It is shown that any fixed point of a Lipschitzian,strictly pseudocontractive muping T on a closed convex subset K of a Banach space X may be approximated by Ishikawa iterative procedure.The results in this paper pro...It is shown that any fixed point of a Lipschitzian,strictly pseudocontractive muping T on a closed convex subset K of a Banach space X may be approximated by Ishikawa iterative procedure.The results in this paper provide the new convergence criteria and novel convergence rate estimate for Ishikawa iterative sequence.展开更多
Some convergence theorems of Ishikawa type iterative sequence with errors for nonlinear general quasi-contractive mapping in convex metric spaces are proved. The results not only extend and improve the corresponding r...Some convergence theorems of Ishikawa type iterative sequence with errors for nonlinear general quasi-contractive mapping in convex metric spaces are proved. The results not only extend and improve the corresponding results of L. B. Ciric, Q. H. Liu, H. E. Rhoades and H. K. Xu, et al., but also give an affirmative answer to the open question of Rhoades-Naimpally- Singh in convex metric spaces.展开更多
The purpose of this paper is to introduce the concept of Φ_pseudo contractive type mapping and to study the convergence problem of Ishikawa and Mann iterative processes with error for this kind of mappings. The resul...The purpose of this paper is to introduce the concept of Φ_pseudo contractive type mapping and to study the convergence problem of Ishikawa and Mann iterative processes with error for this kind of mappings. The results presented in this paper improve and extend many authors'recent results.展开更多
Itis shown that any fixed point of each Lipschitzian,strictly pseudocontractive map- ping T on a closed convex subset K of a Banach space X may be norm approximated by Ishikawa iterative procedure.The argument in th...Itis shown that any fixed point of each Lipschitzian,strictly pseudocontractive map- ping T on a closed convex subset K of a Banach space X may be norm approximated by Ishikawa iterative procedure.The argument in this paper provides a convergence rate estimate. Moreover the resultin this paper improves,generalizes and summarizes some important and el- egant recent results展开更多
The purpose of this paper is to study the Mann and Ishikawa iterative approximation of solutions for m_accretive operator equations in Banach spaces. The results presented in this paper extend and improve some authors...The purpose of this paper is to study the Mann and Ishikawa iterative approximation of solutions for m_accretive operator equations in Banach spaces. The results presented in this paper extend and improve some authors' recent results.展开更多
In this paper, we investigate the problem of approximating solutions of the equations of Lipschitzian ψ-strongly accretive operators and fixed points of Lipschitzian ψ-hemicontractive operators by lshikawa type iter...In this paper, we investigate the problem of approximating solutions of the equations of Lipschitzian ψ-strongly accretive operators and fixed points of Lipschitzian ψ-hemicontractive operators by lshikawa type iterative sequences with errors. Our results unify, improve and extend the results obtained previously by several authors including Li and Liu (Acta Math. Sinica 41 (4)(1998), 845-850), and Osilike (Nonlinear Anal. TMA, 36(1)(1999), 1-9), and also answer completely the open problems mentioned by Chidume (J. Math. Anal. Appl. 151 (2)(1990), 453-461).展开更多
The convergence of the Ishikawa iteration sequences with errors for constructing solutions of m-accretive operator equations is characterized. Moreover, the error estimates of approximate solutions for locally Lipschi...The convergence of the Ishikawa iteration sequences with errors for constructing solutions of m-accretive operator equations is characterized. Moreover, the error estimates of approximate solutions for locally Lipschitzian and m-accretive operator equations are established.展开更多
