期刊文献+
共找到3,783篇文章
< 1 2 190 >
每页显示 20 50 100
Stability analysis of intermittently jointed rock slopes based on the stepped failure mode
1
作者 LI Dejian FU Junwen +4 位作者 LI Hekai CHENG Xiao ZHAO Lianheng ZHANG Yingbin PENG Xinyan 《Journal of Mountain Science》 SCIE CSCD 2024年第3期1019-1035,共17页
In practical engineering,due to the noncontinuity characteristics of joints in rock slopes,in addition to plane failure,stepped sliding failure may occur for intermittently jointed rock slopes.Especially for intermitt... In practical engineering,due to the noncontinuity characteristics of joints in rock slopes,in addition to plane failure,stepped sliding failure may occur for intermittently jointed rock slopes.Especially for intermittently bedding jointed rock slopes,the correlation and difference in strength parameters between joints and rock bridges,along with the various failure modes and intermittency of rock bridges,contribute to the complexity of stepped failure modes and the unpredictability of failure regions.Based on the upper-bound limit analysis method and multi-sliders step-path failure mode,considering the shear and tensile failure of rock bridges and the weakened relationship between the strength parameters of rock bridges and jointed surfaces,by introducing the modified M-C failure criterion and the formula for calculating the energy consumption of tensile failure of rock bridges,two failure mechanisms are constructed to obtain the safety factor(F_(s))of intermittently jointed rock slopes.The sequential quadratic programming method is used to obtain the optimal upper-bound solution for F_(s).The influence of multiple key parameters(slope height H,horizontal distance L,Slope angleβ,shear strength parameters of the rock bridgeφr and cr,Dimensionless parameter u,weakening coefficients of the internal friction angle and cohesion between the rock bridges and joint surfaces Kφand Kc)on the stability analysis of intermittently jointed rock slopes under the shear failure mode of rock bridges as well as under the tensile failure mode is also explored.The reliability of the failure mechanisms is verified by comparative analysis with theoretical results,numerical results,and landslide cases,and the variation rules of F_(s)with each key parameter are obtained.The results show that F_(s) varies linearly withφr and cr of the rock bridge and with K_(φ)and K_(c),whereas F_(s)changes nonlinearly with H and L.In particular,with the increase in Kφand Kc,Fs increases by approximately 52.78%and 171.02%on average,respectively.For rock bridge tensile failure,F_(s) shows a nonlinearly positive correlation withφr,cr,Kφand Kc.In particular,with the increase in Kφand Kc,Fs increases by approximately 13%and 61.69%on average,respectively.Fs decreases rapidly with increasing slope gradientβand decreasing dimensionless parameterμ.When Kφand Kc are both less than 1.0,the stepped sliding surface occurs more easily than the plane failure surface,especially in the case of tensile failure of the rock bridge.In addition,rock slopes with higher strength parameters,taller heights,and greater weakening coefficients are prone to rock bridge tension failure with lower Fs,and more attention should be given to the occurrence of such accidents in actual engineering. 展开更多
关键词 jointed rock slopes Stepped sliding failure Weakening characteristics Modified M‒C failure criterion
下载PDF
Impact of Earthquake Action on the Design and Sizing of Jointed Masonry Structures in South Kivu, DRC
2
作者 Edmond Dawak Fezeu Marcelline Blanche Manjia +3 位作者 Chérif Bishweka Biryondeke Patient Kubuya Binwa Élodie Rufine Zang Chrispin Pettang 《Open Journal of Civil Engineering》 2024年第1期127-153,共27页
This article deals with the investigation of the effects of seismic impacts on the design and dimensioning of structures in South Kivu. The starting point is the observation of an ambivalence that can be observed in t... This article deals with the investigation of the effects of seismic impacts on the design and dimensioning of structures in South Kivu. The starting point is the observation of an ambivalence that can be observed in the province, namely the non-consideration of seismic action in the study of structures by both professionals and researchers. The main objective of the study is to show the importance of dynamic analysis of structures in South Kivu. It adopts a meta-analytical approach referring to previous researches on South Kivu and proposes an efficient and optimal method. To arrive at the results, we use Eurocode 7 and 8. In addition, we conducted static analysis using the Coulomb method and dynamic analysis using the Mononobe-Okabe method and compared the results. At Nyabibwe, the results showed that we have a deviation of 24.47% for slip stability, 12.038% for overturning stability and 9.677% for stability against punching through a weight wall. 展开更多
