This paper discusses a kind of implicit iterative methods with some variable parameters, which are called control parameters, for solving ill-posed operator equations. The theoretical results show that the new methods...This paper discusses a kind of implicit iterative methods with some variable parameters, which are called control parameters, for solving ill-posed operator equations. The theoretical results show that the new methods always lead to optimal convergence rates and have some other important features, especially the methods can be implemented parallelly.展开更多
There are several ways that can be used to classify or compare iterative methods for nonlinear equations,for instance;order of convergence,informational efficiency,and efficiency index.In this work,we use another way,...There are several ways that can be used to classify or compare iterative methods for nonlinear equations,for instance;order of convergence,informational efficiency,and efficiency index.In this work,we use another way,namely the basins of attraction of the method.The purpose of this study is to compare several iterative schemes for nonlinear equations.All the selected schemes are of the third-order of convergence and most of them have the same efficiency index.The comparison depends on the basins of attraction of the iterative techniques when applied on several polynomials of different degrees.As a comparison,we determine the CPU time(in seconds)needed by each scheme to obtain the basins of attraction,besides,we illustrate the area of convergence of these schemes by finding the number of convergent and divergent points in a selected range for all methods.Comparisons confirm the fact that basins of attraction differ for iterative methods of different orders,furthermore,they vary for iterative methods of the same order even if they have the same efficiency index.Consequently,this leads to the need for a new index that reflects the real efficiency of the iterative scheme instead of the commonly used efficiency index.展开更多
Many science and engineering applications involve solvinga linear least-squares system formed from some field measurements. In the distributed cyber-physical systems(CPS),each sensor node used for measurement often on...Many science and engineering applications involve solvinga linear least-squares system formed from some field measurements. In the distributed cyber-physical systems(CPS),each sensor node used for measurement often only knowspartial independent rows of the least-squares system. To solve the least-squares all the measurements must be gathered at a centralized location and then perform the computa-tion. Such data collection and computation are inefficient because of bandwidth and time constraints and sometimes areinfeasible because of data privacy concerns. Iterative methods are natural candidates for solving the aforementionedproblem and there are many studies regarding this. However,most of the proposed solutions are related to centralized/parallel computations while only a few have the potential to beapplied in distributed networks. Thus distributed computations are strongly preferred or demanded in many of the realworld applications, e.g. smart-grid, target tracking, etc. Thispaper surveys the representative iterative methods for distributed least-squares in networks.展开更多
Let the linear system Ax=b where the coefficient matrix A=(a<sub>ij</sub>)∈R<sup>m,n</sup> is an L-ma-trix(that is,a<sub>ij</sub>】0 (?) i and a<sub>ij</sub>≤0 (?...Let the linear system Ax=b where the coefficient matrix A=(a<sub>ij</sub>)∈R<sup>m,n</sup> is an L-ma-trix(that is,a<sub>ij</sub>】0 (?) i and a<sub>ij</sub>≤0 (?) i≠j),A=I-L-U,I is the identity matrix,-L and-U are,respectively,strictly lower and strictly upper triangular parts of A.In[1]theauthors considered two preconditioned linear systems?x=(?) and ?x=(?)展开更多
This paper considers practical, high-order methods for the iterative location of the roots of nonlinear equations, one at a time. Special attention is being paid to algorithms also applicable to multiple roots of init...This paper considers practical, high-order methods for the iterative location of the roots of nonlinear equations, one at a time. Special attention is being paid to algorithms also applicable to multiple roots of initially known and unknown multiplicity. Efficient methods are presented in this note for the evaluation of the multiplicity index of the root being sought. Also reviewed here are super-linear and super-cubic methods that converge contrarily or alternatingly, enabling us, not only to approach the root briskly and confidently but also to actually bound and bracket it as we progress.展开更多
In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order...In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order five. Numerical examples show that the new methods are comparable with the well known existing methods and give better results in many aspects.展开更多
In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-m...In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.展开更多
In this article, we introduce a new viscosity iterative method for two nonexpansive mappings in Hilbert spaces. We also prove, without commutativity assumption, that the iterates converge to a common fixed point of th...In this article, we introduce a new viscosity iterative method for two nonexpansive mappings in Hilbert spaces. We also prove, without commutativity assumption, that the iterates converge to a common fixed point of the mappings which solves some variational inequality. The results presented extend the corresponding results of Shimizu and Takahashi IT. Shimizu, W. Takahashi, Strong convergence to common fixed point of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), 71-83], and Yao and Chen [Y. Yao, R. Chert, Convergence to common fixed points of average mappings without commutativity assumption in Hilbert spaces, Nonlinear Analysis 67(2007), 1758-1763].展开更多
Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterativ...Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterative methods and provide a reference for further study and design. Finally, a new iterative method is designed named as the diverse relaxation parameter of the SOR method which, in particular, demonstrates the geometric characteristics. Many examples prove that the method is quite effective.展开更多
Two types of existing iterative methods for solving the nonlinear balance equation(NBE)are revisited.In the first type,the NBE is rearranged into a linearized equation for a presumably small correction to the initial ...Two types of existing iterative methods for solving the nonlinear balance equation(NBE)are revisited.In the first type,the NBE is rearranged into a linearized equation for a presumably small correction to the initial guess or the subsequent updated solution.In the second type,the NBE is rearranged into a quadratic form of the absolute vorticity with the positive root of this quadratic form used in the form of a Poisson equation to solve NBE iteratively.The two methods are rederived by expanding the solution asymptotically upon a small Rossby number,and a criterion for optimally truncating the asymptotic expansion is proposed to obtain the super-asymptotic approximation of the solution.For each rederived method,two iterative procedures are designed using the integral-form Poisson solver versus the over-relaxation scheme to solve the boundary value problem in each iteration.Upon testing with analytically formulated wavering jet flows on the synoptic,sub-synoptic and meso-αscales,the iterative procedure designed for the first method with the Poisson solver,named M1a,is found to be the most accurate and efficient.For the synoptic wavering jet flow in which the NBE is entirely elliptic,M1a is extremely accurate.For the sub-synoptic wavering jet flow in which the NBE is mostly elliptic,M1a is sufficiently accurate.For the meso-αwavering jet flow in which the NBE is partially hyperbolic so its boundary value problem becomes seriously ill-posed,M1a can effectively reduce the solution error for the cyclonically curved part of the wavering jet flow,but not for the anti-cyclonically curved part.展开更多
In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Conver...In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Convergence analysis proved that the order of convergence of the family of derivative free simultaneous iterative method is nine.Our main aim is to check out the most regularly used simultaneous iterative methods for finding all roots of non-linear equations by studying their dynamical planes,numerical experiments and CPU time-methodology.Dynamical planes of iterative methods are drawn by using MATLAB for the comparison of global convergence properties of simultaneous iterative methods.Convergence behavior of the higher order simultaneous iterative methods are also illustrated by residual graph obtained from some numerical test examples.Numerical test examples,dynamical behavior and computational efficiency are provided to present the performance and dominant efficiency of the newly constructed derivative free family of simultaneous iterative method over existing higher order simultaneous methods in literature.展开更多
Stair matrices and their generalizations are introduced. The definitions and some properties of the matrices were first given by Lu Hao. This class of matrices provide bases of matrix splittings for iterative methods....Stair matrices and their generalizations are introduced. The definitions and some properties of the matrices were first given by Lu Hao. This class of matrices provide bases of matrix splittings for iterative methods. The remarkable feature of iterative methods based on the new class of matrices is that the methods are easily implemented for parallel computation. In particular, a generalization of the accelerated overrelaxation method (GAOR) is introduced. Some theories of the AOR method are extended to the generalized method to include a wide class of matrices. The convergence of the new method is derived for Hermitian positive definite matrices. Finally, some examples are given in order to show the superiority of the new method.展开更多
A finite difference method is introduced to solve the forward-backward heat equation in two space dimensions. In this procedure, the backward and forward difference scheme in two subdomains and a coarse-mesh second-or...A finite difference method is introduced to solve the forward-backward heat equation in two space dimensions. In this procedure, the backward and forward difference scheme in two subdomains and a coarse-mesh second-order central difference scheme at the middle interface are used. Maximum norm error estimate for the procedure is derived. Then an iterative method based on domain decomposition is presented for the numerical scheme and the convergence of the given method is established. Then numerical experiments are presented to support the theoretical analysis.展开更多
In a recent paper, Noor and Khan [M. Aslam Noor, & W. A. Khan, (2012) New Iterative Methods for Solving Nonlinear Equation by Using Homotopy Perturbation Method, Applied Mathematics and Computation, 219, 3565-3574...In a recent paper, Noor and Khan [M. Aslam Noor, & W. A. Khan, (2012) New Iterative Methods for Solving Nonlinear Equation by Using Homotopy Perturbation Method, Applied Mathematics and Computation, 219, 3565-3574], suggested a fourth-order method for solving nonlinear equations. Per iteration in this method requires two evaluations of the function and two of its first derivatives;therefore, the efficiency index is 1.41421 as Newton’s method. In this paper, we modified this method and obtained a family of iterative methods for appropriate and suitable choice of the parameter. It should be noted that per iteration for the new methods requires two evaluations of the function and one evaluation of its first derivatives, so its efficiency index equals to 1.5874. Analysis of convergence shows that the methods are fourth-order. Several numerical examples are given to illustrate the performance of the presented methods.展开更多
