With an extensive range of distinctive features at nano meter-scale thicknesses,two-dimensional(2D)materials drawn the attention of the scientific community.Despite tremendous advancements in exploratory research on 2...With an extensive range of distinctive features at nano meter-scale thicknesses,two-dimensional(2D)materials drawn the attention of the scientific community.Despite tremendous advancements in exploratory research on 2D materials,knowledge of 2D electrical transport and carrier dynamics still in its infancy.Thus,here we highlighted the electrical characteristics of 2D materials with electronic band structure,electronic transport,dielectric constant,carriers mobility.The atomic thinness of 2D materials makes substantially scaled field-effect transistors(FETs)with reduced short-channel effects conceivable,even though strong carrier mobility required for high performance,low-voltage device operations.We also discussed here about factors affecting 2D materials which easily enhanced the activity of those materials for various applications.Presently,Those 2D materials used in state-of-the-art electrical and optoelectronic devices because of the extensive nature of their electronic band structure.2D materials offer unprecedented freedom for the design of novel p-n junction device topologies in contrast to conventional bulk semiconductors.We also,describe the numerous 2D p-n junctions,such as homo junction and hetero junction including mixed dimensional junctions.Finally,we talked about the problems and potential for the future.展开更多
The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterost...The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.展开更多
The InGaN films and GaN/InGaN/GaN tunnel junctions(TJs)were grown on GaN templates with plasma-assisted molecular beam epitaxy.As the In content increases,the quality of InGaN films grown on GaN templates decreases an...The InGaN films and GaN/InGaN/GaN tunnel junctions(TJs)were grown on GaN templates with plasma-assisted molecular beam epitaxy.As the In content increases,the quality of InGaN films grown on GaN templates decreases and the surface roughness of the samples increases.V-pits and trench defects were not found in the AFM images.p++-GaN/InGaN/n++-GaN TJs were investigated for various In content,InGaN thicknesses and doping concentration in the InGaN insert layer.The InGaN insert layer can promote good interband tunneling in GaN/InGaN/GaN TJ and significantly reduce operating voltage when doping is sufficiently high.The current density increases with increasing In content for the 3 nm InGaN insert layer,which is achieved by reducing the depletion zone width and the height of the potential barrier.At a forward current density of 500 A/cm^(2),the measured voltage was 4.31 V and the differential resistance was measured to be 3.75×10^(−3)Ω·cm^(2)for the device with a 3 nm p++-In_(0.35)Ga_(0.65)N insert layer.When the thickness of the In_(0.35)Ga_(0.65)N layer is closer to the“balanced”thickness,the TJ current density is higher.If the thickness is too high or too low,the width of the depletion zone will increase and the current density will decrease.The undoped InGaN layer has a better performance than n-type doping in the TJ.Polarization-engineered tunnel junctions can enhance the functionality and performance of electronic and optoelectronic devices.展开更多
We study theoretically the electrical shot noise properties of tunnel junctions between a normal metal and a superconductor with the mixture of singlet s-wave and chiral triplet p-wave pairing due to broken inversion ...We study theoretically the electrical shot noise properties of tunnel junctions between a normal metal and a superconductor with the mixture of singlet s-wave and chiral triplet p-wave pairing due to broken inversion symmetry. We investigate how the shot noise properties vary as the relative amplitude between the two parity components in the pairing potential is changed. It is demonstrated that some characteristics of the electrical shot noise properties of such tunnel junctions may depend sensitively on the relative amplitude between the two parity components in the pairing potential, and some significant changes may occur in the electrical shot noise properties when the relative amplitude between the two parity components is varied from the singlet s-wave pairing dominated regime to the chiral triplet p-wave pairing dominated regime. In the chiral triplet p-wave pairing dominated regime, the ratio of noise power to electric current is close to 2e both in the in-gap and in the out-gap region. In the singlet s-wave pairing dominated regime, the value of this ratio is close to 4e in the inner gap region but may reduce to about 2e in the outer gap region as the relative amplitude of the chiral triplet pairing component is increased. The variations of the differential shot noise with the bias voltage also exhibit some significantly different features in different regimes. Such different features can serve as useful diagnostic tools for the determination of the relative magnitude of the two parity components in the pairing potential.展开更多
BACKGROUND Colorectal cancer(CRC)is the third most common cancer worldwide and the second leading cause of cancer-related death.Over the past two decades,numerous researchers have provided important evidence regarding...BACKGROUND Colorectal cancer(CRC)is the third most common cancer worldwide and the second leading cause of cancer-related death.Over the past two decades,numerous researchers have provided important evidence regarding the role of tight junction(TJ)proteins in the occurrence and progression of CRC.The causal relationship between the presence of specific TJ proteins and the development of CRC has also been confirmed.Despite the large number of publications in this field,a bibliometric study to review the current state of research and highlight the research trends and hotspots in this field has not yet been performed.AIM To analyze research on TJs and CRC,summarize the field’s history and current status,and predict future research directions.METHODS We searched the Science Citation Index Expanded database for all literature on CRC and TJs from 2001-2023.We used bibliometrics to analyze the data of these papers,such as the authors,countries,institutions,and references.Co-authorship,co-citation,and co-occurrence analyses were the main methods of analysis.CiteSpace and VOSviewer were used to visualize the results.RESULTS A total of 205 studies were ultimately identified.The number of publications on this topic has steadily increased since 2007.China and the United States have made the largest contributions to this field.Anticancer Research was the most prolific journal,publishing 8 articles,while the journal Oncogene had the highest average citation rate(68.33).Professor Dhawan P was the most prolific and cited author in this field.Co-occurrence analysis of keywords revealed that“tight junction protein expression”,“colorectal cancer”,“intestinal microbiota”,and“inflammatory bowel disease”had the highest frequency of occurrence,revealing the research hotspots and trends in this field.CONCLUSION This bibliometric analysis evaluated the scope and trends of TJ proteins in CRC,providing valuable research perspectives and future directions for studying the connection between the two.It is recommended to focus on emerging research hotspots,such as the correlations among intestinal microbiota,inflammatory bowel disease,TJ protein expression,and CRC.展开更多
The terahertz band,a unique segment of the electromagnetic spectrum,is crucial for observing the cold,dark universe and plays a pivotal role in cutting-edge scientific research,including the study of cosmic environmen...The terahertz band,a unique segment of the electromagnetic spectrum,is crucial for observing the cold,dark universe and plays a pivotal role in cutting-edge scientific research,including the study of cosmic environments that support life and imaging black holes.High-sensitivity superconductor–insulator–superconductor(SIS)mixers are essential detectors for terahertz astronomical telescopes and interferometric arrays.Compared to the commonly used classical Nb/AlO_(x)/Nb superconducting tunnel junction,the Nb/AlN/NbN hybrid superconducting tunnel junction has a higher energy gap voltage and can achieve a higher critical current density.This makes it particularly promising for the development of ultra-wideband,high-sensitivity coherent detectors or mixers in various scientific research fields.In this paper,we present a superconducting SIS mixer based on Nb/AlN/NbN parallel-connected twin junctions(PCTJ),which has a bandwidth extending up to490 GHz–720 GHz.The best achieved double-sideband(DSB)noise temperature(sensitivity)is below three times the quantum noise level.展开更多
