Deep dielectric charging/discharging,caused by high energy electrons,is an important consideration in electronic devices used in space environments because it can lead to spacecraft anomalies and failures.The Jovian p...Deep dielectric charging/discharging,caused by high energy electrons,is an important consideration in electronic devices used in space environments because it can lead to spacecraft anomalies and failures.The Jovian planets,including Saturn,Uranus,Neptune and Jupiter’s moons,are believed to have robust electron radiation belts at relativistic energies.In particular,Jupiter is thought to have caused at least 42 internal electrostatic discharge events during the Voyager 1 flyby.With the development of deep space exploration,there is an increased focus on the deep dielectric charging effects in the orbits of Jovian planets.In this paper,GEANT4,a Monte Carlo toolkit,and radiation-induced conductivity(RIC)are used to calculate deep dielectric charging effects for Jovian planets.The results are compared with the criteria for preventing deep dielectric charging effects in Earth orbit.The findings show that effective criteria used in Earth orbit are not always appropriate for preventing deep dielectric charging effects in Jovian orbits.Generally,Io,Europa,Saturn(R_S=6),Uranus(L=4.73)and Ganymede missions should have a thicker shield or higher dielectric conductivity,while Neptune(L=7.4)and Callisto missions can have a thinner shield thickness or a lower dielectric conductivity.Moreover,dielectrics grounded with double metal layers and thinner dielectrics can also decrease the likelihood of discharges.展开更多
Decametric(DAM) radio emissions are one of the main windows through which one can reveal and understand the Jovian magnetospheric dynamics and its interaction with the moons. DAMs are generated by energetic electrons ...Decametric(DAM) radio emissions are one of the main windows through which one can reveal and understand the Jovian magnetospheric dynamics and its interaction with the moons. DAMs are generated by energetic electrons through cyclotron-maser instability. For Io(the most active moon) related DAMs, the energetic electrons are sourced from Io volcanic activities, and quickly trapped by neighboring Jovian magnetic field. To properly interpret the physical processes behind DAMs, it is important to precisely locate the source field lines from which DAMs are emitted. Following the work by Hess et al.(2008, 2010), we develop a method to locate the source region as well as the associated field lines for any given DAM emission recorded in a radio dynamic spectrum by, e.g.,Wind/WAVES or STEREO/WAVES. The field lines are calculated by the state-of-art analytical model, called JRM09(Connerney et al., 2018).By using this method, we may also derive the emission cone angle and the energy of associated electrons. If multiple radio instruments at different perspectives observe the same DAM event, the evolution of its source region and associated field lines is able to be revealed. We apply the method to an Io-DAM event, and find that the method is valid and reliable. Some physical processes behind the DAM event are also discussed.展开更多
Whistler-mode chorus waves are regarded as an important acceleration mechanism contributing to the formation of relativistic and ultra-relativistic electrons in the Jovian radiation belts. Quantitative determination o...Whistler-mode chorus waves are regarded as an important acceleration mechanism contributing to the formation of relativistic and ultra-relativistic electrons in the Jovian radiation belts. Quantitative determination of the chorus wave driven electron scattering effect in the Jovian magnetosphere requires detailed information of both ambient magnetic field and plasma density and wave spectral property, which however cannot be always readily acquired from observations of existed missions to Jupiter. We therefore perform a comprehensive analysis of the sensitivity of chorus induced electron scattering rates to ambient magnetospheric and wave parameters in the Jovian radiation belts to elaborate to which extent the diffusion coefficients depend on a number of key input parameters. It is found that quasi-linear electron scattering rates by chorus can be strongly affected by the ambient magnetic field intensity, the wave latitudinal coverage, and the peak frequency and bandwidth of the wave spectral distribution in the Jovian magnetosphere, while they only rely slightly on the background plasma density profile and the peak wave normal angle, especially when the wave emissions are confined at lower latitudes. Given the chorus wave amplitude, chorus induced electron scattering rates strongly depend on Jovian L-shell to exhibit a tendency approximately proportional to L_J^3. Our comprehensive analysis explicitly demonstrates the importance of reliable information of both the ambient magnetospheric state and wave distribution property to understanding the dynamic electron evolution in the Jovian radiation belts and therefore has implications for future mission planning to explore the extreme particle radiation environment of Jupiter and its satellites.展开更多