In this paper, a group of Gauss-Legendre iterative methods with cubic convergence for solving nonlinear systems are proposed. We construct the iterative schemes based on Gauss-Legendre quadrature formula. The cubic co...In this paper, a group of Gauss-Legendre iterative methods with cubic convergence for solving nonlinear systems are proposed. We construct the iterative schemes based on Gauss-Legendre quadrature formula. The cubic convergence and error equation are proved theoretically, and demonstrated numerically. Several numerical examples for solving the system of nonlinear equations and boundary-value problems of nonlinear ordinary differential equations (ODEs) are provided to illustrate the efficiency and performance of the suggested iterative methods.展开更多
It was proved numerically that the Domain Decomposition Method CDDM) with one layer overlapping grids is identical to the block iterative method of linear algebra equations. The results obtained by using DDM could be ...It was proved numerically that the Domain Decomposition Method CDDM) with one layer overlapping grids is identical to the block iterative method of linear algebra equations. The results obtained by using DDM could be in reasonable agreement with the results of full-domain simulation. With the three dimensional solver developed by the authors, the flow field in a pipe was simulated by using the full-domain DDM with one layer overlapping grids and with patched grids respectively. Both of the two cases led to the convergent solution. Further research shows the superiority of the DDM with one layer overlapping grids to the DDM with patched grids. A comparison between the numerical results obtained by the authors and the experimental results given by Enayet[3] shows that the numerical results are reasonable.展开更多
We present a simple yet effective and applicable scheme,based on quadrature,for constructing optimal iterative methods.According to the,still unproved,Kung-Traub conjecture an optimal iterative method based on n+1 eva...We present a simple yet effective and applicable scheme,based on quadrature,for constructing optimal iterative methods.According to the,still unproved,Kung-Traub conjecture an optimal iterative method based on n+1 evaluations could achieve a maximum convergence order of 2n.Through quadrature,we develop optimal iterative methods of orders four and eight.The scheme can further be applied to develop iterative methods of even higher orders.Computational results demonstrate that the developed methods are efficient as compared with many well known methods.展开更多
The convergence analysis on the general iterative methods for the symmetric and positive semidefinite problems is presented in this paper. First, formulated are refined necessary and sumcient conditions for the energy...The convergence analysis on the general iterative methods for the symmetric and positive semidefinite problems is presented in this paper. First, formulated are refined necessary and sumcient conditions for the energy norm convergence for iterative methods. Some illustrative examples for the conditions are also provided. The sharp convergence rate identity for the Gauss-Seidel method for the semidefinite system is obtained relying only on the pure matrix manipulations which guides us to obtain the convergence rate identity for the general successive subspace correction methods. The convergence rate identity for the successive subspace correction methods is obtained under the new conditions that the local correction schemes possess the local energy norm convergence. A convergence rate estimate is then derived in terms of the exact subspace solvers and the parameters that appear in the conditions. The uniform convergence of multigrid method for a model problem is proved by the convergence rate identity. The work can be regradled as unified and simplified analysis on the convergence of iteration methods for semidefinite problems [8, 9].展开更多
The paper is devoted to the analysis of certain dynamical properties of a family of iterative Newton type methods used to find roots of non-linear equations. We present a procedure for constructing polynomials in such...The paper is devoted to the analysis of certain dynamical properties of a family of iterative Newton type methods used to find roots of non-linear equations. We present a procedure for constructing polynomials in such a way that superattracting cycles of any prescribed length occur when these iterative methods are applied. This paper completes the study begun in Amat, Bermúclez, Busquier, et al., (2009).展开更多
The concept of the field of value to localize the spectrum of the iteration matrices of the skew-symmetric iterative methods is further exploited. Obtained formulas are derived to relate the fields of values of the or...The concept of the field of value to localize the spectrum of the iteration matrices of the skew-symmetric iterative methods is further exploited. Obtained formulas are derived to relate the fields of values of the original matrix and the iteration matrix. This allows us to determine theoretically that indefinite nonsymmetric linear systems can be solved by this class of iterative methods.展开更多
基金This work was supported by the National Natural Science Foundation of China
文摘This paper discusses a kind of implicit iterative methods with some variable parameters, which are called control parameters, for solving ill-posed operator equations. The theoretical results show that the new methods always lead to optimal convergence rates and have some other important features, especially the methods can be implemented parallelly.