Let E be a uniformly smooth Banach space, K be a nonempty closed convex subset of E, and suppose: T: K --> K is a continuous Phi-strongly pseudocontractive operator with a bounded range. Using a new analytical meth...Let E be a uniformly smooth Banach space, K be a nonempty closed convex subset of E, and suppose: T: K --> K is a continuous Phi-strongly pseudocontractive operator with a bounded range. Using a new analytical method, under general cases, the Ishikawa iterative process {x(n)} converges strongly to the unique fixed point x* of the operator T were proved. The paper generalizes and extends a lot of recent corresponding results.展开更多
The stability of the Ishikawa iteration procedures was studied for one class of continuity strong pseudocontraction and continuity strongly accretive operators with bounded range in real uniformly smooth Banach space....The stability of the Ishikawa iteration procedures was studied for one class of continuity strong pseudocontraction and continuity strongly accretive operators with bounded range in real uniformly smooth Banach space. Under parameters satisfying certain conditions, the convergence of iterative sequences was proved. The results improve and extend the recent corresponding results, and supply the basis of theory for further discussing convergence of iteration procedures with errors.展开更多
The general results on convergence of the Ishikawa iteration procedures with errors for Lipschitzian φ strong pseudo contractions and nonlinear operator equations of φ strongly accretive type is established in arbit...The general results on convergence of the Ishikawa iteration procedures with errors for Lipschitzian φ strong pseudo contractions and nonlinear operator equations of φ strongly accretive type is established in arbitrary Banach spaces. As the direct applications, some stability results of the Ishikawa iteration methods for φ strong pseudo contractions and nonlinear operator equations of φ strongly accretive type are also given. Our results in this paper improve and extend the recent results due to Osilike and other authors.展开更多
Let X be a real Banach space and A : X→ 2x a bounded uniformly continuous Φ-strongly accretive multivalued mapping. For any f ∈ X, Mann and Ishikawa iterative processes with errors converge strongly to the unique s...Let X be a real Banach space and A : X→ 2x a bounded uniformly continuous Φ-strongly accretive multivalued mapping. For any f ∈ X, Mann and Ishikawa iterative processes with errors converge strongly to the unique solution of Ax (?) f. The conclusion in this paper weakens the stronger conditions about errors in Chidume and Moore's theorem (J. Math. Anal. Appl, 245(2000), 142-160).展开更多
Let E be a uniformly convex Banach space which satisfies Opial's condition or has a Frechet differentiable norm,and C be a bounded closed convex subset of E. If T∶C→C is (asymptotically)nonexpans...Let E be a uniformly convex Banach space which satisfies Opial's condition or has a Frechet differentiable norm,and C be a bounded closed convex subset of E. If T∶C→C is (asymptotically)nonexpansive,then the modified Ishikawa iteration process defined byx n+1 =t nT ns nT nx n+1-s nx n+(1-t n)x n,converges weakly to a fixed point of T ,where {t n} and {s n} are sequences in [0,1] with some restrictions.展开更多
In this paper,the approximation problems of Ishikawa iteration with errors of fixed points for asymptotically nonexpansive mappings and asymptotically pseudocontractive mappings in arbitrary real Banach spaces are inv...In this paper,the approximation problems of Ishikawa iteration with errors of fixed points for asymptotically nonexpansive mappings and asymptotically pseudocontractive mappings in arbitrary real Banach spaces are investigated.Some necessary condition and sufficient condition for the convergence of iterative sequences are given respectively.The results thus extend and improve some recent corresponding results.展开更多
In this paper, by virtue of an inequality and sane analysis techniques, we prove sane convergence theorems cm the iterative process for nonlinear mappings of-pseudo contractive type in named linear spaces, which exten...In this paper, by virtue of an inequality and sane analysis techniques, we prove sane convergence theorems cm the iterative process for nonlinear mappings of-pseudo contractive type in named linear spaces, which extend and improve the corresponding results obtained by others recently.展开更多