关键词 jointed Masonry Weight-Bearing Structures Seismic Action Eurocode 7 and 8 Static and Dynamic Analysis
下载PDF
Shear mechanical properties and fracturing responses of layered rough jointed rock-like materials
3
作者 Xinxin Nie Qian Yin +7 位作者 Manchao He Qi Wang Hongwen Jing Bowen Zheng Bo Meng Tianci Deng Zheng Jiang Jiangyu Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2417-2434,共18页
This study aims to investigate mechanical properties and failure mechanisms of layered rock with rough joint surfaces under direct shear loading.Cubic layered samples with dimensions of 100 mm×100 mm×100 mm ... This study aims to investigate mechanical properties and failure mechanisms of layered rock with rough joint surfaces under direct shear loading.Cubic layered samples with dimensions of 100 mm×100 mm×100 mm were casted using rock-like materials,with anisotropic angle(α)and joint roughness coefficient(JRC)ranging from 15°to 75°and 2-20,respectively.The direct shear tests were conducted under the application of initial normal stress(σ_(n)) ranging from 1-4 MPa.The test results indicate significant differences in mechanical properties,acoustic emission(AE)responses,maximum principal strain fields,and ultimate failure modes of layered samples under different test conditions.The peak stress increases with the increasingαand achieves a maximum value atα=60°or 75°.As σ_(n) increases,the peak stress shows an increasing trend,with correlation coefficients R² ranging from 0.918 to 0.995 for the linear least squares fitting.As JRC increases from 2-4 to 18-20,the cohesion increases by 86.32%whenα=15°,while the cohesion decreases by 27.93%whenα=75°.The differences in roughness characteristics of shear failure surface induced byαresult in anisotropic post-peak AE responses,which is characterized by active AE signals whenαis small and quiet AE signals for a largeα.For a given JRC=6-8 andσ_(n)=1 MPa,asαincreases,the accumulative AE counts increase by 224.31%(αincreased from 15°to 60°),and then decrease by 14.68%(αincreased from 60°to 75°).The shear failure surface is formed along the weak interlayer whenα=15°and penetrates the layered matrix whenα=60°.Whenα=15°,as σ_(n) increases,the adjacent weak interlayer induces a change in the direction of tensile cracks propagation,resulting in a stepped pattern of cracks distribution.The increase in JRC intensifies roughness characteristics of shear failure surface for a smallα,however,it is not pronounced for a largeα.The findings will contribute to a better understanding of the mechanical responses and failure mechanisms of the layered rocks subjected to shear loads. 展开更多
关键词 layered samples anisotropic angle joint roughness coefficient mechanical properties acoustic emission response fracturing evolution failure modes
下载PDF
Analysis of the Elastic-Plastic Dynamic Finite Element on a Jointed Rock Mass 被引量:1
4
作者 郭文章 冯顺山 王海福 《Journal of Beijing Institute of Technology》 EI CAS 1999年第2期27-32,共6页
Aim To study the elastic plastic dynamical constitutive relations about a jointed rock mass under explosion load and its computer simulation. Methods\ Stress history is taken into account and stresses will follow ch... Aim To study the elastic plastic dynamical constitutive relations about a jointed rock mass under explosion load and its computer simulation. Methods\ Stress history is taken into account and stresses will follow changes in time during a period of explosion load. According to the principle of static force balance, the corresponding nodal concentrated force is calculated and the nodal displacement is counted. The elastic plastic dynamic finite element equations are thus obtained. Results\ A finite element method is given for a jointed rock mass under explosion load. Conclusion\ The problem of large plastic deformation for jointed rock mass on blasting was efficiently resolved through dynamic finite element analysis and the range of damages by blasting simulated, and this pushes forward the problem to engineering practice. 展开更多
关键词 jointed rock mass dynamic finite element numerical simulation
下载PDF
Energy evolution mechanism and failure criteria of jointed surrounding rock under uniaxial compression 被引量:22
5
作者 LI Peng CAI Mei-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1857-1874,共18页