Half-integer microwave induced steps(Shapiro steps)have been observed in many different Josephson junction systems,which have attracted a lot of attention because they signify the deviation of current phase relation(C...Half-integer microwave induced steps(Shapiro steps)have been observed in many different Josephson junction systems,which have attracted a lot of attention because they signify the deviation of current phase relation(CPR)and uncover many unconventional physical properties.In this article,we first report the discovery of half-integer Shapiro steps in MgB_(2)focused He ion beam(He-FIB)Josephson junctions.The half-integer steps'dependence on microwave frequency,temperature,microwave power,and magnetic field is also analyzed.We find that the existence of half-integer steps can be controlled by the magnetic field periodically,which is similar to that of high temperature superconductor(HTS)grain boundary junctions,and the similarity of the microstructures between gain boundary junctions and He-FIB junctions is discussed.As a consequence,we mainly attribute the physical origin of half-integer steps in MgB_(2)He-FIB junctions to the model that a He-FIB junction is analogous to a parallel junctions'array.Our results show that He-FIB technology is a promising platform for researching CPR in junctions made of different superconductors.展开更多
Tuning the surface properties of catalysts is an effective method for accelerating water electrolysis.Herein,we propose a directional doping and interfacial coupling strategy to design two surface-functionalized Schot...Tuning the surface properties of catalysts is an effective method for accelerating water electrolysis.Herein,we propose a directional doping and interfacial coupling strategy to design two surface-functionalized Schottky junction catalysts for coordinating the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Directional doping with B/S atoms endows amphiphilic g-C_(3)N_(4)with significant n-/p-type semiconductor properties.Further coupling with Fe_(3)C modulates the energy band levels of B-C_(3)N_(4)and S-C_(3)N_(4),thus resulting in functionalized Schottky junction catalysts with specific surface-adsorption properties.The space-charge region generated by the dual modulation induces a local“OH-and Ht-enriched”environment,thus selectively promoting the kinetic behavior of the OER/HER.Impressively,the designed B-C_(3)N_(4)@Fe_(3)C||S-C_(3)N_(4)@Fe_(3)C pair requires only a low voltage of 1.52 V to achieve efficient water electrolysis at 10 mA cm^(-2).This work highlights the potential of functionalized Schottky junction catalysts for coordinating redox reactions in water electrolysis,thereby resolving the trade-off between catalytic activity and stability.展开更多
Low frequency noise has been investigated at room temperature for asymmetric double barrier magnetic tunnel junctions(DBMTJs), where the coupling between the top and middle CoFeB layers is antiferromagnetic with a 0...Low frequency noise has been investigated at room temperature for asymmetric double barrier magnetic tunnel junctions(DBMTJs), where the coupling between the top and middle CoFeB layers is antiferromagnetic with a 0.8-nm thin top Mg O barrier of the CoFeB/MgO/CoFe/CoFeB/MgO/CoFe B DBMTJ. At enough large bias, 1/f noise dominates the voltage noise power spectra in the low frequency region, and is conventionally characterized by the Hooge parameter αmag.With increasing external field, the top and bottom ferromagnetic layers are aligned by the field, and then the middle free layer rotates from antiparallel state(antiferromagnetic coupling between top and middle ferromagnetic layers) to parallel state. In this rotation process αmag and magnetoresistance-sensitivity-product show a linear dependence, consistent with the fluctuation dissipation relation. With the magnetic field applied at different angles(θ) to the easy axis of the free layer,the linear dependence persists while the intercept of the linear fit satisfies a cos(θ) dependence, similar to that for the magnetoresistance, suggesting intrinsic relation between magnetic losses and magnetoresistance.展开更多
AIM: To investigate the effects of moxibustion on down-regulation of the colonic epithelial cell apoptosis and repair of the tight junctions in rats with Crohn's disease (CD). METHODS: Sixty male Sprague-Dawley ra...AIM: To investigate the effects of moxibustion on down-regulation of the colonic epithelial cell apoptosis and repair of the tight junctions in rats with Crohn's disease (CD). METHODS: Sixty male Sprague-Dawley rats were randomly divided into a normal control (NC) group, a model control (MC) group, an herbs-partitioned moxibustion (HPM) group, a mild-warm moxibustion (MWM) group and a salicylazosulphapyridine (SASP) group, with 12 rats in each group. The CD model rats were treated with trinitrobenzene sulphonic acid to induce intestinal inflammation. The rats in the HPM and MWM groups were treated at the Tianshu (ST25) and Qihai (CV6) acupoints once daily for 14 d, and the SASP group was fed SASP twice daily for 14 d. No additional treatment was given to the MC and NC groups. Themicrostructure of the colonic epithelium was observed under a transmission electron microscope, the transepithelial resistance was measured using a shortcircuit current, colonic epithelial cell apoptosis was determined by terminal deoxynucleotidyl transferasemediated dUTP-biotin nick end labelling assay, and the expression of occludin, claudin-1 and zonula occludens-l (ZO-1) in the colonic epithelial junction was determined by Western blotting and immunofluorescence staining. RESULTS: Compared with the MC group, the microstructure of the colonic epithelial barrier was signifi-cantly improved in rats treated with HPM, MWM or SASP, meanwhile, the current flow was reduced signifi-cantly, with values of 168.20 ± 6.14 vs 99.70 ± 3.13, 99.10 ± 4.28 and 120.30 ± 3.65 mA, respectively (P = 0.001). However, the HPM and MWM groups had higher current flow rates than the SASP group (99.70 ± 3.13, 99.10 ± 4.28 vs 120.30 ± 3.65 mA, P = 0.001). The number of the apoptotic colonic epithelial cells in HPM, MWM and SASP groups was largely reduced (61.5 ± 16.91 vs 15.5 ± 8.89, 14.8 ± 6.27 and 24.7 ± 9.68, respectively (P = 0.001); and the expression of occlu- din, claudin-1 and ZO-1 in the MWM and HPM groups was signifi cantly enhanced (0.48 ± 0.10, 0.64 ± 0.09 vs 0.18 ± 0.05 for occludin, 0.12 ± 0.02, 0.17 ± 0.03 vs 0.05 ± 0.01 for claudin-1, and 0.08 ± 0.01, 0.11 ± 0.01 vs 0.02 ± 0.01 for ZO-1). And in SASP group, the expression of occludin and ZO-1 was also signifi cantly increased (0.27 ± 0.04 vs 0.18 ± 0.05 for occludin and 0.05 ± 0.01 vs 0.02 ± 0.01 for ZO-1), but there was no significant difference for claudin-1. The HPM and MWM groups had higher expression of occludin, claudin-1 and ZO-1 than the SASP group. CONCLUSION: HPM and MWM treatment can down-regulate apoptosis of colonic epithelial cells, repair tight junctions and enhance colonic epithelial barrier function in rats with CD.展开更多