基金We are grateful for the financial support from UKM’s research Grant GUP-2019-033。
文摘There are several ways that can be used to classify or compare iterative methods for nonlinear equations,for instance;order of convergence,informational efficiency,and efficiency index.In this work,we use another way,namely the basins of attraction of the method.The purpose of this study is to compare several iterative schemes for nonlinear equations.All the selected schemes are of the third-order of convergence and most of them have the same efficiency index.The comparison depends on the basins of attraction of the iterative techniques when applied on several polynomials of different degrees.As a comparison,we determine the CPU time(in seconds)needed by each scheme to obtain the basins of attraction,besides,we illustrate the area of convergence of these schemes by finding the number of convergent and divergent points in a selected range for all methods.Comparisons confirm the fact that basins of attraction differ for iterative methods of different orders,furthermore,they vary for iterative methods of the same order even if they have the same efficiency index.Consequently,this leads to the need for a new index that reflects the real efficiency of the iterative scheme instead of the commonly used efficiency index.
基金partially supported by US NSF under Grant No.NSF-CNS-1066391and No.NSF-CNS-0914371,NSF-CPS-1135814 and NSF-CDI-1125165
文摘Many science and engineering applications involve solvinga linear least-squares system formed from some field measurements. In the distributed cyber-physical systems(CPS),each sensor node used for measurement often only knowspartial independent rows of the least-squares system. To solve the least-squares all the measurements must be gathered at a centralized location and then perform the computa-tion. Such data collection and computation are inefficient because of bandwidth and time constraints and sometimes areinfeasible because of data privacy concerns. Iterative methods are natural candidates for solving the aforementionedproblem and there are many studies regarding this. However,most of the proposed solutions are related to centralized/parallel computations while only a few have the potential to beapplied in distributed networks. Thus distributed computations are strongly preferred or demanded in many of the realworld applications, e.g. smart-grid, target tracking, etc. Thispaper surveys the representative iterative methods for distributed least-squares in networks.
文摘Let the linear system Ax=b where the coefficient matrix A=(a<sub>ij</sub>)∈R<sup>m,n</sup> is an L-ma-trix(that is,a<sub>ij</sub>】0 (?) i and a<sub>ij</sub>≤0 (?) i≠j),A=I-L-U,I is the identity matrix,-L and-U are,respectively,strictly lower and strictly upper triangular parts of A.In[1]theauthors considered two preconditioned linear systems?x=(?) and ?x=(?)
文摘This paper considers practical, high-order methods for the iterative location of the roots of nonlinear equations, one at a time. Special attention is being paid to algorithms also applicable to multiple roots of initially known and unknown multiplicity. Efficient methods are presented in this note for the evaluation of the multiplicity index of the root being sought. Also reviewed here are super-linear and super-cubic methods that converge contrarily or alternatingly, enabling us, not only to approach the root briskly and confidently but also to actually bound and bracket it as we progress.
文摘In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order five. Numerical examples show that the new methods are comparable with the well known existing methods and give better results in many aspects.
文摘In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.