The object of this article is to investigate the energy evolution mechanism and failure criteria of cross-jointed samples containing an opening during deformation and failure based on the uniaxial compression test and... The object of this article is to investigate the energy evolution mechanism and failure criteria of cross-jointed samples containing an opening during deformation and failure based on the uniaxial compression test and rock energy principle.The results show that the energy evolution characteristics of the samples correspond to a typical progressive damage mode.The peak total energy,peak elastic energy,and total input energy of the samples all first decrease and then increase with an increase of half of the included angle,reaching their minimum values when this angle is 45°,while the dissipated energy generally increases with this angle.The existence of the opening and cross joints can obviously weaken the energy storage capacity of the rock,and the change in the included angle of the cross joint has a great influence on the elastic energy ratio of the sample before the peak stress,which leads to some differences in the distribution laws of the input energy.The continuous change and the subsequent sharp change in the rate of change in the energy consumption ratio can be used as the criteria of the crack initiation and propagation and the unstable failure of the sample,respectively. 展开更多
关键词 energy evolution mechanism failure criteria jointed rock mass cross joint uniaxial compression
下载PDF
A Novel Pneumatic Soft Gripper with a Jointed Endoskeleton Structure 被引量:12
6
作者 Zhaoping Wu Xiaoning Li Zhonghua Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第5期95-106,共12页
In current research on soft grippers,pneumatically actuated soft grippers are generally fabricated using fully soft materials,which have the advantage of flexibility as well as the disadvantages of a small gripping fo... In current research on soft grippers,pneumatically actuated soft grippers are generally fabricated using fully soft materials,which have the advantage of flexibility as well as the disadvantages of a small gripping force and slow response speed.To improve these characteristics,a novel pneumatic soft gripper with a jointed endoskeleton structure(E-Gripper)is developed,in which the muscle actuating function has been separated from the force bearing function.The soft action of an E-Gripper finger is performed by some air chambers surrounded by multilayer rubber embedded in the restraining fiber.The gripping force is borne and transferred by the rigid endoskeleton within the E-Gripper finger Thus,the gripping force and action response speed can be increased while the flexibility is maintained.Through experiments,the bending angle of each finger segment,response time,and gripping force of the E-Gripper have been measured,which provides a basis for designing and controlling the soft gripper The test results have shown that the maximum gripping force of the E-Gripper can be 35 N,which is three times greater than that of a fully soft gripper(FS-Gripper)of the same size.At the maximum charging pressure of 150 kPa,the response time is1.123 s faster than that of the FS-Gripper.The research results indicate that the flexibility of a pneumatic soft gripper is not only maintained in the case of the E-Gripper,but its gripping force is also obviously increased,and the response time is reduced.The E-Gripper thus shows great potential for future development and applications. 展开更多
关键词 SOFT GRIPPER jointed endoskeleton Gripping FORCE
下载PDF
Macro and meso analysis of jointed rock mass triaxial compression test by using equivalent rock mass(ERM) technique 被引量:16
7
作者 周喻 吴顺川 +1 位作者 高永涛 A.Misra 《Journal of Central South University》 SCIE EI CAS 2014年第3期1125-1135,共11页
Methods that can efficiently model the effects of rock joints on rock mass behavior can be beneficial in rock engineering. The suitability of equivalent rock mass(ERM) technique based upon particle methods is investig... Methods that can efficiently model the effects of rock joints on rock mass behavior can be beneficial in rock engineering. The suitability of equivalent rock mass(ERM) technique based upon particle methods is investigated. The ERM methodology is first validated by comparing calculated and experimental data of lab triaxial compression test on a set of cylindrical rock mass samples, each containing a single joint oriented in various dip angles. The simulated results are then used to study the stress-strain nonlinearity and failure mechanism as a function of the joint dip angle and confining stress. The anisotropy and size effects are also investigated by using multi-scale cubic ERM models subjected to triaxial compression test. The deformation and failure behavior are found to be influenced by joint degradation, the micro-crack formation in the intact rock, the interaction between two joints, and the interactions of micro-cracks and joints. 展开更多