The rapid recombination of photo-generated electron-hole pairs,insufficient active sites,and strong photocorrosion have considerably restricted the practical application of Cd S in photocatalytic fields.Herein,we desi...The rapid recombination of photo-generated electron-hole pairs,insufficient active sites,and strong photocorrosion have considerably restricted the practical application of Cd S in photocatalytic fields.Herein,we designed and constructed a 2D/2D/2D layered heterojunction photocatalyst with cascaded 2D coupling interfaces.Experiments using electron spin resonance spectroscopy,ultraviolet photoelectron spectroscopy,and in-situ irradiation X-ray photoelectron spectroscopy were conducted to confirm the 2D layered CdS/WO_(3) step-scheme(S-scheme)heterojunctions and CdS/MX ohmic junctions.Impressively,it was found that the strong interfacial electric fields in the S-scheme heterojunction photocatalysts could effectively promote spatially directional charge separation and transport between CdS and WO_(3) nanosheets.In addition,2D Ti_(3)C_(2) MXene nanosheets with a smaller work function and excellent metal conductivity when used as a co-catalyst could build ohmic junctions with Cd S nanosheets,thus providing a greater number of electron transfer pathways and hydrogen evolution sites.Results showed that the highest visible-light hydrogen evolution rate of the optimized MX-Cd S/WO_(3) layered multi-heterostructures could reach as high as 27.5 mmol/g/h,which was 11.0 times higher than that of pure CdS nanosheets.Notably,the apparent quantum efficiency reached 12.0% at 450 nm.It is hoped that this study offers a reliable approach for developing multifunctional photocatalysts by integrating S-scheme and ohmic-junction built-in electric fields and rationally designing a 2D/2D interface for efficient light-to-hydrogen fuel production.展开更多
Nano-ring-type magnetic tunnel junctions (NR-MTJs) with the layer structure of Ta(5)/Ir22Mn78(10)/ Co75Fe25(2)/Ru(0.75)/CoooFe20B20(3)/Al(0.6)-oxide/Co60Fe20B20(2.5)/Ta(3)/Ru(5) (thickness unit:...Nano-ring-type magnetic tunnel junctions (NR-MTJs) with the layer structure of Ta(5)/Ir22Mn78(10)/ Co75Fe25(2)/Ru(0.75)/CoooFe20B20(3)/Al(0.6)-oxide/Co60Fe20B20(2.5)/Ta(3)/Ru(5) (thickness unit: nm) were nano-fabricated on the Si(100)/SiO2 substrate using magnetron sputtering deposition combined with the optical lithography, electron beam lithography (EBL) and Ar ion-beam etching techniques. The smaller NR-MTJs with the inner- and outer-diameter of around 50 and 100 nm and also their corresponding NR-MTJ arrays were nano-patterned. The tunnelling magnetoresistance (TMR & R) versus driving current (I) loops for a spin-polarized current switching were measured, and the TMR ratio of around 35% at room temperature were observed. The critical values of switching current for the free Co60Fe20B20 layer relative to the reference Co6oFe2oB2o layer between parallel and anti-parallel magnetization states were between 0.50 and 0.75 mA in such NR-MTJs. It is suggested that the applicable MRAM fabrication with the density and capacity higher than 256 Mbit/inch2 even 6 Gbite/inch2 are possible using both I NR-MTJ+1 transistor structure and current switching mechanism based on based on our fabricated 4×4 MRAM demo devices.展开更多
Tight junctions(TJs)are structures between cells where cells appear in the closest possible contact.They are responsible for sealing compartments when epithelial sheets are generated.They regulate the permeability of ...Tight junctions(TJs)are structures between cells where cells appear in the closest possible contact.They are responsible for sealing compartments when epithelial sheets are generated.They regulate the permeability of ions,(macro)molecules and cells via the paracellular pathway.Their structure at the electron microscopic level has been well known since the 1970s;however,only recently has their macromolecular composition been revealed.This review first examines the major macromolecular components of the TJs(occludin,claudins,junctional adhesion molecule and tricellulin)and then the associated macromolecules at the intracellular plaque[zonula occludens(ZO)-1,ZO-2,ZO-3,AF-6,cingulin,7H6].Emphasis is given to their interactions in order to begin to understand the mode of assembly of TJs.The functional significance of TJs is detailed and several mechanisms and factors involved are discussed briefly.Emphasis is given to the role of intestinal TJs and the alterations observed or speculated in diverse disease states.Specifically,intestinal TJs may exert a pathogenetic role in intestinal(inflammatory bowel disease,celiac disease)and extraintestinal diseases (diabetes type 1,food allergies,autoimmune diseases).Additionally,intestinal TJs may be secondarily disrupted during the course of diverse diseases,subsequently allowing the bacterial translocation phenomenon and promoting the systemic inflammatory response,which is often associated with clinical deterioration.The major questions in the field are highlighted.展开更多
The tight junction (TJ) is a critical cellular component for maintenance of tissue integrity, cellular interactions and cell-cell communications, and physiologically functions as the "great wall" against ext...The tight junction (TJ) is a critical cellular component for maintenance of tissue integrity, cellular interactions and cell-cell communications, and physiologically functions as the "great wall" against external agents and the surrounding hostile environment. During the host-pathogen evolution, viruses somehow found the key to unlock the gate for their entry into cells and to exploit and exhaust the host cells. In the liver, an array of TJ molecules is localized along the bile canaliculi forming the blood-biliary barrier, where they play pivotal roles in paracellular permeability, bile secretion, and cell polarity. In pathology, certain hepatic TJ molecules mediate virus entry causing hepatitis infection; deregulation and functional abnormality of the TJ have also been implicated in triggering liver cancer development and metastasis. All these findings shed new insights on the understanding of hepatic TJs in the development of liver disease and provide new clues for potential intervention.展开更多
Background:Bacillus cereus is an important pathogen that causes human food poisoning,specifically diarrhea and vomiting.B.cereus can also induce mastitis in dairy cows and has a strong survival ability in milk,as it c...Background:Bacillus cereus is an important pathogen that causes human food poisoning,specifically diarrhea and vomiting.B.cereus can also induce mastitis in dairy cows and has a strong survival ability in milk,as it cannot be inactivated by high-temperature short-time pasteurization.Therefore,B.cereus can enter the market through pasteurized milk and other dairy products,imposing enormous hidden dangers on food safety and human health.Results:In this study,B.cereus 2101(BC)was isolated from milk samples of cows with mastitis.BC grew rapidly with strong hemolysis,making it difficult to prevent mastitis and ensure food security.MAC-T cells were treated with BC and/or Lactobacillus rhamnosus GR-1(LGR-1).Pretreatment with LGR-1 protected the integrity of tight junctions and the expression of zonula occludens-1(ZO-1)and occludin destroyed by BC.Furthermore,LGR-1 pretreatment reduced the expression of NOD-like receptor family member pyrin domain-containing protein 3(NLRP3),caspase recruitment and activation domain(ASC),Caspase-1 p20,gasdermin D(GSDMD)p30,inflammatory factors(interleukin(IL)-1βand IL-18),and cell death induced by BC.Moreover,LGR-1 pretreatment reduced NLRP3 inflammasome activity and increased expressions of ZO-1 and occludin induced by lipopolysaccharides(LPS)+ATP stimulation.MAC-T cells were transfected with NLRP3 si RNA or MCC950 and/or treated with BC and/or LGR-1.NLRP3-si RNA transfection and MCC950 attenuated BC-induced NLRP3 inflammasome activity.Expression of inflammatory cytokines and cell death suggested that the inflammatory pathway might play an important role in the induction of the NLRP3 inflammasome by BC and the protection of LGR-1.Conclusions:These results suggest that LGR-1 might be a probiotic alternative to antibiotics and could be administered to prevent mastitis in dairy cows,thus ensuring food security.展开更多