Wave-particle interactions triggered by whistler-mode chorus waves are an important contributor to the Jovian radiation belt electron dynamics. While the sensitivity of chorus-driven electron scattering to the ambient...Wave-particle interactions triggered by whistler-mode chorus waves are an important contributor to the Jovian radiation belt electron dynamics. While the sensitivity of chorus-driven electron scattering to the ambient magnetospheric and wave parameters has been investigated, there is rather limited understanding regarding the extent to which the dynamic evolution of Jovian radiation belt electrons, under the impact of chorus wave scattering, depends on the electron distribution profiles. We adopt a group of reasonable initial conditions based upon the available observations and models for quantitative analyses. We find that inclusion of pitch angle variation in initial conditions can result in increased electron losses at lower pitch angles and substantially modify the pitch angle evolution profiles of > ~500 keV electrons, while variations of electron energy spectrum tend to modify the evolution primarily of 1 MeV and 5 MeV electrons. Our results explicitly demonstrate the importance to the radiation belt electron dynamics in the Jovian magnetosphere of the initial shape of the electron phase space density, and indicate the extent to which variations in electron energy spectrum and pitch angle distribution can contribute to the evolution of Jovian radiation belt electrons caused by chorus wave scattering.展开更多
Locating the source of decametric(DAM)radio emissions is a key step in the use of remote radio observations to understand the Jovian magnetospheric dynamics and their interaction with the planet’s moons.Wang YM et al...Locating the source of decametric(DAM)radio emissions is a key step in the use of remote radio observations to understand the Jovian magnetospheric dynamics and their interaction with the planet’s moons.Wang YM et al.(2020)presented a method by which recorded arc-shaped DAM emissions in the radio dynamic spectra can be used to locate the source of a DAM.An Io-related DAM event on March 14,2014 was used to demonstrate the method.A key parameter in the method is whether the DAM is emitted in the northern or the southern hemisphere;the hemisphere of origin can be determined definitively from the polarization of the emission.Unfortunately,polarization information for the emission on March 14,2014 event was not recorded.Our analysis assumed the source to be in the northern hemisphere.Lamy et al.(2022)argue convincingly that the source was probably in the southern hemisphere.We appreciate the helpful contribution of Lamy et al.(2022)to this discussion and have updated our analysis,this time assuming that the DAM source was in the southern hemisphere.We also explore the sensitivity of our method to another parameter-the height at which the value of fce,max,which is the maximal electron cyclotron frequency reached along the active magnetic flux tube,is adopted.Finally,we introduce our recent statistical study of 68 DAM events,which lays a more solid basis for testing the reliability of our method,which we continue to suggest is a promising tool by which remote radio observations can be used to locate the emission source of Jovian DAMs.展开更多
The so-called “global polytropic model” is based on the assumption of hydrostatic equilibrium for the solar system, or for a planet’s system of statellites (like the Jovian system), described by the Lane-Emden diff...The so-called “global polytropic model” is based on the assumption of hydrostatic equilibrium for the solar system, or for a planet’s system of statellites (like the Jovian system), described by the Lane-Emden differential equation. A polytropic sphere of polytropic index?n?and radius?R1?represents the central component?S1?(Sun or planet) of a polytropic configuration with further components the polytropic spherical shells?S2,?S3,?..., defined by the pairs of radi (R1,?R2), (R2,?R3),?..., respectively.?R1,?R2,?R3,?..., are the roots of the real part Re(θ) of the complex Lane-Emden function?θ. Each polytropic shell is assumed to be an appropriate place for a planet, or a planet’s satellite, to be “born” and “live”. This scenario has been studied numerically for the cases of the solar and the Jovian systems. In the present paper, the Lane-Emden differential equation is solved numerically in the complex plane by using the Fortran code DCRKF54 (modified Runge-Kutta-Fehlberg code of fourth and fifth order for solving initial value problems in the complex plane along complex paths). We include in our numerical study some trans-Neptunian objects.展开更多