关键词 jointed rock mass discrete element method equivalent rock mass technique MACRO MESO
下载PDF
Crack initiation stress and strain of jointed rock containing multi-cracks under uniaxial compressive loading: A particle flow code approach 被引量:16
8
作者 范祥 KULATILAKE P H S W +1 位作者 陈新 曹平 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期638-645,共8页
The ratio of crack initiation stress to the uniaxial compressive strength(SCI,B/SUC,B) and the ratio of axial strain at the crack initiation stress to the axial strain at the uniaxial compressive strength(B,UCB,CI,A,A... The ratio of crack initiation stress to the uniaxial compressive strength(SCI,B/SUC,B) and the ratio of axial strain at the crack initiation stress to the axial strain at the uniaxial compressive strength(B,UCB,CI,A,A/SSSS) were studied by performing numerical stress analysis on blocks having multi flaws at close spacing's under uniaxial loading using PFC3 D. The following findings are obtained: SCI,B/SUC,B has an average value of about 0.5 with a variability of ± 0.1. This range agrees quite well with the values obtained by former research. For joint inclination angle, β=90°,B,UCB,CI,A,A/SSSS is found to be around 0.48 irrespective of the value of joint continuity factor, k. No particular relation is found betweenB,UCB,CI,A,A/SSSS and β; however, the average B,UCB,CI,A,A/SSSS seems to slightly decrease with increasing k. The variability ofB,UCB,CI,A,A/SSSS is found to increase with k.Based on the cases studied in this work,B,UCB,CI,A,A/SSSS ranges between 0.3 and 0.5. This range is quite close to the range of 0.4to 0.6 obtained for SCI,B/SUC,B. The highest variability of ± 0.12 forB,UCB,CI,A,A/SSSS is obtained for k=0.8. For the remaining k values the variability ofB,UCB,CI,A,A/SSSS can be expressed within ± 0.05. This finding is very similar to the finding obtained for the variability of SCI,B/SUC,B. 展开更多
关键词 jointed rock multi flaws uniaxial loading PFC3D model crack initiation stress(SCI B) axial strain at crack initiation
下载PDF
Dynamic-static coupling analysis on rockburst mechanism in jointed rock mass 被引量:16
9
作者 贾蓬 朱万成 《Journal of Central South University》 SCIE EI CAS 2012年第11期3285-3290,共6页
A numerical code called RFPA-Dynamics was used to study the rockburst mechanism under dynamic load based on coupled static-dynamic analysis.The results show that dynamic disturbance has a very distinct triggering effe... A numerical code called RFPA-Dynamics was used to study the rockburst mechanism under dynamic load based on coupled static-dynamic analysis.The results show that dynamic disturbance has a very distinct triggering effect on rockburst.Under the dynamic load,rockburst is motivated by tensile stress formed by the overlapping of dynamic waves in the form of instantaneous open and cutting through of cracks in weak planes and pre-damaged areas.Meanwhile,the orientation of joint sets has an obvious leading effect on rockburst locations.Finally,a higher initial static stress state before dynamic loading can cause more pre-damaged area,thus leading to a larger rockburst scope. 展开更多
关键词 ROCKBURST dynamic disturbance numerical simulation jointed rock mass
下载PDF
Particle flow study on strength and meso-mechanism of Brazilian splitting test for jointed rock mass 被引量:19
10
作者 Sheng-Qi Yang Yan-Hua Huang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第4期547-558,共12页
A discrete element method (DEM) called particle flow code (PFC2D) was used to construct a model for Brazilian disc splitting test in the present study. Based on the experimental results of intact Brazilian disc of... A discrete element method (DEM) called particle flow code (PFC2D) was used to construct a model for Brazilian disc splitting test in the present study. Based on the experimental results of intact Brazilian disc of rock-like material, a set of micro-parameters in PFC2D that reflected the macro-mechanical behavior of rock-like materials were obtained. And then PFC2D was used to simulate Brazilian splitting test for jointed rock mass specimens and specimen containing a central straight notch. The effect of joint angle and notch angle on the tensile strength and failure mode of jointed rock specimens was detailed analyzed. In order to reveal the meso-mechanical mechanism