Pancreatic cancer continues to be a leading cause of cancer-related death worldwide and there is an urgent need to develop novel diagnostic and therapeutic strategies to reduce the mortality of patients with this dise...Pancreatic cancer continues to be a leading cause of cancer-related death worldwide and there is an urgent need to develop novel diagnostic and therapeutic strategies to reduce the mortality of patients with this disease. In pancreatic cancer, some tight junction proteins, including claudins, are abnormally regulated and therefore are promising molecular targets for diagnosis, prognosis and therapy. Claudin-4 and-18 are overexpressed in human pancreatic cancer and its precursor lesions. Claudin-4 is a high affinity receptor of Clostridium perfringens enterotoxin(CPE). The cytotoxic effects of CPE and monoclonal antibodies against claudin-4 are useful as novel therapeutic tools for pancreatic cancer. Claudin-18 could be a putative marker and therapeutic target with prognostic implications for patients with pancreatic cancer. Claudin-1,-7, tricellulin and marvelD3 are involved in epithelial to mesenchymal transition(EMT) of pancreatic cancer cells and thus might be useful as biomarkers during disease. Protein kinase C is closely related to EMT of pancreatic cancer and regulates tight junctions of normal human pancreatic duct epithelial cells and the cancer cells. This review focuses on the regulation of tight junctions via protein kinase C during EMT in human pancreatic cancer for the purpose of developing new diagnostic and therapeutic modalities for pancreatic cancer.展开更多
Two-dimensional(2D) magnetic crystals have attracted great attention due to their emerging new physical phenomena. They provide ideal platforms to study the fundamental physics of magnetism in low dimensions. In this ...Two-dimensional(2D) magnetic crystals have attracted great attention due to their emerging new physical phenomena. They provide ideal platforms to study the fundamental physics of magnetism in low dimensions. In this research,magnetic tunneling junctions(MTJs) based on XSe2(X = Mn, V) with room-temperature ferromagnetism were studied using first-principles calculations. A large tunneling magnetoresistance(TMR) of 725.07% was obtained in the MTJs based on monolayer MnSe2. Several schemes were proposed to improve the TMR of these devices. Moreover, the results of our non-equilibrium transport calculations showed that the large TMR was maintained in these devices under a finite bias.The transmission spectrum was analyzed according to the orbital components and the electronic structure of the monolayer XSe2(X = Mn, V). The results in this paper demonstrated that the MTJs based on a 2D ferromagnet with room-temperature ferromagnetism exhibited reliable performance. Therefore, such devices show the possibility for potential applications in spintronics.展开更多
Objective:In this study,the influence of puerarin,paeoniflorin,and menthol on the structure and barrier function of tight junctions(TJs)in MadineDarby canine kidney epithelial(MDCK)and MDCK-multi-drug resistance 1(MDR...Objective:In this study,the influence of puerarin,paeoniflorin,and menthol on the structure and barrier function of tight junctions(TJs)in MadineDarby canine kidney epithelial(MDCK)and MDCK-multi-drug resistance 1(MDR1)cells was evaluated to determine the mechanisms by which the drugs cross the bloodebrain barrier(BBB).Method:Cells were treated with puerarin,paeoniflorin,and menthol followed by immunohistochemical staining with occludin,claudin-1,and F-actin.The cells were then observed using laser-scanning confocal microscopy.Average optical density(AOD)of the immunofluorescence images of the proteins were analyzed using ImageJ software while Transepithelial electrical resistance(TEER)was measured using an epithelial voltohmmeter.Results:Confocal microscopy revealed that puerarin-and paeoniflorin-treated tight junction proteins were conspicuous while menthol suppressed their expression.Correspondingly,AOD values of cells treated with puerarin or paeoniflorin,or both showed no difference compared to the control group(P>.05)while the menthol group value was downregulated.In 3 h,TEER of cells not treated with menthol were similar to the control group,while treatment with menthol significantly decreased TEER value(P<.05).In addition,application of menthol decreased TEER in MDCK cells earlier than in MDCK-MDR1 cells.Conclusion:Menthol but not puerarin and paeoniflorin may enhance paracellular transport and improve drug penetration of the BBB by disrupting the structure and,thereby,weakening the barrier function of TJs.展开更多
Nb/Al-AlOx/Nb tunnel junctions are often used in the studies of macroscopic quantum phenomena and superconducting qubit applications of the Josephson devices. In this work, we describe a convenient and reliable proces...Nb/Al-AlOx/Nb tunnel junctions are often used in the studies of macroscopic quantum phenomena and superconducting qubit applications of the Josephson devices. In this work, we describe a convenient and reliable process using electron beam lithography for the fabrication of high-quality, submicron-sized Nb/Al-AlOx/Nb Josephson junctions. The technique follows the well-known selective Nb etching process and produces high-quality junctions with Vm=100 mV at 2.3 K for the typical critical current density of 2.2 kA/cm^2, which can be adjusted by controlling the oxygen pressure and oxidation time during the formation of the tunnelling barrier. We present the results of the temperature dependence of the sub-gap current and in-plane magnetic-field dependence of the critical current, and compare them with the theoretical predictions.展开更多
Background: The intestinal epithelium is an important barrier that depends on a complex mixture of proteins and these proteins comprise different intercellular junctions. The purpose of this study was to investigate ...Background: The intestinal epithelium is an important barrier that depends on a complex mixture of proteins and these proteins comprise different intercellular junctions. The purpose of this study was to investigate the postnatal and developmental changes in morphology, intercellular junctions and voltage-gated potassium(Kv) channels in the intestine of piglets during the suckling and post-weaning periods.Results: Samples of the small intestine were obtained from 1-, 7-, 14-, and 21-d-old suckling piglets and piglets on d 1, 3, 5, and 7 after weaning at 14 d of age. The results showed that the percentage of proliferating cell nuclear antigen(PCNA)-positive cells and alkaline phosphatase(AKP) activity, as well as the abundances of E-cadherin,occludin, and Kv1.5 m RNA and claudin-1, claudin-3, and occludin protein in the jejunum were increased from d 1to d 21 during the suckling period(P 〈 0.05). Weaning induced decreases in the percentage of PCNA-positive cells,AKP activity and the abundances of E-cadherin, occludin and zonula occludens(ZO)-1 m RNA or protein in the jejunum on d 1, 3 and 5 post-weaning(P 〈 0.05). There were lower abundances of E-cadherin, occludin and ZO-1m RNA as well as claudin-1, claudin-3 and ZO-1 protein in the jejunum of weanling piglets than in 21-d-old suckling piglets(P 〈 0.05). The abundances of E-cadherin, occludin, ZO-1 and integrin m RNA were positively related to the percentage of PCNA-positive cells.Conclusion: Weaning at 14 d of age induced damage to the intestinal morphology and barrier. While there was an adaptive restoration on d 7 post-weaning, the measured values did not return to the pre-weaning levels, which reflected the impairment of intercellular junctions and Kv channels.展开更多
文摘With an extensive range of distinctive features at nano meter-scale thicknesses,two-dimensional(2D)materials drawn the attention of the scientific community.Despite tremendous advancements in exploratory research on 2D materials,knowledge of 2D electrical transport and carrier dynamics still in its infancy.Thus,here we highlighted the electrical characteristics of 2D materials with electronic band structure,electronic transport,dielectric constant,carriers mobility.The atomic thinness of 2D materials makes substantially scaled field-effect transistors(FETs)with reduced short-channel effects conceivable,even though strong carrier mobility required for high performance,low-voltage device operations.We also discussed here about factors affecting 2D materials which easily enhanced the activity of those materials for various applications.Presently,Those 2D materials used in state-of-the-art electrical and optoelectronic devices because of the extensive nature of their electronic band structure.2D materials offer unprecedented freedom for the design of novel p-n junction device topologies in contrast to conventional bulk semiconductors.We also,describe the numerous 2D p-n junctions,such as homo junction and hetero junction including mixed dimensional junctions.Finally,we talked about the problems and potential for the future.