Let X be a real Banach space with a uniformly convex dual X*. Let T: X a X be a Lipschitzian and strongly accretive mapping with a Lipschitzian constant L greater than or equal to 1 and a strongly accretive constant k...Let X be a real Banach space with a uniformly convex dual X*. Let T: X a X be a Lipschitzian and strongly accretive mapping with a Lipschitzian constant L greater than or equal to 1 and a strongly accretive constant k epsilon (0,1). Let {alpha(n)} and {beta(n)} be two real sequences in [0,1] satisfying: (i) alpha(n) --> 0 as n --> infinity (ii) beta(n) < k(1 - k)/L(1 + L), for all n greater than or equal to 0; (iii) Pi(infinity) alpha(n) = infinity Set Sx = f - Tx + x, For All x epsilon X. Assume that {u(n)}(n=0)(infinity) and {v(n)}(n=0)(infinity) be two sequences in X satisfying parallel to u(n) parallel to = o(alpha(n)) and nu(n) --> 0 as n --> infinity. For arbitrary x(0) epsilon X, the iteration sequence {x(n)} is defined by (IS)(I) {x(n+1) = (1 - alpha(n))x(n) + alpha(n)Sy(n) + u(n), {y(n) = (1 - beta(n)) x(n) + beta(n)Sx(n) + v(n) (n greater than or equal to 0) then {x(n)} converges strongly to the unique solution of the equation Tx = f. related result deals with iterative approximation of fixed points of phi-hemicontractive mappings.展开更多
Suppose that X is a real Banach space, H: X→X is a Lipschitz operator, T: X→X is a uniformly continuous operator with bounded range, and H+T is strongly accretive. Then the Ishikawa iteration process...Suppose that X is a real Banach space, H: X→X is a Lipschitz operator, T: X→X is a uniformly continuous operator with bounded range, and H+T is strongly accretive. Then the Ishikawa iteration process converges strongly to the unique solution of the equation Hx+Tx=f . This conclusion extends the corresponding results in recent papers.展开更多
Some necessary and sufficient conditions for convergence of Ishikawa Mann and steepest descent iterative sequence for accretive and pseudo-contractive type mapping in Banach spaces were obtained. The results improve, ...Some necessary and sufficient conditions for convergence of Ishikawa Mann and steepest descent iterative sequence for accretive and pseudo-contractive type mapping in Banach spaces were obtained. The results improve, extend and include some recent results.展开更多
Let E be an arbitrary real Banach space and K be a nonempty closed convex subsets of E. Let T:K→K be a uniformly continuous _hemicontractive operator with bounded range and a n,b n,c n,a ′ n,b ′ n,c ′ n b...Let E be an arbitrary real Banach space and K be a nonempty closed convex subsets of E. Let T:K→K be a uniformly continuous _hemicontractive operator with bounded range and a n,b n,c n,a ′ n,b ′ n,c ′ n be sequences in [0,1] satisfying:ⅰ) a n+b n+c n=a ′ n+b ′ n+c ′ n=1. n≥0; ⅱ) lim b n= lim b ′ n= lim c ′ n= 0; ⅲ)∑∞n=0b n=∞; ⅳ) c n=o(b n). For any given x 0,u 0,v 0∈K, define the Ishikawa type iterative sequence x n as follows: x n+1 =a nx n+b nTy n+c nu n, y n=a ′ nx n+b ′ nTx n+c ′ nv n (n≥0), where u n and v n are bounded sequences in K. Then x n converges strongly to the unique fixed point of T. Related result deals with the convergence of Ishikawa type iterative sequence to the solution of _strongly accretive operator equations.展开更多
Using the new analysis techniques, the problem of iterative approximation of solutions of the equation for Lipschitz phi-strongly accretive operators and of fixed points for Lipschitz phi-strongly pseudo-contractive m...Using the new analysis techniques, the problem of iterative approximation of solutions of the equation for Lipschitz phi-strongly accretive operators and of fixed points for Lipschitz phi-strongly pseudo-contractive mappings are discussed. The main results of this paper improve and extend the corresponding results obtained by Chang, Chidume, Deng, Ding, Tan-Xu and Osilike.展开更多
基金Supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Ed-ucation Institutions of MOE,P.R.C.
文摘It is shown that any fixed point of a Lipschitzian,strictly pseudocontractive muping T on a closed convex subset K of a Banach space X may be approximated by Ishikawa iterative procedure.The results in this paper provide the new convergence criteria and novel convergence rate estimate for Ishikawa iterative sequence.