of crack coalescence, displacement trend lines were applied to analyze the displacement evolution during the crack initiation and propagation. The investigated conclusions can be described as follows. (1) The tensile strength of jointed rock mass disc specimen is dependent to the joint angle. As the joint angle increases, the tensile strength of jointed rock specimen takes on a nonlinear variance. (2) The tensile strength of jointed rock mass disc specimen containing a central straight notch distributes as a function of both joint angle and notch angle. (3) Three major failure modes, i.e., pure tensile failure, shear failure and mixed tension and shear failure mode are observed in jointed rock mass disc specimens under Brazilian test. (4) The notch angle roles on crack initiation and and joint angle play important propagation characteristics of jointed rock mass disc specimen containing a central straight notch under Brazilian test. 展开更多
关键词 jointed rock mass Brazilian splitting test. Ten-sile strength· Failure mode PFC2D
下载PDF
Mechanical properties and reinforcement effect of jointed rock mass with pre-stressed bolt 被引量:11
11
作者 YANG Wen-dong LUO Guang-yu +4 位作者 BO Chun-jie WANG Ling Lü Xian-xian WANG Ying-nan WANG Xue-peng 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3513-3530,共18页
Pre-stressed bolt anchorage is the key technology for jointed rock masses in rock tunnelling,slope treatment and mining engineering.To investigate the mechanical properties and reinforcement effect of jointed rock mas... Pre-stressed bolt anchorage is the key technology for jointed rock masses in rock tunnelling,slope treatment and mining engineering.To investigate the mechanical properties and reinforcement effect of jointed rock masses with pre-stressed bolts,in this study,uniaxial compression tests were conducted on specimens with different anchoring types and flaw inclination angles.ABAQUS software was used to verify and supplement the laboratory tests.The laws of the uniaxial compressive strength(UCS)obtained from the numerical simulations and laboratory tests were consistent.The results showed that under the same flaw angle,both the UCS and elastic modulus of the bolted specimens were improved compared with those of the specimens without bolts and the improvements increased with an increase in the bolt pre-stress.Under the same anchoring type,the UCS and elastic modulus of the jointed specimens increased with an increase in the flaw angle.The pre-stressed bolt could not only restrain the slip of the specimens along the flaw surface but also change the propagation mode of the secondary cracks and limit the initiation of cracks.In addition,the plot contours of the maximum principal strain and the Tresca stress of the numerical models were influenced by the anchoring type,flaw angle,anchoring angle and bolt position. 展开更多
关键词 jointed rock mass pre-stressed bolt laboratory test numerical simulation
下载PDF
Numerical investigation on the sensitivity of jointed rock mass strength to various factors 被引量:14
12
作者 NIU Shuangjian JING Hongwen +1 位作者 HU Kun YANG Dafang 《Mining Science and Technology》 EI CAS 2010年第4期530-534,共5页
The mechanical properties of jointed rock masses, such as strength, deformation and the failure mechanism, can be understood only by studying the sensitivity of jointed rock mass strength (both the peak and residual s... The mechanical properties of jointed rock masses, such as strength, deformation and the failure mechanism, can be understood only by studying the sensitivity of jointed rock mass strength (both the peak and residual strengths) to the factors that affect it. An orthogonal design of uniaxial compression tests was simulated on eighteen groups of jointed rock specimens having different geometric and mechanical properties using RFPA2D (Rock Failure Process Analysis) code. The results show that the peak strength is controlled by the geometric parameters of the joints, but that the residual strength is controlled by the mechanical prop- erties of the joint interfaces. The failure mode of jointed rock specimens is mainly shear failure. Joint quantity, or density, is the most important index that affects jointed rock mass strength and engineering quality. 展开更多
关键词 jointed rock mass peak strength residual strength variance analysis sensitivity
下载PDF
Simulation of failure process of jointed rock 被引量:8
13
作者 张秀丽 焦玉勇 赵坚 《Journal of Central South University of Technology》 EI 2008年第6期888-894,共7页