N-body simulations of the Sun, the planets, and small celestial bodies are frequently used to model the evolution of the Solar System. Large numbers of numerical integrators for performing such simulations have been d...N-body simulations of the Sun, the planets, and small celestial bodies are frequently used to model the evolution of the Solar System. Large numbers of numerical integrators for performing such simulations have been developed and used;see, for example, [1,2]. The primary objective of this paper is to analyse and compare the efficiency and the error growth for different numerical integrators. Throughout the paper, the error growth is examined in terms of the global errors in the positions and velocities, and the relative errors in the energy and angular momentum of the system. We performed numerical experiments for the different integrators applied to the Jovian problem over a long interval of duration, as long as one million years, with the local error tolerance ranging from 10-16 to 10-18.展开更多
A prominent observation of the solar system is that the mass and gas content of Jovian planets decrease outward with orbital radius, except that, in terms of these properties, Neptune is almost the same as Uranus. In ...A prominent observation of the solar system is that the mass and gas content of Jovian planets decrease outward with orbital radius, except that, in terms of these properties, Neptune is almost the same as Uranus. In previous studies, the solar nebula was assumed to preexist and the formation process of the solar nebula was not considered. It was therefore assumed that planet formation at different radii started at the same time in the solar nebula. We show that planet formation at different radii does not start at the same time and is delayed at large radii. We suggest that this delay might be one of the factors that causes the outward decrease in the masses of Jovian planets. The nebula starts to form from its inner part because of the inside-out collapse of its progenitorial molecular cloud core. The nebula then expands outward due to viscosity. Material first reaches a small radius and then reaches a larger radius, so planet formation is delayed at the large radius. The later the material reaches a planet's location, the less time it has to gain mass and gas content. Hence, the delay tends to cause the outward decrease in mass and gas content of Jovian planets. Our nebula model shows that the material reaches Jupiter, Saturn, Uranus and Neptune at t = 0.40, 0.57, 1.50 and 6.29 × 10^6 yr, respectively. We discuss the effects of time delay on the masses of Jovian planets in the framework of the core accretion model of planet formation. Saturn's formation is not delayed by much time relative to Jupiter so that they both reach the rapid gas accretion phase and become gas giants. However, the delay in formation of Uranus and Neptune is long and might be one of the factors that cause them not to reach the rapid gas accretion phase before the gas nebula is dispersed. Saturn has less time to go through the rapid gas accretion, so Saturn's mass and gas content are significantly less than those of Jupiter.展开更多
Mayr <em>et al.</em><a href="#ref1"> [1]</a> proposed that the vertical velocities in the global scale meridional circulation can produce distinct latitude bands where Jovian vortices...Mayr <em>et al.</em><a href="#ref1"> [1]</a> proposed that the vertical velocities in the global scale meridional circulation can produce distinct latitude bands where Jovian vortices like the white and brown are observed, and we present here a brief review of the mechanism. The observed life times of the ovals are much longer than the estimated spin-down times, which indicates that the vortices must be sustained through the release of internal energy. Like Jupiter’s Great Red Spot (GRS), the white/brown ovals are treated like terrestrial hurricanes or cyclones, which are generated by convection. The planetary energy Jupiter emits is transferred by convection, and under this condition the upward motions in the meridional circulation, around the equator for example, release energy from below and decrease the convective instability to suppress the formation of cyclones. But the downward