基金Foundation items:the National Ntural Science Foundation of China(19771058)the Natural Science Foundation of Education Department of Sichuan Province(01LA70)
文摘Some convergence theorems of Ishikawa type iterative sequence with errors for nonlinear general quasi-contractive mapping in convex metric spaces are proved. The results not only extend and improve the corresponding results of L. B. Ciric, Q. H. Liu, H. E. Rhoades and H. K. Xu, et al., but also give an affirmative answer to the open question of Rhoades-Naimpally- Singh in convex metric spaces.
文摘The purpose of this paper is to introduce the concept of Φ_pseudo contractive type mapping and to study the convergence problem of Ishikawa and Mann iterative processes with error for this kind of mappings. The results presented in this paper improve and extend many authors'recent results.
基金This project was supported both by the National Natural Science Foundation of China (1 980 1 0 2 3 ) andby the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institu-tions of MOEP.R.C.
文摘Itis shown that any fixed point of each Lipschitzian,strictly pseudocontractive map- ping T on a closed convex subset K of a Banach space X may be norm approximated by Ishikawa iterative procedure.The argument in this paper provides a convergence rate estimate. Moreover the resultin this paper improves,generalizes and summarizes some important and el- egant recent results
文摘The purpose of this paper is to study the Mann and Ishikawa iterative approximation of solutions for m_accretive operator equations in Banach spaces. The results presented in this paper extend and improve some authors' recent results.
基金supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Educations of MOE,P.R.C.the National Natural Science Foundation of P.R.C.No.19801023
文摘In this paper, we investigate the problem of approximating solutions of the equations of Lipschitzian ψ-strongly accretive operators and fixed points of Lipschitzian ψ-hemicontractive operators by lshikawa type iterative sequences with errors. Our results unify, improve and extend the results obtained previously by several authors including Li and Liu (Acta Math. Sinica 41 (4)(1998), 845-850), and Osilike (Nonlinear Anal. TMA, 36(1)(1999), 1-9), and also answer completely the open problems mentioned by Chidume (J. Math. Anal. Appl. 151 (2)(1990), 453-461).
文摘The convergence of the Ishikawa iteration sequences with errors for constructing solutions of m-accretive operator equations is characterized. Moreover, the error estimates of approximate solutions for locally Lipschitzian and m-accretive operator equations are established.
文摘Let E be a uniformly smooth Banach space, K be a nonempty closed convex subset of E, and suppose: T: K --> K is a continuous Phi-strongly pseudocontractive operator with a bounded range. Using a new analytical method, under general cases, the Ishikawa iterative process {x(n)} converges strongly to the unique fixed point x* of the operator T were proved. The paper generalizes and extends a lot of recent corresponding results.
文摘The stability of the Ishikawa iteration procedures was studied for one class of continuity strong pseudocontraction and continuity strongly accretive operators with bounded range in real uniformly smooth Banach space. Under parameters satisfying certain conditions, the convergence of iterative sequences was proved. The results improve and extend the recent corresponding results, and supply the basis of theory for further discussing convergence of iteration procedures with errors.
基金the National Natural Science Foundation of China ( Grant No.1 9971 0 1 3)
文摘The general results on convergence of the Ishikawa iteration procedures with errors for Lipschitzian φ strong pseudo contractions and nonlinear operator equations of φ strongly accretive type is established in arbitrary Banach spaces. As the direct applications, some stability results of the Ishikawa iteration methods for φ strong pseudo contractions and nonlinear operator equations of φ strongly accretive type are also given. Our results in this paper improve and extend the recent results due to Osilike and other authors.
文摘Let X be a real Banach space and A : X→ 2x a bounded uniformly continuous Φ-strongly accretive multivalued mapping. For any f ∈ X, Mann and Ishikawa iterative processes with errors converge strongly to the unique solution of Ax (?) f. The conclusion in this paper weakens the stronger conditions about errors in Chidume and Moore's theorem (J. Math. Anal. Appl, 245(2000), 142-160).
基金Supported both by the National Natural Science Foundation(1 980 1 0 2 3 ) and the Teaching and ResearchAward Fund for Outstanding Young Teachers in Higher Education Institutions of MOEP.R.C
文摘Let E be a uniformly convex Banach space which satisfies Opial's condition or has a Frechet differentiable norm,and C be a bounded closed convex subset of E. If T∶C→C is (asymptotically)nonexpansive,then the modified Ishikawa iteration process defined byx n+1 =t nT ns nT nx n+1-s nx n+(1-t n)x n,converges weakly to a fixed point of T ,where {t n} and {s n} are sequences in [0,1] with some restrictions.