A modified discontinuous deformation analysis (DDA) algorithm was proposed to simulate the failure behavior of jointed rock. In the proposed algorithm, by using the Monte-Carlo technique, random joint network was gene... A modified discontinuous deformation analysis (DDA) algorithm was proposed to simulate the failure behavior of jointed rock. In the proposed algorithm, by using the Monte-Carlo technique, random joint network was generated in the domain of interest. Based on the joint network, the triangular DDA block system was automatically generated by adopting the advanced front method. In the process of generating blocks, numerous artificial joints came into being, and once the stress states at some artificial joints satisfy the failure criterion given beforehand, artificial joints will turn into real joints. In this way, the whole fragmentation process of rock mass can be replicated. The algorithm logic was described in detail, and several numerical examples were carried out to obtain some insight into the failure behavior of rock mass containing random joints. From the numerical results, it can be found that the crack initiates from the crack tip, the growth direction of the crack depends upon the loading and constraint conditions, and the proposed method can reproduce some complicated phenomena in the whole process of rock failure. 展开更多
关键词 discontinuous deformation analysis jointed rock rock failure Monte-Carlo technique random joint network advancing front method triangular block system
下载PDF
Determination of geological strength index of jointed rock mass based on image processing 被引量:8
14
作者 Kunui Hong Eunchol Han Kwangsong Kang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期702-708,共7页
The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the... The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the generalized Hoek-Brown and Mohr-Coulomb failure criteria.The GSI can be estimated using standard chart and field observations of rock mass blockiness and discontinuity surface conditions.The GSI value gives a numerical representation of the overall geotechnical quality of the rock mass.In this study,we propose a method to determine the GSI quantitatively using photographic images of in situ jointed rock mass with image processing technology,fractal theory and artificial neural network(ANN).We employ the GSI system to characterize the jointed rock mass around the working in a coal mine.The relative error between the proposed value and the given value in the GSI chart is less than 3.6%. 展开更多
关键词 jointed rock mass Geological strength index(GSI) Image processing Fractal dimension Artificial neural network(ANN)
下载PDF
Responses of jointed rock masses subjected to impact loading 被引量:7
15
作者 Shabnam Aziznejad Kamran Esmaieli +1 位作者 John Hadjigeorgiou Denis Labrie 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第4期624-634,共11页
Impact-induced damage to jointed rock masses has important consequences in various mining and civil engineering applications. This paper reports a numerical investigation to address the responses of jointed rock masse... Impact-induced damage to jointed rock masses has important consequences in various mining and civil engineering applications. This paper reports a numerical investigation to address the responses of jointed rock masses subjected to impact loading. It also focuses on the static and dynamic properties of an intact rock derived from a series of laboratory tests on meta-sandstone samples from a quarry in Nova Scotia, Canada. A distinct element code(PFC2D) was used to generate a bonded particle model(BPM) to simulate both the static and dynamic properties of the intact rock. The calibrated BPM was then used to construct large-scale jointed rock mass samples by incorporating discrete joint networks of multiple joint intensities into the intact rock matrix represented by the BPM. Finally, the impact-induced damage inflicted by a rigid projectile particle on the jointed rock mass samples was determined through the use of the numerical model. The simulation results show that joints play an important role in the impactinduced rock mass damage where higher joint intensity results in more damage to the rock mass. This is mainly attributed to variations of stress wave propagation in jointed rock masses as compared to intact rock devoid of joints. 展开更多
关键词 jointed rock mass Impact loading MICROCRACKS Rock damage
下载PDF
Strength of massive to moderately jointed hard rock masses 被引量:5
16
作者 R.P.Bewick P.K.Kaiser F.Amann 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第3期562-575,共14页