motions in the circulation, near 20<span style="white-space:nowrap;">°</span> latitude for example, carry energy down so that the convective instability is amplified to produce a dynamical environment that is favorable for the development of cyclones like the GRS and white/brown ovals. This picture is supported by an analysis of results from a numerical model of Jupiter’s alternating jets (Chan and Mayr <a href="#ref2" target="_blank">[2]</a>). Generated by alternating vertical winds in the meridional circulation, the vertical temperature variations reveal distinct latitude bands with enhanced convective instability, most prominent at high latitudes where long-lived circumpolar cyclones are observed from the Juno spacecraft.展开更多
This paper presents a novel hybrid method to design the continuous and accurate multi-gravity-assist trajectory for a high-fidelity dynamics.The gravitational perturbation of the primary body is considered during the ...This paper presents a novel hybrid method to design the continuous and accurate multi-gravity-assist trajectory for a high-fidelity dynamics.The gravitational perturbation of the primary body is considered during the gravity assistance.The pseudostate technique is applied to approximate the gravity-assisted trajectory,where the optimal sweepback duration is solved using a trained deep neural network.The major factors that affect the optimal sweepback duration of the approach and departure segments are investigated.The results show that the optimal sweepback duration of the approach segment only relies on the shape of the approach trajectory and is independent of the flight time.Then,a gravity-assisted trajectory patched strategy and a hybrid algorithm combining the particle swarm optimization and the sequential quadratic programming are developed to optimize the multi-gravity-assist trajectory.The proposed hybrid method is applied to the Europa orbiter mission.In comparison with the traditional patched conic method,this method demonstrates outstanding performance on accuracy and significantly reduces the computational time and complexity of the trajectory correction with the high-fidelity dynamics.展开更多
From March 20,2019 to April 30,2019,the 10th China Trajectory Optimization Competition(CTOC10)was jointly held by the Chinese Society of Theoretical and Applied Mechanics and Nanjing University of Aeronautics and Astr...From March 20,2019 to April 30,2019,the 10th China Trajectory Optimization Competition(CTOC10)was jointly held by the Chinese Society of Theoretical and Applied Mechanics and Nanjing University of Aeronautics and Astronautics.The CTOC10 focused on trajectory optimization for Jovian exploration.The team from Harbin Institute of Technology won the first prize.In this paper,first,the history of the CTOC is presented.Subsequently,the mission of the CTOC10 is introduced,and an account of the final rankings of the competition is given.Finally,trajectory optimization methods are discussed,and suggestions for practical missions are provided.展开更多
基金supported by Beijing Municipal Natural Science Foundation-Quantitative Research on Mitigating Deep Dielectric Charging Effects in Jupiter orbits(No.3184048)National Key Scientific Instrument and Equipment Development Projects,China(No.2012YQ03014207)。
文摘Deep dielectric charging/discharging,caused by high energy electrons,is an important consideration in electronic devices used in space environments because it can lead to spacecraft anomalies and failures.The Jovian planets,including Saturn,Uranus,Neptune and Jupiter’s moons,are believed to have robust electron radiation belts at relativistic energies.In particular,Jupiter is thought to have caused at least 42 internal electrostatic discharge events during the Voyager 1 flyby.With the development of deep space exploration,there is an increased focus on the deep dielectric charging effects in the orbits of Jovian planets.In this paper,GEANT4,a Monte Carlo toolkit,and radiation-induced conductivity(RIC)are used to calculate deep dielectric charging effects for Jovian planets.The results are compared with the criteria for preventing deep dielectric charging effects in Earth orbit.The findings show that effective criteria used in Earth orbit are not always appropriate for preventing deep dielectric charging effects in Jovian orbits.Generally,Io,Europa,Saturn(R_S=6),Uranus(L=4.73)and Ganymede missions should have a thicker shield or higher dielectric conductivity,while Neptune(L=7.4)and Callisto missions can have a thinner shield thickness or a lower dielectric conductivity.Moreover,dielectrics grounded with double metal layers and thinner dielectrics can also decrease the likelihood of discharges.