基金Supported by the National Science Foundation of Yunnan Province(2 0 0 2 A0 0 58M)
文摘In this paper,the approximation problems of Ishikawa iteration with errors of fixed points for asymptotically nonexpansive mappings and asymptotically pseudocontractive mappings in arbitrary real Banach spaces are investigated.Some necessary condition and sufficient condition for the convergence of iterative sequences are given respectively.The results thus extend and improve some recent corresponding results.
文摘In this paper, by virtue of an inequality and sane analysis techniques, we prove sane convergence theorems cm the iterative process for nonlinear mappings of-pseudo contractive type in named linear spaces, which extend and improve the corresponding results obtained by others recently.
文摘Let X be a real Banach space with a uniformly convex dual X*. Let T: X a X be a Lipschitzian and strongly accretive mapping with a Lipschitzian constant L greater than or equal to 1 and a strongly accretive constant k epsilon (0,1). Let {alpha(n)} and {beta(n)} be two real sequences in [0,1] satisfying: (i) alpha(n) --> 0 as n --> infinity (ii) beta(n) < k(1 - k)/L(1 + L), for all n greater than or equal to 0; (iii) Pi(infinity) alpha(n) = infinity Set Sx = f - Tx + x, For All x epsilon X. Assume that {u(n)}(n=0)(infinity) and {v(n)}(n=0)(infinity) be two sequences in X satisfying parallel to u(n) parallel to = o(alpha(n)) and nu(n) --> 0 as n --> infinity. For arbitrary x(0) epsilon X, the iteration sequence {x(n)} is defined by (IS)(I) {x(n+1) = (1 - alpha(n))x(n) + alpha(n)Sy(n) + u(n), {y(n) = (1 - beta(n)) x(n) + beta(n)Sx(n) + v(n) (n greater than or equal to 0) then {x(n)} converges strongly to the unique solution of the equation Tx = f. related result deals with iterative approximation of fixed points of phi-hemicontractive mappings.
文摘Suppose that X is a real Banach space, H: X→X is a Lipschitz operator, T: X→X is a uniformly continuous operator with bounded range, and H+T is strongly accretive. Then the Ishikawa iteration process converges strongly to the unique solution of the equation Hx+Tx=f . This conclusion extends the corresponding results in recent papers.
文摘Some necessary and sufficient conditions for convergence of Ishikawa Mann and steepest descent iterative sequence for accretive and pseudo-contractive type mapping in Banach spaces were obtained. The results improve, extend and include some recent results.
文摘Let E be an arbitrary real Banach space and K be a nonempty closed convex subsets of E. Let T:K→K be a uniformly continuous _hemicontractive operator with bounded range and a n,b n,c n,a ′ n,b ′ n,c ′ n be sequences in [0,1] satisfying:ⅰ) a n+b n+c n=a ′ n+b ′ n+c ′ n=1. n≥0; ⅱ) lim b n= lim b ′ n= lim c ′ n= 0; ⅲ)∑∞n=0b n=∞; ⅳ) c n=o(b n). For any given x 0,u 0,v 0∈K, define the Ishikawa type iterative sequence x n as follows: x n+1 =a nx n+b nTy n+c nu n, y n=a ′ nx n+b ′ nTx n+c ′ nv n (n≥0), where u n and v n are bounded sequences in K. Then x n converges strongly to the unique fixed point of T. Related result deals with the convergence of Ishikawa type iterative sequence to the solution of _strongly accretive operator equations.
文摘Using the new analysis techniques, the problem of iterative approximation of solutions of the equation for Lipschitz phi-strongly accretive operators and of fixed points for Lipschitz phi-strongly pseudo-contractive mappings are discussed. The main results of this paper improve and extend the corresponding results obtained by Chang, Chidume, Deng, Ding, Tan-Xu and Osilike.