The Hoek-Brown (HB) failure criterion and the geological strength index (GSI) were developed for the estimation of rock mass strength in jointed and blocky ground where rock mass failure is dominated by sliding along ... The Hoek-Brown (HB) failure criterion and the geological strength index (GSI) were developed for the estimation of rock mass strength in jointed and blocky ground where rock mass failure is dominated by sliding along open joints and rotation of rock blocks. In massive, veined and moderately jointed rock in which rock blocks cannot form without failure of intact rock, the approach to obtain HB parameters must be modified. Typical situations when these modifications are required include the design of pillars, excavation and cavern stability, strainburst potential assessment, and tunnel support in deep underground conditions (around σ1/σci > 0.15, where σ1 is the major principal compressive stress and σci is the unconfined compressive strength of the homogeneous rock) in hard brittle rocks with GSI ≥ 65. In this article, the strength of massive to moderately jointed hard rock masses is investigated, and an approach is presented to estimate the rock mass strength envelope using laboratory data from uniaxial and triaxial compressive strength tests without reliance on the HB-GSI equations. The data from tests on specimens obtained from massive to moderately jointed heterogeneous (veined) rock masses are used to obtain the rock and rock mass strengths at confining stress ranges that are relevant for deep tunnelling and mining;and a methodology is presented for this purpose from laboratory data alone. By directly obtaining the equivalent HB rock mass strength envelope for massive to moderately jointed rock from laboratory tests, the HB-GSI rock mass strength estimation approach is complemented for conditions where the GSIequations are not applicable. Guidance is also provided on how to apply the proposed approach when laboratory test data are not or not yet available. 展开更多
关键词 BRITTLE ROCK Uniaxial compressive strength(UCS) Geological STRENGTH index(GSI) MASSIVE to moderately jointed ROCK MASSES
下载PDF
Elasto-plastic Analysis of Circular Tunnels in Jointed Rock Masses Satisfy the Hoek-Brown Failure Criterion 被引量:11
17
作者 SUN Jin-shan LU Wen-bo ZHU Qi-hu CHEN Ming 《Journal of China University of Mining and Technology》 EI 2007年第3期393-398,共6页
The relationship between the Hoek-Brown parameters and the mechanical response of circular tunnels is il-lustrated. Closed-form and approximate solutions are given for the extent of the plastic zone and the stress and... The relationship between the Hoek-Brown parameters and the mechanical response of circular tunnels is il-lustrated. Closed-form and approximate solutions are given for the extent of the plastic zone and the stress and dis-placement fields under axisymmetrical and asymmetric stress conditions. For the same rock masses and under axisym-metrical stress conditions,the radius of the plastic zone in terms of Hoek-Brown criterion is generally an approximation of the radius in terms of the Mohr-Coulomb criterion. The radius in terms of the Hoek-Brown criterion is larger under low stress conditions. For poor quality rock masses (GSI<25),measures (such as grouting,setting rock bolts,etc.) that improve the GSI of rock masses are effective in improving the stability of tunnels. It is not advisable to improve the sta-bility of the tunnels by providing a small support resistance p through shotcrete,except for very poor quality jointed rock masses. Without reference to the quality of the rock mass,the disturbance factor D should not less than 0.5. Meas-ures which disturb rock masses during tunnel construction should be taken carefully when the tunnel depth increases. 展开更多
关键词 jointed rock masses circular tunnel general Hoek-Brown failure criterion elasto-plastic analysis con-struction measures
下载PDF
Experimental study on acoustic emission characteristics of jointed rock mass by double disc cutter 被引量:5
18
作者 LIN Qi-bin CAO Ping +3 位作者 LI Kai-hui CAO Ri-hong ZHOU Ke-ping DENG Hong-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第2期357-367,共11页