基金supported by the National Natural Science Foundation of China(No.22269010,52231007,12327804,T2321003,22088101)the Jiangxi Provincial Natural Science Foundation(No.20224BAB214021)+1 种基金the Major Research Program of Jingdezhen Ceramic Industry(No.2023ZDGG002)the Ministry of Science and Technology of China(973 Project No.2021YFA1200600).
文摘The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.
基金supported by the National Key Research and Development Program of China (2017YFE0131500, 2022YFB2802801)the National Natural Science Foundation of China (61834008, U21A20493)+1 种基金the Key Research and Development Program of Jiangsu Province (BE2020004, BE2021008-1)the Suzhou Key Laboratory of New-type Laser Display Technology (SZS2022007)
文摘The InGaN films and GaN/InGaN/GaN tunnel junctions(TJs)were grown on GaN templates with plasma-assisted molecular beam epitaxy.As the In content increases,the quality of InGaN films grown on GaN templates decreases and the surface roughness of the samples increases.V-pits and trench defects were not found in the AFM images.p++-GaN/InGaN/n++-GaN TJs were investigated for various In content,InGaN thicknesses and doping concentration in the InGaN insert layer.The InGaN insert layer can promote good interband tunneling in GaN/InGaN/GaN TJ and significantly reduce operating voltage when doping is sufficiently high.The current density increases with increasing In content for the 3 nm InGaN insert layer,which is achieved by reducing the depletion zone width and the height of the potential barrier.At a forward current density of 500 A/cm^(2),the measured voltage was 4.31 V and the differential resistance was measured to be 3.75×10^(−3)Ω·cm^(2)for the device with a 3 nm p++-In_(0.35)Ga_(0.65)N insert layer.When the thickness of the In_(0.35)Ga_(0.65)N layer is closer to the“balanced”thickness,the TJ current density is higher.If the thickness is too high or too low,the width of the depletion zone will increase and the current density will decrease.The undoped InGaN layer has a better performance than n-type doping in the TJ.Polarization-engineered tunnel junctions can enhance the functionality and performance of electronic and optoelectronic devices.
文摘We study theoretically the electrical shot noise properties of tunnel junctions between a normal metal and a superconductor with the mixture of singlet s-wave and chiral triplet p-wave pairing due to broken inversion symmetry. We investigate how the shot noise properties vary as the relative amplitude between the two parity components in the pairing potential is changed. It is demonstrated that some characteristics of the electrical shot noise properties of such tunnel junctions may depend sensitively on the relative amplitude between the two parity components in the pairing potential, and some significant changes may occur in the electrical shot noise properties when the relative amplitude between the two parity components is varied from the singlet s-wave pairing dominated regime to the chiral triplet p-wave pairing dominated regime. In the chiral triplet p-wave pairing dominated regime, the ratio of noise power to electric current is close to 2e both in the in-gap and in the out-gap region. In the singlet s-wave pairing dominated regime, the value of this ratio is close to 4e in the inner gap region but may reduce to about 2e in the outer gap region as the relative amplitude of the chiral triplet pairing component is increased. The variations of the differential shot noise with the bias voltage also exhibit some significantly different features in different regimes. Such different features can serve as useful diagnostic tools for the determination of the relative magnitude of the two parity components in the pairing potential.
基金Supported by the National Natural Science Foundation of China,No.82170525Beijing Shijitan Hospital Professionals Training Program,No.2023 LJRCDL.
文摘BACKGROUND Colorectal cancer(CRC)is the third most common cancer worldwide and the second leading cause of cancer-related death.Over the past two decades,numerous researchers have provided important evidence regarding the role of tight junction(TJ)proteins in the occurrence and progression of CRC.The causal relationship between the presence of specific TJ proteins and the development of CRC has also been confirmed.Despite the large number of publications in this field,a bibliometric study to review the current state of research and highlight the research trends and hotspots in this field has not yet been performed.AIM To analyze research on TJs and CRC,summarize the field’s history and current status,and predict future research directions.METHODS We searched the Science Citation Index Expanded database for all literature on CRC and TJs from 2001-2023.We used bibliometrics to analyze the data of these papers,such as the authors,countries,institutions,and references.Co-authorship,co-citation,and co-occurrence analyses were the main methods of analysis.CiteSpace and VOSviewer were used to visualize the results.RESULTS A total of 205 studies were ultimately identified.The number of publications on this topic has steadily increased since 2007.China and the United States have made the largest contributions to this field.Anticancer Research was the most prolific journal,publishing 8 articles,while the journal Oncogene had the highest average citation rate(68.33).Professor Dhawan P was the most prolific and cited author in this field.Co-occurrence analysis of keywords revealed that“tight junction protein expression”,“colorectal cancer”,“intestinal microbiota”,and“inflammatory bowel disease”had the highest frequency of occurrence,revealing the research hotspots and trends in this field.CONCLUSION This bibliometric analysis evaluated the scope and trends of TJ proteins in CRC,providing valuable research perspectives and future directions for studying the connection between the two.It is recommended to focus on emerging research hotspots,such as the correlations among intestinal microbiota,inflammatory bowel disease,TJ protein expression,and CRC.
基金Project supported in part by the National Key Research and Development Program of China(Grant Nos.2023YFA1608201 and 2023YFF0722301)the National Natural Science Foundation of China(Grant Nos.11925304,12020101002,12333013,12273119,and 12103093)supported by grant from the Russian Science Foundation(Grant No.23-7900019)。
文摘The terahertz band,a unique segment of the electromagnetic spectrum,is crucial for observing the cold,dark universe and plays a pivotal role in cutting-edge scientific research,including the study of cosmic environments that support life and imaging black holes.High-sensitivity superconductor–insulator–superconductor(SIS)mixers are essential detectors for terahertz astronomical telescopes and interferometric arrays.Compared to the commonly used classical Nb/AlO_(x)/Nb superconducting tunnel junction,the Nb/AlN/NbN hybrid superconducting tunnel junction has a higher energy gap voltage and can achieve a higher critical current density.This makes it particularly promising for the development of ultra-wideband,high-sensitivity coherent detectors or mixers in various scientific research fields.In this paper,we present a superconducting SIS mixer based on Nb/AlN/NbN parallel-connected twin junctions(PCTJ),which has a bandwidth extending up to490 GHz–720 GHz.The best achieved double-sideband(DSB)noise temperature(sensitivity)is below three times the quantum noise level.