基金the Thailand Research Fund for financial support under Grant BRG5280016
文摘In this article, we introduce a new viscosity iterative method for two nonexpansive mappings in Hilbert spaces. We also prove, without commutativity assumption, that the iterates converge to a common fixed point of the mappings which solves some variational inequality. The results presented extend the corresponding results of Shimizu and Takahashi IT. Shimizu, W. Takahashi, Strong convergence to common fixed point of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), 71-83], and Yao and Chen [Y. Yao, R. Chert, Convergence to common fixed points of average mappings without commutativity assumption in Hilbert spaces, Nonlinear Analysis 67(2007), 1758-1763].
基金Supported by the National Natural Science Foundation of China(61272300)
文摘Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterative methods and provide a reference for further study and design. Finally, a new iterative method is designed named as the diverse relaxation parameter of the SOR method which, in particular, demonstrates the geometric characteristics. Many examples prove that the method is quite effective.
基金the NSF of China Grants 91937301 and 41675060,the National Key Scientific and Technological Infrastructure Project"EarthLab",and the ONR Grants N000141712375 and N000142012449 to the University of Oklahoma(OU)The numerical experiments were performed at the OU supercomputer SchoonerCIMMS by NOAA/Office of Oceanic and Atmospheric Research under NOAA-OU Cooperative Agreement#NA110AR4320072,U.S.Department of Commerce.
文摘Two types of existing iterative methods for solving the nonlinear balance equation(NBE)are revisited.In the first type,the NBE is rearranged into a linearized equation for a presumably small correction to the initial guess or the subsequent updated solution.In the second type,the NBE is rearranged into a quadratic form of the absolute vorticity with the positive root of this quadratic form used in the form of a Poisson equation to solve NBE iteratively.The two methods are rederived by expanding the solution asymptotically upon a small Rossby number,and a criterion for optimally truncating the asymptotic expansion is proposed to obtain the super-asymptotic approximation of the solution.For each rederived method,two iterative procedures are designed using the integral-form Poisson solver versus the over-relaxation scheme to solve the boundary value problem in each iteration.Upon testing with analytically formulated wavering jet flows on the synoptic,sub-synoptic and meso-αscales,the iterative procedure designed for the first method with the Poisson solver,named M1a,is found to be the most accurate and efficient.For the synoptic wavering jet flow in which the NBE is entirely elliptic,M1a is extremely accurate.For the sub-synoptic wavering jet flow in which the NBE is mostly elliptic,M1a is sufficiently accurate.For the meso-αwavering jet flow in which the NBE is partially hyperbolic so its boundary value problem becomes seriously ill-posed,M1a can effectively reduce the solution error for the cyclonically curved part of the wavering jet flow,but not for the anti-cyclonically curved part.
基金the Natural Science Foundation of China(Grant Nos.61673169,11301127,11701176,11626101,and 11601485)The Natural Science Foundation of Huzhou City(Grant No.2018YZ07).
文摘In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Convergence analysis proved that the order of convergence of the family of derivative free simultaneous iterative method is nine.Our main aim is to check out the most regularly used simultaneous iterative methods for finding all roots of non-linear equations by studying their dynamical planes,numerical experiments and CPU time-methodology.Dynamical planes of iterative methods are drawn by using MATLAB for the comparison of global convergence properties of simultaneous iterative methods.Convergence behavior of the higher order simultaneous iterative methods are also illustrated by residual graph obtained from some numerical test examples.Numerical test examples,dynamical behavior and computational efficiency are provided to present the performance and dominant efficiency of the newly constructed derivative free family of simultaneous iterative method over existing higher order simultaneous methods in literature.
基金Project supported by the Natural Science Foundation of Liaoning Province of China (No.20022021)
文摘Stair matrices and their generalizations are introduced. The definitions and some properties of the matrices were first given by Lu Hao. This class of matrices provide bases of matrix splittings for iterative methods. The remarkable feature of iterative methods based on the new class of matrices is that the methods are easily implemented for parallel computation. In particular, a generalization of the accelerated overrelaxation method (GAOR) is introduced. Some theories of the AOR method are extended to the generalized method to include a wide class of matrices. The convergence of the new method is derived for Hermitian positive definite matrices. Finally, some examples are given in order to show the superiority of the new method.
基金Supported by National Science Foundation of China(Grant 10871179)the National Basic Research Programme of China(Grant 2008CB717806)the Department of Education of Zhejiang Province(GrantY200803559).
