inverting multiplexer,NC7SZ157,and the results were compared with the simulation results,which showed that the relative errors were less than 2%at each dose point.This confirms the practicality and accuracy of the proposed modeling method.The TID effect model for digital ICs developed using this modeling technique includes both the logical function of the IC and changes in electrical properties and functional degradation impacted by TID,which has potential applications in the design of radiation-hardening tolerance in digital ICs.
基金supported by the Science and Technology Research Project of Gansu Province[20JR5RA555 and145RTSA012]the Natural Science Foundation of Shaanxi Province[2020JQ-541]+1 种基金the National Natural Science Foundation of China[31870851 and 12175289]the Youth Innovation Promotion Association CAS[2021415]
文摘Objective To investigate the fate and underlying mechanisms of G2 phase arrest in cancer cells elicited by ionizing radiation(IR).Methods Human melanoma A375 and 92-1 cells were treated with X-rays radiation or Aurora A inhibitor MLN8237(MLN)and/or p21 depletion by small interfering RNA(si RNA).Cell cycle distribution was determined using flow cytometry and a fluorescent ubiquitin-based cell cycle indicator(FUCCI)system combined with histone H3 phosphorylation at Ser10(p S10 H3)detection.Senescence was assessed using senescence-associated-β-galactosidase(SA-β-Gal),Ki67,andγH2AX staining.Protein expression levels were determined using western blotting.Results Tumor cells suffered severe DNA damage and underwent G2 arrest after IR treatment.The damaged cells did not successfully enter M phase nor were they stably blocked at G2 phase but underwent mitotic skipping and entered G1 phase as tetraploid cells,ultimately leading to senescence in G1.During this process,the p53/p21 pathway is hyperactivated.Accompanying p21 accumulation,Aurora A kinase levels declined sharply.MLN treatment confirmed that Aurora A kinase activity is essential for mitosis skipping and senescence induction.Conclusion Persistent p21 activation during IR-induced G2 phase blockade drives Aurora A kinase degradation,leading to senescence via mitotic skipping.
基金supported by the Special Program for Capability Promotion
文摘Nuclear safety is a global growing concern,where ionizing radiation(IR)is a major injury factor resulting in serious damage to organisms.The detection of IR is usually conducted with physical dosimeters;however,biological IR detection methods are deficient.Here,a living composite hydrogel consisting of engineered bacteria and gelatin/sodium alginate was 3D-printed for the biological detection of IR.Three strains of PrecA::egfp gene circuit-containing engineered Escherichia coli were constructed with IR-dependent fluorescence,and the DH5αstrain was finally selected due to its highest radiation response and fluorescence.Engineered bacteria were loaded in a series of gelatin/sodium alginate matrix hydrogels with different rheology,3D printability and bacterial applicability.A high-gelatin-content hydrogel containing 10%gelatin/1.25%sodium alginatewas optimal.The optimal living composite hydrogelwas 3D-printedwith the special bioink,which reported significant green fluorescence underγ-ray radiation.The living composite hydrogel provides a biological strategy for the detection of environmental ionizing radiation.
基金Project supported by the Science Challenge Project of China (Grant No.TZ2018004)the National Natural Science Foundation of China (Grant Nos.11975018 and 11775254)+1 种基金the National MCF Energy R&D Program of China (Grant No.2018YEF0308100)the outstanding member of Youth Innovation Promotion Association CAS (Grant No.Y202087)。
文摘The total ionizing dose(TID) effect is a key cause for the degradation/failure of semiconductor device performance under energetic-particle irradiation. We developed a dynamic model of mobile particles and defects by solving the rate equations and Poisson's equation simultaneously, to understand threshold voltage shifts induced by TID in silicon-based metal–oxide–semiconductor(MOS) devices. The calculated charged defect distribution and corresponding electric field under different TIDs are consistent with experiments. TID changes the electric field at the Si/SiO_(2) interface by inducing the accumulation of oxide charged defects nearby, thus shifting the threshold voltage accordingly. With increasing TID, the oxide charged defects increase to saturation, and the electric field increases following the universal 2/3 power law. Through analyzing the influence of TID on the interfacial electric field by different factors, we recommend that the radiation-hardened performance of devices can be improved by choosing a thin oxide layer with high permittivity and under high gate voltages.