基金support by the Strategic Priority Program of the Chinese Academy of Sciences (Grant Nos. XDB41000000, XDA15017300)the NSFC (Grant No.41842037 and 41574167)support by an appointment to the NASA postdoctoral program at the NASA Goddard Space Flight Center administered by Universities Space Research Association under contract with NASA and the Czech Science Foundation grant 1706818Y
文摘Decametric(DAM) radio emissions are one of the main windows through which one can reveal and understand the Jovian magnetospheric dynamics and its interaction with the moons. DAMs are generated by energetic electrons through cyclotron-maser instability. For Io(the most active moon) related DAMs, the energetic electrons are sourced from Io volcanic activities, and quickly trapped by neighboring Jovian magnetic field. To properly interpret the physical processes behind DAMs, it is important to precisely locate the source field lines from which DAMs are emitted. Following the work by Hess et al.(2008, 2010), we develop a method to locate the source region as well as the associated field lines for any given DAM emission recorded in a radio dynamic spectrum by, e.g.,Wind/WAVES or STEREO/WAVES. The field lines are calculated by the state-of-art analytical model, called JRM09(Connerney et al., 2018).By using this method, we may also derive the emission cone angle and the energy of associated electrons. If multiple radio instruments at different perspectives observe the same DAM event, the evolution of its source region and associated field lines is able to be revealed. We apply the method to an Io-DAM event, and find that the method is valid and reliable. Some physical processes behind the DAM event are also discussed.
基金supported by the NSFC grants (41674163) and (41474141)by Lunar and Planetary Science Laboratory, Macao University of Science and Technology-Partner Laboratory of Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciences (FDCT No. 039/2013/A2)by the Hubei Province Natural Science Excellent Youth Foundation (2016CFA044)
文摘Whistler-mode chorus waves are regarded as an important acceleration mechanism contributing to the formation of relativistic and ultra-relativistic electrons in the Jovian radiation belts. Quantitative determination of the chorus wave driven electron scattering effect in the Jovian magnetosphere requires detailed information of both ambient magnetic field and plasma density and wave spectral property, which however cannot be always readily acquired from observations of existed missions to Jupiter. We therefore perform a comprehensive analysis of the sensitivity of chorus induced electron scattering rates to ambient magnetospheric and wave parameters in the Jovian radiation belts to elaborate to which extent the diffusion coefficients depend on a number of key input parameters. It is found that quasi-linear electron scattering rates by chorus can be strongly affected by the ambient magnetic field intensity, the wave latitudinal coverage, and the peak frequency and bandwidth of the wave spectral distribution in the Jovian magnetosphere, while they only rely slightly on the background plasma density profile and the peak wave normal angle, especially when the wave emissions are confined at lower latitudes. Given the chorus wave amplitude, chorus induced electron scattering rates strongly depend on Jovian L-shell to exhibit a tendency approximately proportional to L_J^3. Our comprehensive analysis explicitly demonstrates the importance of reliable information of both the ambient magnetospheric state and wave distribution property to understanding the dynamic electron evolution in the Jovian radiation belts and therefore has implications for future mission planning to explore the extreme particle radiation environment of Jupiter and its satellites.
基金supported by NSFC grants (41674163) and (41474141)by the Hubei Province Natural Science ExcellentYouth Foundation (2016CFA044)the open-fund grant by the Lunar and Planetary Science Laboratory, Macao University of Science and Technology Partner Laboratory of Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciences
文摘Wave-particle interactions triggered by whistler-mode chorus waves are an important contributor to the Jovian radiation belt electron dynamics. While the sensitivity of chorus-driven electron scattering to the ambient magnetospheric and wave parameters has been investigated, there is rather limited understanding regarding the extent to which the dynamic evolution of Jovian radiation belt electrons, under the impact of chorus wave scattering, depends on the electron distribution profiles. We adopt a group of reasonable initial conditions based upon the available observations and models for quantitative analyses. We find that inclusion of pitch angle variation in initial conditions can result in increased electron losses at lower pitch angles and substantially modify the pitch angle evolution profiles of > ~500 keV electrons, while variations of electron energy spectrum tend to modify the evolution primarily of 1 MeV and 5 MeV electrons. Our results explicitly demonstrate the importance to the radiation belt electron dynamics in the Jovian magnetosphere of the initial shape of the electron phase space density, and indicate the extent to which variations in electron energy spectrum and pitch angle distribution can contribute to the evolution of Jovian radiation belt electrons caused by chorus wave scattering.
基金supported by the Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the NSFC(Grant Nos 42188101 and 42130204).