The characteristics of joints are crucial factors which influence the penetration efficiency of tunnel boring machine(TBM).Based on the theoretical study,numerical simulation and experimental research,many researchers... The characteristics of joints are crucial factors which influence the penetration efficiency of tunnel boring machine(TBM).Based on the theoretical study,numerical simulation and experimental research,many researchers have studied the interaction between TBM disc cutters and jointed rock mass.However,in most of these works,the effect of joint on rock fragmentation by double disc cutter has been scarcely investigated.Thus,the effects of joint orientation and joint space on rock fragmentation by double disc cutter are highlighted in this study.During the test,jointed concrete specimens are adopted to simulate jointed rock mass.Improved RYL-600rock shear rheological instrument was employed during the indentation process under disc cutters,and acoustic emission location system was used to analyze the rock damage and physical deterioration.The results show that there are four failure modes and three modes of crack initiation and propagation in jointed rock mass.It is concluded that the existing joint planes have obviously restrained the crack initiation and propagation during the rock fragmentation process.The results also indicate that samples are damaged most seriously when joint orientation equals60°,which is proved to be the optimum joint orientation in TBM penetration. 展开更多
关键词 tunnel boring machine (TBM) jointed rock mass rock fragmentation crack propagation acoustic emission
下载PDF
Unloading performances and stabilizing practices for columnar jointed basalt:A case study of Baihetan hydropower station 被引量:4
19
作者 Qixiang Fan Xiating Feng +2 位作者 Wenlin Weng Yilin Fan Quan Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第6期1041-1053,共13页
The columnar jointed rock mass(CJR), composed of polygonal cross-sectional columns cut by several groups of joints in various directions, was exposed during the excavations of the Baihetan hydropower station, China. I... The columnar jointed rock mass(CJR), composed of polygonal cross-sectional columns cut by several groups of joints in various directions, was exposed during the excavations of the Baihetan hydropower station, China. In order to investigate the unloading performances and the stability conditions during excavation of the columns, an experimental field study was performed. Firstly, on-site investigations indicated that the geotechnical problems, including rock relaxation, cracking and collapse, were the most prominent for the CJR Class I that contains intensive joint network and the smallest column sizes.Comprehensive field tests, including deformation measurement by multi-point extensometers, ultrasonic wave testing, borehole television observation and stress monitoring of rock anchors, revealed that the time-dependent relaxation of the CJRs was marked. The practical excavation experiences for the Baihetan columnar jointed rock masses, such as blasting scheme, supporting time of shotcrete and rock bolts, were presented in the excavations of the diversion tunnels. These detailed investigations and practical construction experiences can provide helpful information for similar geotechnical works in jointed rock mass. 展开更多
关键词 Columnar jointed basalt Diversion tunnels Rock unloading In situ test Hydropower station
下载PDF
Seismic stability of jointed rock slopes under obliquely incident earthquake waves 被引量:5
20
作者 Huang Jingqi Zhao Mi +3 位作者 Xu Chengshun Du Xiuli Jin Liu Zhao Xu 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第3期527-539,共13页
Seismic stability of slopes has been traditionally analyzed with vertically propagated earthquake waves.However,for rock slopes,the earthquake waves might approach the outcrop still with a evidently oblique direction.... Seismic stability of slopes has been traditionally analyzed with vertically propagated earthquake waves.However,for rock slopes,the earthquake waves might approach the outcrop still with a evidently oblique direction.To investigate the impact of obliquely incident earthquake excitations,the input method for SV and P waves with arbitrary incident angles is conducted,respectively,by adopting the equivalent nodal force method together with a viscous-spring boundary.Then,the input method is introduced within the framework of ABAQUS software and verified by a numerical example.Both SV and P waves input are considered herein for a 2 D jointed rock slope.For the jointed rock mass,the jointed material model in ABAQUS software is employed to simulate its behavior as a continuum.Results of the study show that the earthquake incident angles have significance on the seismic stability of jointed rock slopes.The larger the incident angle,the greater the risk of slope instability.Furthermore,the stability of the jointed rock slopes also is affected by wave types of earthquakes heavily.P waves induce weaker responses and SV waves are shown to be more critical. 展开更多
关键词 jointed rock slope seismic stability obliquely incident waves P and SV waves
下载PDF
上一页 1 2 190 下一页 到第
使用帮助 返回顶部