基金Supported by Medical Science Foundation of Military for Young Scholars (No.19QNP064)Natural Science Foundation of Jiangsu Province (No.BK20191233)Jiangsu Funding Program for Excellent Postdoctoral Talent (No.2022ZB702)。
文摘AIM: To examine the protection of ferulic acid(FA) against ionizing radiation(IR)-induced lens injury in rats, as well as the underlying mechanisms.METHODS: FA(50 mg/kg) was administered to rats for 4 consecutive days before they were given 10 Gy γ-radiation, as well as for 3 consecutive days afterward. Two weeks after radiation, the eye tissues were collected. Histological alterations were evaluated by hematoxylineosin staining. Enzyme linked immunosorbent assay(ELISA) was utilized to assess the activities of glutathione reductase(GR) and superoxide dismutase(SOD), as well as the levels of glutathione(GSH) and malondialdehyde(MDA) in the lenses. The protein and m RNA levels of Bcl-2, caspase-3, Bax, heme oxygenase-1(HO-1), and glutamatecysteine ligase catalytic subunit(GCLC) were quantified using Western blot and quantitative reverse transcription polymerase chain reaction, respectively. With nuclear extracts, the nuclear factor erythroid-2 related factor(Nrf2) protein expressions in the nuclei were also measured.RESULTS: Rats exposed to IR showed lens histological alterations which could be alleviated by FA. FA treatment reversed apoptosis-related markers in IR-induced lens, as evidenced by lower levels of Bax and caspase-3 and higher level of Bcl-2. Furthermore, IR induced oxidative damage manifested by decreased GSH level, increased MDA level, and decreased SOD and GR activities. FA boosted nuclear translocation of Nrf2 and increased the expressions of HO-1 and GCLC to inhibit oxidative stress, as evidenced by an increase in GSH, a decrease in MDA, and an increase in GR and SOD activities.CONCLUSION: FA may work well in preventing and treating IR-induced cataract through promoting the Nrf2 signal pathway to attenuate oxidative damage and cell apoptosis.
基金Project supported by the National Natural Science Foundation of China(Grant No.12004329)Open Project of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect(Grant No.SKLIPR2115)+1 种基金Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.SJCX22_1704)Innovative Science and Technology Platform Project of Cooperation between Yangzhou City and Yangzhou University,China(Grant Nos.YZ202026301 and YZ202026306)。
文摘The synergistic effect of total ionizing dose(TID) and single event gate rupture(SEGR) in SiC power metal–oxide–semiconductor field effect transistors(MOSFETs) is investigated via simulation. The device is found to be more sensitive to SEGR with TID increasing, especially at higher temperature. The microscopic mechanism is revealed to be the increased trapped charges induced by TID and subsequent enhancement of electric field intensity inside the oxide layer.
文摘Both nMOS and pMOS transistors with two-edged and multi-finger layouts are fabricated in a standard commercial 0.6μm CMOS/bulk process to study their total ionizing dose (TID) radiation effects. The leakage current, threshold voltage shift, and transconductance of the devices are monitored before and after T-ray irradiation. Different device bias conditions are used during irradiation. The experiment results show that TID radiation effects on nMOS devices are very sensitive to their layout structures. The impact of the layout on TID effects on pMOS devices is slight and can be neglected.
基金supported by the National Natural Science Foundation of China(Nos.11690040 and 11690043)the Foundation of State Key Laboratory of China(Nos.SKLIPR1801Z and 6142802180304)
文摘The quantification of ionizing energy deposition and non-ionizing energy deposition plays a critical role in precision neutron dosimetry and in the separation of the displacement damage effects and ionizing effects induced by neutron radiation on semiconductor devices. In this report, neutrons generated by the newly built China Spallation Neutron Source (CSNS) are simulated by Geant4 in semiconductor material silicon to calculate the ionizing and non-ionizing kerma factors. Furthermore, the integral method is applied to calculate neutron-induced ionizing at the CSNS and non-ionizing kerma factors according to the standard neutron nuclear database and the incident neutron spectrum. In addition, thermoluminescence dosimeters are utilized to measure the ionizing energy deposition and six series of bipolar junction transistors are used to measure the non-ionizing energy deposition based on their neutron damage constants. The calibrated kerma factors that were experimentally measured agreed well with the simulation and integral calculation results. This report describes a complete set of methods and fundamental data for the analysis of neutron-induced radiation effects at the CSNS on silicon-based semiconductor devices.