文摘Locating the source of decametric(DAM)radio emissions is a key step in the use of remote radio observations to understand the Jovian magnetospheric dynamics and their interaction with the planet’s moons.Wang YM et al.(2020)presented a method by which recorded arc-shaped DAM emissions in the radio dynamic spectra can be used to locate the source of a DAM.An Io-related DAM event on March 14,2014 was used to demonstrate the method.A key parameter in the method is whether the DAM is emitted in the northern or the southern hemisphere;the hemisphere of origin can be determined definitively from the polarization of the emission.Unfortunately,polarization information for the emission on March 14,2014 event was not recorded.Our analysis assumed the source to be in the northern hemisphere.Lamy et al.(2022)argue convincingly that the source was probably in the southern hemisphere.We appreciate the helpful contribution of Lamy et al.(2022)to this discussion and have updated our analysis,this time assuming that the DAM source was in the southern hemisphere.We also explore the sensitivity of our method to another parameter-the height at which the value of fce,max,which is the maximal electron cyclotron frequency reached along the active magnetic flux tube,is adopted.Finally,we introduce our recent statistical study of 68 DAM events,which lays a more solid basis for testing the reliability of our method,which we continue to suggest is a promising tool by which remote radio observations can be used to locate the emission source of Jovian DAMs.
文摘The so-called “global polytropic model” is based on the assumption of hydrostatic equilibrium for the solar system, or for a planet’s system of statellites (like the Jovian system), described by the Lane-Emden differential equation. A polytropic sphere of polytropic index?n?and radius?R1?represents the central component?S1?(Sun or planet) of a polytropic configuration with further components the polytropic spherical shells?S2,?S3,?..., defined by the pairs of radi (R1,?R2), (R2,?R3),?..., respectively.?R1,?R2,?R3,?..., are the roots of the real part Re(θ) of the complex Lane-Emden function?θ. Each polytropic shell is assumed to be an appropriate place for a planet, or a planet’s satellite, to be “born” and “live”. This scenario has been studied numerically for the cases of the solar and the Jovian systems. In the present paper, the Lane-Emden differential equation is solved numerically in the complex plane by using the Fortran code DCRKF54 (modified Runge-Kutta-Fehlberg code of fourth and fifth order for solving initial value problems in the complex plane along complex paths). We include in our numerical study some trans-Neptunian objects.
文摘N-body simulations of the Sun, the planets, and small celestial bodies are frequently used to model the evolution of the Solar System. Large numbers of numerical integrators for performing such simulations have been developed and used;see, for example, [1,2]. The primary objective of this paper is to analyse and compare the efficiency and the error growth for different numerical integrators. Throughout the paper, the error growth is examined in terms of the global errors in the positions and velocities, and the relative errors in the energy and angular momentum of the system. We performed numerical experiments for the different integrators applied to the Jovian problem over a long interval of duration, as long as one million years, with the local error tolerance ranging from 10-16 to 10-18.
基金supported in part by the National Natural Science Foundation of China (NSFC, Grant Nos. 11073009, 10873006, 11373019 and 10573007)by three grants from Jilin University
文摘A prominent observation of the solar system is that the mass and gas content of Jovian planets decrease outward with orbital radius, except that, in terms of these properties, Neptune is almost the same as Uranus. In previous studies, the solar nebula was assumed to preexist and the formation process of the solar nebula was not considered. It was therefore assumed that planet formation at different radii started at the same time in the solar nebula. We show that planet formation at different radii does not start at the same time and is delayed at large radii. We suggest that this delay might be one of the factors that causes the outward decrease in the masses of Jovian planets. The nebula starts to form from its inner part because of the inside-out collapse of its progenitorial molecular cloud core. The nebula then expands outward due to viscosity. Material first reaches a small radius and then reaches a larger radius, so planet formation is delayed at the large radius. The later the material reaches a planet's location, the less time it has to gain mass and gas content. Hence, the delay tends to cause the outward decrease in mass and gas content of Jovian planets. Our nebula model shows that the material reaches Jupiter, Saturn, Uranus and Neptune at t = 0.40, 0.57, 1.50 and 6.29 × 10^6 yr, respectively. We discuss the effects of time delay on the masses of Jovian planets in the framework of the core accretion model of planet formation. Saturn's formation is not delayed by much time relative to Jupiter so that they both reach the rapid gas accretion phase and become gas giants. However, the delay in formation of Uranus and Neptune is long and might be one of the factors that cause them not to reach the rapid gas accretion phase before the gas nebula is dispersed. Saturn has less time to go through the rapid gas accretion, so Saturn's mass and gas content are significantly less than those of Jupiter.