基金supported by the National Natural Science Foundation of China (Grant No.12104016)the National Key Research and Development Program of China (Grant No.2020YFF01014706)。
文摘Half-integer microwave induced steps(Shapiro steps)have been observed in many different Josephson junction systems,which have attracted a lot of attention because they signify the deviation of current phase relation(CPR)and uncover many unconventional physical properties.In this article,we first report the discovery of half-integer Shapiro steps in MgB_(2)focused He ion beam(He-FIB)Josephson junctions.The half-integer steps'dependence on microwave frequency,temperature,microwave power,and magnetic field is also analyzed.We find that the existence of half-integer steps can be controlled by the magnetic field periodically,which is similar to that of high temperature superconductor(HTS)grain boundary junctions,and the similarity of the microstructures between gain boundary junctions and He-FIB junctions is discussed.As a consequence,we mainly attribute the physical origin of half-integer steps in MgB_(2)He-FIB junctions to the model that a He-FIB junction is analogous to a parallel junctions'array.Our results show that He-FIB technology is a promising platform for researching CPR in junctions made of different superconductors.
基金supported by the National Natural Science Foundation of China(No.51672208)the Key Science and Technology Innovation Team of Shaanxi Province(2022TD-34)Open foundation Project of Key Laboratory of Plateau Green Building and Ecological Community of Qinghai Province(KLKF-2019-002)。
文摘Tuning the surface properties of catalysts is an effective method for accelerating water electrolysis.Herein,we propose a directional doping and interfacial coupling strategy to design two surface-functionalized Schottky junction catalysts for coordinating the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Directional doping with B/S atoms endows amphiphilic g-C_(3)N_(4)with significant n-/p-type semiconductor properties.Further coupling with Fe_(3)C modulates the energy band levels of B-C_(3)N_(4)and S-C_(3)N_(4),thus resulting in functionalized Schottky junction catalysts with specific surface-adsorption properties.The space-charge region generated by the dual modulation induces a local“OH-and Ht-enriched”environment,thus selectively promoting the kinetic behavior of the OER/HER.Impressively,the designed B-C_(3)N_(4)@Fe_(3)C||S-C_(3)N_(4)@Fe_(3)C pair requires only a low voltage of 1.52 V to achieve efficient water electrolysis at 10 mA cm^(-2).This work highlights the potential of functionalized Schottky junction catalysts for coordinating redox reactions in water electrolysis,thereby resolving the trade-off between catalytic activity and stability.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00106,2012CB927400,2010CB934401,and 2014AA032904)the National High Technology Research and Development Program of China(Grant No.2014AA032904)the National Natural Science Foundation of China(Grant Nos.11434014 and 11104252)
文摘Low frequency noise has been investigated at room temperature for asymmetric double barrier magnetic tunnel junctions(DBMTJs), where the coupling between the top and middle CoFeB layers is antiferromagnetic with a 0.8-nm thin top Mg O barrier of the CoFeB/MgO/CoFe/CoFeB/MgO/CoFe B DBMTJ. At enough large bias, 1/f noise dominates the voltage noise power spectra in the low frequency region, and is conventionally characterized by the Hooge parameter αmag.With increasing external field, the top and bottom ferromagnetic layers are aligned by the field, and then the middle free layer rotates from antiparallel state(antiferromagnetic coupling between top and middle ferromagnetic layers) to parallel state. In this rotation process αmag and magnetoresistance-sensitivity-product show a linear dependence, consistent with the fluctuation dissipation relation. With the magnetic field applied at different angles(θ) to the easy axis of the free layer,the linear dependence persists while the intercept of the linear fit satisfies a cos(θ) dependence, similar to that for the magnetoresistance, suggesting intrinsic relation between magnetic losses and magnetoresistance.
基金Supported by National Natural Science Foundation of China,No. 30772831National Basic Research Program of China, 973program, No. 2009CB522900Shanghai Leading Discipline Project, No. S30304
文摘AIM: To investigate the effects of moxibustion on down-regulation of the colonic epithelial cell apoptosis and repair of the tight junctions in rats with Crohn's disease (CD). METHODS: Sixty male Sprague-Dawley rats were randomly divided into a normal control (NC) group, a model control (MC) group, an herbs-partitioned moxibustion (HPM) group, a mild-warm moxibustion (MWM) group and a salicylazosulphapyridine (SASP) group, with 12 rats in each group. The CD model rats were treated with trinitrobenzene sulphonic acid to induce intestinal inflammation. The rats in the HPM and MWM groups were treated at the Tianshu (ST25) and Qihai (CV6) acupoints once daily for 14 d, and the SASP group was fed SASP twice daily for 14 d. No additional treatment was given to the MC and NC groups. Themicrostructure of the colonic epithelium was observed under a transmission electron microscope, the transepithelial resistance was measured using a shortcircuit current, colonic epithelial cell apoptosis was determined by terminal deoxynucleotidyl transferasemediated dUTP-biotin nick end labelling assay, and the expression of occludin, claudin-1 and zonula occludens-l (ZO-1) in the colonic epithelial junction was determined by Western blotting and immunofluorescence staining. RESULTS: Compared with the MC group, the microstructure of the colonic epithelial barrier was signifi-cantly improved in rats treated with HPM, MWM or SASP, meanwhile, the current flow was reduced signifi-cantly, with values of 168.20 ± 6.14 vs 99.70 ± 3.13, 99.10 ± 4.28 and 120.30 ± 3.65 mA, respectively (P = 0.001). However, the HPM and MWM groups had higher current flow rates than the SASP group (99.70 ± 3.13, 99.10 ± 4.28 vs 120.30 ± 3.65 mA, P = 0.001). The number of the apoptotic colonic epithelial cells in HPM, MWM and SASP groups was largely reduced (61.5 ± 16.91 vs 15.5 ± 8.89, 14.8 ± 6.27 and 24.7 ± 9.68, respectively (P = 0.001); and the expression of occlu- din, claudin-1 and ZO-1 in the MWM and HPM groups was signifi cantly enhanced (0.48 ± 0.10, 0.64 ± 0.09 vs 0.18 ± 0.05 for occludin, 0.12 ± 0.02, 0.17 ± 0.03 vs 0.05 ± 0.01 for claudin-1, and 0.08 ± 0.01, 0.11 ± 0.01 vs 0.02 ± 0.01 for ZO-1). And in SASP group, the expression of occludin and ZO-1 was also signifi cantly increased (0.27 ± 0.04 vs 0.18 ± 0.05 for occludin and 0.05 ± 0.01 vs 0.02 ± 0.01 for ZO-1), but there was no significant difference for claudin-1. The HPM and MWM groups had higher expression of occludin, claudin-1 and ZO-1 than the SASP group. CONCLUSION: HPM and MWM treatment can down-regulate apoptosis of colonic epithelial cells, repair tight junctions and enhance colonic epithelial barrier function in rats with CD.