文摘Aim: To study the effect of the combined use of genistein and ionizing radiation (IR) on prostate DU145 cancer cells. Methods: DU145, an androgen-independent human prostate cancer cell line, was used in the experiment. Clonogenic assay was used to compare the survival of DU145 cells after treatments with genistein alone and in combination with graded IR. Apoptosis was assayed by DNA ladder and TUNEL stain. Cell cycle alterations were observed by flow cytometry and related protein expressions by immunoblotting. Results: Clonogenic assay demonstrated that genistein, even at low to medium concentrations, enhanced the radiosensitivity of DU145 cells. Twenty-four hours after treatment with IR and/or genistein, apoptosis was mainly seen with genistein at high concentrations and was minimally related to IR. At 72 h, apoptosis also occurred in treatment with lower concentration of genistein, especially when combined with IR. While both IR and genistein led to G2/M cell cycle arrest, combination of them further increased the DU145 cells at G2/M phase. This Gz/M arrest was largely maintained at 72 h, accompanied by increasing apoptosis and hyperdiploid cell population. Cell-cycle related protein analysis disclosed biphasic changes in cyclin B1 and less dramatically cdc-2, but stably elevated p21cipl levels with increasing genistein concentrations. Conclusion: Genistein enhanced the radiosensitivity of DU145 prostate cancer cells. The mechanisms might be involved in the increased apoptosis, prolonged cell cycle arrest and impaired damage repair.
基金This work was supported by a grant from the National Natural Science Foundation of China(No.39770193).
文摘Objective To investigate the effect of ionizing radiation on the expression of p16, CyclinDl, and CDK4 in mouse thymocytes and splenocytes. Methods Fluorescent staining and flow cytometry analysis were employed for the measurement of protein expression. Results In time course experiments, it was found that the expression of p16 protein was significantly increased at 8, 24, and 48 h for thymocytes (P<0.05, P<0.01, and P<0.05, respectively) and at 24 h for splenocytes (P<0.05) after whole body irradiation (WBI) with 2.0 Gy X-rays. However, the expression of CDK4 protein was significantly decreased from 8 h to 24 h for thymocytes (P<0.05,P<0.01) and from 8 h to 72 h for splenocytes (P<0.05-P<0.01). In dose effect experiments, it was found that the expression of p16 protein in thymocytes and splenocytes was significantly increased at 24 h after WBI with 1.0, 2.0, and 4.0 Gy (P<0.05-P<0.01), whereas the expression of CDK4 protein was significantly decreased with 2.0Gy for thymocytes (P<0.05) and 0.5-6.0 Gy for splenocytes (P<0.05-P<0.01). Results also showed that the expression of CyclinDl protein decreased markedly in both thymocytes and splenocytes after exposure. Conclusion The results indicate that the expression of p 16 protein in thymocytes and splenocytes can be induced by ionizing radiation, and the p16-CyclinD1/CDK4 pathway may play an important role for G1 arrest of thymocytes induced by X-rays.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61404151 and 61574153
文摘On the basis of a detailed discussion of the development of total ionizing dose (TID) effect model, a new commercial-model-independent TID modeling approach for partially depleted silicon-on-insulator metal-oxide- semiconductor field effect transistors is developed. An exponential approximation is proposed to simplify the trap charge calculation. Irradiation experiments with 60Co gamma rays for IO and core devices are performed to validate the simulation results. An excellent agreement of measurement with the simulation results is observed.