文摘Mayr <em>et al.</em><a href="#ref1"> [1]</a> proposed that the vertical velocities in the global scale meridional circulation can produce distinct latitude bands where Jovian vortices like the white and brown are observed, and we present here a brief review of the mechanism. The observed life times of the ovals are much longer than the estimated spin-down times, which indicates that the vortices must be sustained through the release of internal energy. Like Jupiter’s Great Red Spot (GRS), the white/brown ovals are treated like terrestrial hurricanes or cyclones, which are generated by convection. The planetary energy Jupiter emits is transferred by convection, and under this condition the upward motions in the meridional circulation, around the equator for example, release energy from below and decrease the convective instability to suppress the formation of cyclones. But the downward motions in the circulation, near 20<span style="white-space:nowrap;">°</span> latitude for example, carry energy down so that the convective instability is amplified to produce a dynamical environment that is favorable for the development of cyclones like the GRS and white/brown ovals. This picture is supported by an analysis of results from a numerical model of Jupiter’s alternating jets (Chan and Mayr <a href="#ref2" target="_blank">[2]</a>). Generated by alternating vertical winds in the meridional circulation, the vertical temperature variations reveal distinct latitude bands with enhanced convective instability, most prominent at high latitudes where long-lived circumpolar cyclones are observed from the Juno spacecraft.
基金supported by the National Natural Science Foundation of China(Grant No.61273051)the Qing Lan Project,Funding for Outstanding Doctoral Dissertation in NUAA(Grant No.BCXJ19-12)the State Scholarship from China Scholarship Council(Grant No.201906830066)。
文摘This paper presents a novel hybrid method to design the continuous and accurate multi-gravity-assist trajectory for a high-fidelity dynamics.The gravitational perturbation of the primary body is considered during the gravity assistance.The pseudostate technique is applied to approximate the gravity-assisted trajectory,where the optimal sweepback duration is solved using a trained deep neural network.The major factors that affect the optimal sweepback duration of the approach and departure segments are investigated.The results show that the optimal sweepback duration of the approach segment only relies on the shape of the approach trajectory and is independent of the flight time.Then,a gravity-assisted trajectory patched strategy and a hybrid algorithm combining the particle swarm optimization and the sequential quadratic programming are developed to optimize the multi-gravity-assist trajectory.The proposed hybrid method is applied to the Europa orbiter mission.In comparison with the traditional patched conic method,this method demonstrates outstanding performance on accuracy and significantly reduces the computational time and complexity of the trajectory correction with the high-fidelity dynamics.
基金This work was partially supported by the National Natural Science Foundation of China(No.11972182)sponsored by the Qing Lan Project,funded by the Science and Technology on Space Intelligent Control Laboratory(No.KGJZDSYS-2018-11)+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX200220)Funding for Outstanding Doctoral Dissertation in NUAA(No.BCXJ19-12).The authors fully appreciate their financial supports.
文摘From March 20,2019 to April 30,2019,the 10th China Trajectory Optimization Competition(CTOC10)was jointly held by the Chinese Society of Theoretical and Applied Mechanics and Nanjing University of Aeronautics and Astronautics.The CTOC10 focused on trajectory optimization for Jovian exploration.The team from Harbin Institute of Technology won the first prize.In this paper,first,the history of the CTOC is presented.Subsequently,the mission of the CTOC10 is introduced,and an account of the final rankings of the competition is given.Finally,trajectory optimization methods are discussed,and suggestions for practical missions are provided.