文摘The rapid recombination of photo-generated electron-hole pairs,insufficient active sites,and strong photocorrosion have considerably restricted the practical application of Cd S in photocatalytic fields.Herein,we designed and constructed a 2D/2D/2D layered heterojunction photocatalyst with cascaded 2D coupling interfaces.Experiments using electron spin resonance spectroscopy,ultraviolet photoelectron spectroscopy,and in-situ irradiation X-ray photoelectron spectroscopy were conducted to confirm the 2D layered CdS/WO_(3) step-scheme(S-scheme)heterojunctions and CdS/MX ohmic junctions.Impressively,it was found that the strong interfacial electric fields in the S-scheme heterojunction photocatalysts could effectively promote spatially directional charge separation and transport between CdS and WO_(3) nanosheets.In addition,2D Ti_(3)C_(2) MXene nanosheets with a smaller work function and excellent metal conductivity when used as a co-catalyst could build ohmic junctions with Cd S nanosheets,thus providing a greater number of electron transfer pathways and hydrogen evolution sites.Results showed that the highest visible-light hydrogen evolution rate of the optimized MX-Cd S/WO_(3) layered multi-heterostructures could reach as high as 27.5 mmol/g/h,which was 11.0 times higher than that of pure CdS nanosheets.Notably,the apparent quantum efficiency reached 12.0% at 450 nm.It is hoped that this study offers a reliable approach for developing multifunctional photocatalysts by integrating S-scheme and ohmic-junction built-in electric fields and rationally designing a 2D/2D interface for efficient light-to-hydrogen fuel production.
基金the State Key Project of Fundamental Research of Ministry of Science and Technology (No. 2006CB932200) the National Natural Science Foundation of China (NSFC, No. 10574156)+2 种基金 the Knowledge Innovation Program of Chinese Aca.demy of Sciencesthe protial support of 0utstanding Young Researcher Foundation (Nos. 50325104 and 50528101) K.C.Wong Education Foundation, Hong Kong.
文摘Nano-ring-type magnetic tunnel junctions (NR-MTJs) with the layer structure of Ta(5)/Ir22Mn78(10)/ Co75Fe25(2)/Ru(0.75)/CoooFe20B20(3)/Al(0.6)-oxide/Co60Fe20B20(2.5)/Ta(3)/Ru(5) (thickness unit: nm) were nano-fabricated on the Si(100)/SiO2 substrate using magnetron sputtering deposition combined with the optical lithography, electron beam lithography (EBL) and Ar ion-beam etching techniques. The smaller NR-MTJs with the inner- and outer-diameter of around 50 and 100 nm and also their corresponding NR-MTJ arrays were nano-patterned. The tunnelling magnetoresistance (TMR & R) versus driving current (I) loops for a spin-polarized current switching were measured, and the TMR ratio of around 35% at room temperature were observed. The critical values of switching current for the free Co60Fe20B20 layer relative to the reference Co6oFe2oB2o layer between parallel and anti-parallel magnetization states were between 0.50 and 0.75 mA in such NR-MTJs. It is suggested that the applicable MRAM fabrication with the density and capacity higher than 256 Mbit/inch2 even 6 Gbite/inch2 are possible using both I NR-MTJ+1 transistor structure and current switching mechanism based on based on our fabricated 4×4 MRAM demo devices.
文摘Tight junctions(TJs)are structures between cells where cells appear in the closest possible contact.They are responsible for sealing compartments when epithelial sheets are generated.They regulate the permeability of ions,(macro)molecules and cells via the paracellular pathway.Their structure at the electron microscopic level has been well known since the 1970s;however,only recently has their macromolecular composition been revealed.This review first examines the major macromolecular components of the TJs(occludin,claudins,junctional adhesion molecule and tricellulin)and then the associated macromolecules at the intracellular plaque[zonula occludens(ZO)-1,ZO-2,ZO-3,AF-6,cingulin,7H6].Emphasis is given to their interactions in order to begin to understand the mode of assembly of TJs.The functional significance of TJs is detailed and several mechanisms and factors involved are discussed briefly.Emphasis is given to the role of intestinal TJs and the alterations observed or speculated in diverse disease states.Specifically,intestinal TJs may exert a pathogenetic role in intestinal(inflammatory bowel disease,celiac disease)and extraintestinal diseases (diabetes type 1,food allergies,autoimmune diseases).Additionally,intestinal TJs may be secondarily disrupted during the course of diverse diseases,subsequently allowing the bacterial translocation phenomenon and promoting the systemic inflammatory response,which is often associated with clinical deterioration.The major questions in the field are highlighted.
基金Supported by A GRF Grant from the Research Grants Council of Hong Kong to Luk JM,No.771607M
文摘The tight junction (TJ) is a critical cellular component for maintenance of tissue integrity, cellular interactions and cell-cell communications, and physiologically functions as the "great wall" against external agents and the surrounding hostile environment. During the host-pathogen evolution, viruses somehow found the key to unlock the gate for their entry into cells and to exploit and exhaust the host cells. In the liver, an array of TJ molecules is localized along the bile canaliculi forming the blood-biliary barrier, where they play pivotal roles in paracellular permeability, bile secretion, and cell polarity. In pathology, certain hepatic TJ molecules mediate virus entry causing hepatitis infection; deregulation and functional abnormality of the TJ have also been implicated in triggering liver cancer development and metastasis. All these findings shed new insights on the understanding of hepatic TJs in the development of liver disease and provide new clues for potential intervention.
基金the following funds:the National Key R&D Program of China(Project No.2017YFD0502200)the National Natural Science Foundation of China(Project No.31960721)the National Natural Science Foundation of China(Project No.31873034)。
文摘Background:Bacillus cereus is an important pathogen that causes human food poisoning,specifically diarrhea and vomiting.B.cereus can also induce mastitis in dairy cows and has a strong survival ability in milk,as it cannot be inactivated by high-temperature short-time pasteurization.Therefore,B.cereus can enter the market through pasteurized milk and other dairy products,imposing enormous hidden dangers on food safety and human health.Results:In this study,B.cereus 2101(BC)was isolated from milk samples of cows with mastitis.BC grew rapidly with strong hemolysis,making it difficult to prevent mastitis and ensure food security.MAC-T cells were treated with BC and/or Lactobacillus rhamnosus GR-1(LGR-1).Pretreatment with LGR-1 protected the integrity of tight junctions and the expression of zonula occludens-1(ZO-1)and occludin destroyed by BC.Furthermore,LGR-1 pretreatment reduced the expression of NOD-like receptor family member pyrin domain-containing protein 3(NLRP3),caspase recruitment and activation domain(ASC),Caspase-1 p20,gasdermin D(GSDMD)p30,inflammatory factors(interleukin(IL)-1βand IL-18),and cell death induced by BC.Moreover,LGR-1 pretreatment reduced NLRP3 inflammasome activity and increased expressions of ZO-1 and occludin induced by lipopolysaccharides(LPS)+ATP stimulation.MAC-T cells were transfected with NLRP3 si RNA or MCC950 and/or treated with BC and/or LGR-1.NLRP3-si RNA transfection and MCC950 attenuated BC-induced NLRP3 inflammasome activity.Expression of inflammatory cytokines and cell death suggested that the inflammatory pathway might play an important role in the induction of the NLRP3 inflammasome by BC and the protection of LGR-1.Conclusions:These results suggest that LGR-1 might be a probiotic alternative to antibiotics and could be administered to prevent mastitis in dairy cows,thus ensuring food security.