基金supported by the National Natural Science Foundation of China (Nos. 11690040 and 11690043)。
文摘Machine learning methods have proven to be powerful in various research fields.In this paper,we show that research on radiation effects could benefit from such methods and present a machine learning-based scientific discovery approach.The total ionizing dose(TID)effects usually cause gain degradation of bipolar junction transistors(BJTs),leading to functional failures of bipolar integrated circuits.Currently,many experiments of TID effects on BJTs have been conducted at different laboratories worldwide,producing a large amount of experimental data which provides a wealth of information.However,it is difficult to utilize these data effectively.In this study,we proposed a new artificial neural network(ANN)approach to analyze the experimental data of TID effects on BJTs An ANN model was built and trained using data collected from different experiments.The results indicate that the proposed ANN model has advantages in capturing nonlinear correlations and predicting the data.The trained ANN model suggests that the TID hardness of a BJT tends to increase with base current I.A possible cause for this finding was analyzed and confirmed through irradiation experiments.
基金Supported by Science and Technology Program of Chongqing,No.2013-2-179
文摘AIM To investigate whether autophagic cell death is involved in hyperthermic sensitization to ionizing radiation in human hepatocellular carcinoma cells, and to explore the underlying mechanism.METHODS Human hepatocellular carcinoma cells were treated with hyperthermia and ionizing radiation. MTT and clonogenic assays were performed to determine cell survival. Cell autophagy was detected using acridine orange staining and flow cytometric analysis, and the expression of autophagy-associated proteins, LC3 and p62, was determined by Western blot analysis. Intracellular reactive oxygen species(ROS) were quantified using the fluorescent probe DCFH-DA.RESULTS Treatment with hyperthermia and ionizing radiation significantly decreased cell viability and surviving fraction as compared with hyperthermia or ionizing radiation alone. Cell autophagy was significantly increased after ionizing radiation combined with hyperthermia treatment, as evidenced by increased formation of acidic vesicular organelles, increased expression of LC3 II and decreased expression of p62. Intracellular ROS were also increased after combined treatment with hyperthermia and ionizing radiation. Pretreatment with N-acetylcysteine, an ROS scavenger, markedly inhibited the cytotoxicity and cell autophagy induced by hyperthermia and ionizing radiation.CONCLUSION Autophagic cell death is involved in hyperthermic sensitization of cancer cells to ionizing radiation, and its induction may be due to the increased intracellular ROS.
基金supported by the National Natural Science Foundation of China(Grant No.61404161)
文摘The 1-Mb and 4-Mb commercial toggle magnetoresistive random-access memories(MRAMs) with 0.13 μm and 0.18-μm complementary metal–oxide–semiconductor(CMOS) process respectively and different magnetic tunneling junctions(MTJs) are irradiated with a Cobalt-60 gamma source. The electrical functions of devices during the irradiation and the room temperature annealing behavior are measured. Electrical failures are observed until the dose accumulates to 120-krad(Si) in 4-Mb MRAM while the 1-Mb MRAM keeps normal. Thus, the 0.13-μm process circuit exhibits better radiation tolerance than the 0.18-μm process circuit. However, a small quantity of read bit-errors randomly occurs only in 1-Mb MRAM during the irradiation while their electrical function is normal. It indicates that the store states of MTJ may be influenced by gamma radiation, although the electrical transport and magnetic properties are inherently immune to the radiation. We propose that the magnetic Compton scattering in the interaction of gamma ray with magnetic free layer may be the origin of the read bit-errors. Our results are useful for MRAM toward space application.
文摘The influence of combined total ionization dose(TID)and radiated electromagnetic interference(EMI)in a commercial analog-to-digital converter(ADC)was studied.The degradation of the direct-current response,the static parameters,and the dynamic parameters caused by the TID and EMI separately and synergistically is presented.The experimental results demonstrate that the increase in TID intensifies data error and the signal-tonoise ratio(SNR)degradation caused by radiated EMI.The cumulative distribution function of EMI failure with respect to data error and SNR with different TIDs was extracted.The decreasing trend of the threshold was acquired with a small sample size of five for each TID group.The result indicates that the ADC is more sensitive in a compound radiation environment.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61704127 and 61574171)the Fundamental Research Funds for the Central Universities,China(Grant No.XJS17067)
文摘The synergistic effect of total ionizing dose(TID) on single event effect(SEE) in SiGe heterojunction bipolar transistor(HBT) is investigated in a series of experiments. The SiGe HBTs after being exposed to 60 Co g irradiation are struck by pulsed laser to simulate SEE. The SEE transient currents and collected charges of the un-irradiated device are compared with those of the devices which are irradiated at high and low dose rate with various biases. The results show that the SEE damage to un-irradiated device is more serious than that to irradiated SiGe HBT at a low applied voltage of laser test. In addition, the g irradiations at forward and all-grounded bias have an obvious influence on SEE in the SiGe HBT, but the synergistic effect after cutting off the g irradiation is not significant. The influence of positive oxide-trap charges induced by TID on the distortion of electric field in SEE is the major factor of the synergistic effect. Moreover, the recombination of interface traps also plays a role in charge collection.