文摘A finite difference method is introduced to solve the forward-backward heat equation in two space dimensions. In this procedure, the backward and forward difference scheme in two subdomains and a coarse-mesh second-order central difference scheme at the middle interface are used. Maximum norm error estimate for the procedure is derived. Then an iterative method based on domain decomposition is presented for the numerical scheme and the convergence of the given method is established. Then numerical experiments are presented to support the theoretical analysis.
文摘In a recent paper, Noor and Khan [M. Aslam Noor, & W. A. Khan, (2012) New Iterative Methods for Solving Nonlinear Equation by Using Homotopy Perturbation Method, Applied Mathematics and Computation, 219, 3565-3574], suggested a fourth-order method for solving nonlinear equations. Per iteration in this method requires two evaluations of the function and two of its first derivatives;therefore, the efficiency index is 1.41421 as Newton’s method. In this paper, we modified this method and obtained a family of iterative methods for appropriate and suitable choice of the parameter. It should be noted that per iteration for the new methods requires two evaluations of the function and one evaluation of its first derivatives, so its efficiency index equals to 1.5874. Analysis of convergence shows that the methods are fourth-order. Several numerical examples are given to illustrate the performance of the presented methods.
文摘In this paper, a group of Gauss-Legendre iterative methods with cubic convergence for solving nonlinear systems are proposed. We construct the iterative schemes based on Gauss-Legendre quadrature formula. The cubic convergence and error equation are proved theoretically, and demonstrated numerically. Several numerical examples for solving the system of nonlinear equations and boundary-value problems of nonlinear ordinary differential equations (ODEs) are provided to illustrate the efficiency and performance of the suggested iterative methods.
文摘It was proved numerically that the Domain Decomposition Method CDDM) with one layer overlapping grids is identical to the block iterative method of linear algebra equations. The results obtained by using DDM could be in reasonable agreement with the results of full-domain simulation. With the three dimensional solver developed by the authors, the flow field in a pipe was simulated by using the full-domain DDM with one layer overlapping grids and with patched grids respectively. Both of the two cases led to the convergent solution. Further research shows the superiority of the DDM with one layer overlapping grids to the DDM with patched grids. A comparison between the numerical results obtained by the authors and the experimental results given by Enayet[3] shows that the numerical results are reasonable.
文摘We present a simple yet effective and applicable scheme,based on quadrature,for constructing optimal iterative methods.According to the,still unproved,Kung-Traub conjecture an optimal iterative method based on n+1 evaluations could achieve a maximum convergence order of 2n.Through quadrature,we develop optimal iterative methods of orders four and eight.The scheme can further be applied to develop iterative methods of even higher orders.Computational results demonstrate that the developed methods are efficient as compared with many well known methods.
文摘The convergence analysis on the general iterative methods for the symmetric and positive semidefinite problems is presented in this paper. First, formulated are refined necessary and sumcient conditions for the energy norm convergence for iterative methods. Some illustrative examples for the conditions are also provided. The sharp convergence rate identity for the Gauss-Seidel method for the semidefinite system is obtained relying only on the pure matrix manipulations which guides us to obtain the convergence rate identity for the general successive subspace correction methods. The convergence rate identity for the successive subspace correction methods is obtained under the new conditions that the local correction schemes possess the local energy norm convergence. A convergence rate estimate is then derived in terms of the exact subspace solvers and the parameters that appear in the conditions. The uniform convergence of multigrid method for a model problem is proved by the convergence rate identity. The work can be regradled as unified and simplified analysis on the convergence of iteration methods for semidefinite problems [8, 9].
基金supported in part by Spanish Grants MTM2007-62945Fondecyt Grant 1095025, Chile
文摘The paper is devoted to the analysis of certain dynamical properties of a family of iterative Newton type methods used to find roots of non-linear equations. We present a procedure for constructing polynomials in such a way that superattracting cycles of any prescribed length occur when these iterative methods are applied. This paper completes the study begun in Amat, Bermúclez, Busquier, et al., (2009).
文摘The concept of the field of value to localize the spectrum of the iteration matrices of the skew-symmetric iterative methods is further exploited. Obtained formulas are derived to relate the fields of values of the original matrix and the iteration matrix. This allows us to determine theoretically that indefinite nonsymmetric linear systems can be solved by this class of iterative methods.