基金Supported by Ministry of Education,Culture,Sports Science,and Technology,and the Ministry of Health,Labour and Welfare of Japan
文摘Pancreatic cancer continues to be a leading cause of cancer-related death worldwide and there is an urgent need to develop novel diagnostic and therapeutic strategies to reduce the mortality of patients with this disease. In pancreatic cancer, some tight junction proteins, including claudins, are abnormally regulated and therefore are promising molecular targets for diagnosis, prognosis and therapy. Claudin-4 and-18 are overexpressed in human pancreatic cancer and its precursor lesions. Claudin-4 is a high affinity receptor of Clostridium perfringens enterotoxin(CPE). The cytotoxic effects of CPE and monoclonal antibodies against claudin-4 are useful as novel therapeutic tools for pancreatic cancer. Claudin-18 could be a putative marker and therapeutic target with prognostic implications for patients with pancreatic cancer. Claudin-1,-7, tricellulin and marvelD3 are involved in epithelial to mesenchymal transition(EMT) of pancreatic cancer cells and thus might be useful as biomarkers during disease. Protein kinase C is closely related to EMT of pancreatic cancer and regulates tight junctions of normal human pancreatic duct epithelial cells and the cancer cells. This review focuses on the regulation of tight junctions via protein kinase C during EMT in human pancreatic cancer for the purpose of developing new diagnostic and therapeutic modalities for pancreatic cancer.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61571415 and 61622406)the National Key Research and Development Program of China(Grant No.2017YFA0207500)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)Beijing Academy of Quantum Information Sciences,China(Grant No.Y18G04)
文摘Two-dimensional(2D) magnetic crystals have attracted great attention due to their emerging new physical phenomena. They provide ideal platforms to study the fundamental physics of magnetism in low dimensions. In this research,magnetic tunneling junctions(MTJs) based on XSe2(X = Mn, V) with room-temperature ferromagnetism were studied using first-principles calculations. A large tunneling magnetoresistance(TMR) of 725.07% was obtained in the MTJs based on monolayer MnSe2. Several schemes were proposed to improve the TMR of these devices. Moreover, the results of our non-equilibrium transport calculations showed that the large TMR was maintained in these devices under a finite bias.The transmission spectrum was analyzed according to the orbital components and the electronic structure of the monolayer XSe2(X = Mn, V). The results in this paper demonstrated that the MTJs based on a 2D ferromagnet with room-temperature ferromagnetism exhibited reliable performance. Therefore, such devices show the possibility for potential applications in spintronics.
文摘Objective:In this study,the influence of puerarin,paeoniflorin,and menthol on the structure and barrier function of tight junctions(TJs)in MadineDarby canine kidney epithelial(MDCK)and MDCK-multi-drug resistance 1(MDR1)cells was evaluated to determine the mechanisms by which the drugs cross the bloodebrain barrier(BBB).Method:Cells were treated with puerarin,paeoniflorin,and menthol followed by immunohistochemical staining with occludin,claudin-1,and F-actin.The cells were then observed using laser-scanning confocal microscopy.Average optical density(AOD)of the immunofluorescence images of the proteins were analyzed using ImageJ software while Transepithelial electrical resistance(TEER)was measured using an epithelial voltohmmeter.Results:Confocal microscopy revealed that puerarin-and paeoniflorin-treated tight junction proteins were conspicuous while menthol suppressed their expression.Correspondingly,AOD values of cells treated with puerarin or paeoniflorin,or both showed no difference compared to the control group(P>.05)while the menthol group value was downregulated.In 3 h,TEER of cells not treated with menthol were similar to the control group,while treatment with menthol significantly decreased TEER value(P<.05).In addition,application of menthol decreased TEER in MDCK cells earlier than in MDCK-MDR1 cells.Conclusion:Menthol but not puerarin and paeoniflorin may enhance paracellular transport and improve drug penetration of the BBB by disrupting the structure and,thereby,weakening the barrier function of TJs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10474129 and 10534060)the Ministry of Science and Technology of China (Grant Nos 2006CB601007 and 2006CB921107)
文摘Nb/Al-AlOx/Nb tunnel junctions are often used in the studies of macroscopic quantum phenomena and superconducting qubit applications of the Josephson devices. In this work, we describe a convenient and reliable process using electron beam lithography for the fabrication of high-quality, submicron-sized Nb/Al-AlOx/Nb Josephson junctions. The technique follows the well-known selective Nb etching process and produces high-quality junctions with Vm=100 mV at 2.3 K for the typical critical current density of 2.2 kA/cm^2, which can be adjusted by controlling the oxygen pressure and oxidation time during the formation of the tunnelling barrier. We present the results of the temperature dependence of the sub-gap current and in-plane magnetic-field dependence of the critical current, and compare them with the theoretical predictions.
基金funded by the National Key Basic Research Program of China(2013CB127302)National Natural Science Foundation of China(31330075,31372326,31301988,31301989)+4 种基金the State Key Laboratory of Animal Nutrition(2004DA125184F1401)the Spark Program of Jiangxi Province(20142BBF061051)Changsha Lvye Biotechnology Limited Company Academician Expert WorkstationGuangdong Wangda Group Academician Workstation for Clean Feed Technology Research and Development in SwineGuangdong Hinapharm Group Academician Workstation for Biological Feed and Feed Additives and Animal Intestinal Health
文摘Background: The intestinal epithelium is an important barrier that depends on a complex mixture of proteins and these proteins comprise different intercellular junctions. The purpose of this study was to investigate the postnatal and developmental changes in morphology, intercellular junctions and voltage-gated potassium(Kv) channels in the intestine of piglets during the suckling and post-weaning periods.Results: Samples of the small intestine were obtained from 1-, 7-, 14-, and 21-d-old suckling piglets and piglets on d 1, 3, 5, and 7 after weaning at 14 d of age. The results showed that the percentage of proliferating cell nuclear antigen(PCNA)-positive cells and alkaline phosphatase(AKP) activity, as well as the abundances of E-cadherin,occludin, and Kv1.5 m RNA and claudin-1, claudin-3, and occludin protein in the jejunum were increased from d 1to d 21 during the suckling period(P 〈 0.05). Weaning induced decreases in the percentage of PCNA-positive cells,AKP activity and the abundances of E-cadherin, occludin and zonula occludens(ZO)-1 m RNA or protein in the jejunum on d 1, 3 and 5 post-weaning(P 〈 0.05). There were lower abundances of E-cadherin, occludin and ZO-1m RNA as well as claudin-1, claudin-3 and ZO-1 protein in the jejunum of weanling piglets than in 21-d-old suckling piglets(P 〈 0.05). The abundances of E-cadherin, occludin, ZO-1 and integrin m RNA were positively related to the percentage of PCNA-positive cells.Conclusion: Weaning at 14 d of age induced damage to the intestinal morphology and barrier. While there was an adaptive restoration on d 7 post-weaning, the measured values did not return to the pre-weaning levels, which reflected the impairment of intercellular junctions and Kv channels.