文摘Objective:To discuss effect of ionizing radiation on transcription of colorectal cancer multidrug resistance(MDR) 1 gene of HCT-8 cells.Methods:Total RNA was extracted by guanidine thiocyanate one-step method.Northern blot was applied to detect transcription level of MDR1 gene.The expression of P-gp protein was detected by flow cytometry.Results:The expression of MDRl of normal colorectal cancer HCT-8 cells was low.It was increased by 8.35 times under stimulus with 2 Gy.When treated with low doses in advance,high expressed MDR was decreased significantly under 0.05,0.1 Gy,which was 69.00%,62.89%in 2 Cy group and 5.77 times,5.25 times in sham irradiation group.No obvious difference was detected between(0.2+2) Gy group and 2 Gy group.Compared with sham irradiation group,the percentage of P-gp positive cells after radiation of a high 2 Gy dose was increased significantly(P【0.01).When treated with high radiation dose following low radiation dose(0.05 Gy,0.1 Gy) in advance,the percentage of P-gp positive cells were also increased significantly.The percentage of P-gp positive cells were increased obviously in 0.2 Gy and 2 Gy groups.Compared with simple high radiation 2 Gy group,the percentage of P-gp positive cells was decreased significantly(P【0.05).Conclusions: Low radiation dose can reverse multidrug resistance of colorectal cancer cells caused by high radiation dose.
基金supported in part by Fundamental Research Funds for the Central Universities(No.FRF-TP-15-114A1)the National Natural Science Foundation of China(No.11505300&11605008)
文摘Surveying ionizing radiations of the surrounding with a smartphone provides a low-cost and convenient utility for the general public. We developed a smartphone application(App) that uses the built-in camera with a CMOS sensor and a radiation signal extraction algorithm.After a calibration through a series of radiation exposures,the App could display radiation dose rate and cumulative dose in real time without requiring covering the camera lens. A smartphone with this App can be used as a fast survey tool for ionizing radiations.
基金supported by the National Natural Sciences Foundation of China[31870851 and 31471953]the Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences[2019PT320005]+1 种基金the Science and Technology Research Project of Gansu Province[145RTSA012 and 20JR5RA555]the Youth Innovation Promotion Association CAS[2021415]
文摘Objective To investigate the function of primary cilia in regulating the cellular response to temozolomide(TMZ)and ionizing radiation(IR)in glioblastoma(GBM).Methods GBM cells were treated with TMZ or X-ray/carbon ion.The primary cilia were examined by immunostaining with Arl13 b andγ-tubulin,and the cellular resistance ability was measured by cell viability assay or survival fraction assay.Combining with cilia ablation by IFT88 depletion or chloral hydrate and induction by lithium chloride,the autophagy was measured by acridine orange staining assay.The DNA damage repair ability was estimated by the kinetic curve ofγH2 AX foci,and the DNAdependent protein kinase(DNA-PK)activation was detected by immunostaining assay.Results Primary cilia were frequently preserved in GBM,and the induction of ciliogenesis decreased cell proliferation.TMZ and IR promoted ciliogenesis in dose-and time-dependent manners,and the suppression of ciliogenesis significantly enhanced the cellular sensitivity to TMZ and IR.The inhibition of ciliogenesis elevated the lethal effects of TMZ and IR via the impairment of autophagy and DNA damage repair.The interference of ciliogenesis reduced DNA-PK activation,and the knockdown of DNA-PK led to cilium formation and elongation.Conclusion Primary cilia play a vital role in regulating the cellular sensitivity to TMZ and IR in GBM cells through mediating autophagy and DNA damage repair.