期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Mitigating Deep Dielectric Charging Effects at the Orbits of Jovian Planets 被引量:2
1
作者 YU Xiangqian SONG Siyu +4 位作者 CHEN Hongfei ZONG Qiugang ZOU Hong SHI Weihong CHEN Ao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第5期804-815,共12页
Deep dielectric charging/discharging,caused by high energy electrons,is an important consideration in electronic devices used in space environments because it can lead to spacecraft anomalies and failures.The Jovian p... Deep dielectric charging/discharging,caused by high energy electrons,is an important consideration in electronic devices used in space environments because it can lead to spacecraft anomalies and failures.The Jovian planets,including Saturn,Uranus,Neptune and Jupiter’s moons,are believed to have robust electron radiation belts at relativistic energies.In particular,Jupiter is thought to have caused at least 42 internal electrostatic discharge events during the Voyager 1 flyby.With the development of deep space exploration,there is an increased focus on the deep dielectric charging effects in the orbits of Jovian planets.In this paper,GEANT4,a Monte Carlo toolkit,and radiation-induced conductivity(RIC)are used to calculate deep dielectric charging effects for Jovian planets.The results are compared with the criteria for preventing deep dielectric charging effects in Earth orbit.The findings show that effective criteria used in Earth orbit are not always appropriate for preventing deep dielectric charging effects in Jovian orbits.Generally,Io,Europa,Saturn(R_S=6),Uranus(L=4.73)and Ganymede missions should have a thicker shield or higher dielectric conductivity,while Neptune(L=7.4)and Callisto missions can have a thinner shield thickness or a lower dielectric conductivity.Moreover,dielectrics grounded with double metal layers and thinner dielectrics can also decrease the likelihood of discharges. 展开更多
关键词 jovian planets orbits Earth orbits deep dielectric charging effect space radiation
下载PDF
Locating the source field lines of Jovian decametric radio emissions 被引量:2
2
作者 YuMing Wang XianZhe Jia +2 位作者 ChuanBing Wang Shui Wang Vratislav Krupar 《Earth and Planetary Physics》 CSCD 2020年第2期95-104,共10页
Decametric(DAM) radio emissions are one of the main windows through which one can reveal and understand the Jovian magnetospheric dynamics and its interaction with the moons. DAMs are generated by energetic electrons ... Decametric(DAM) radio emissions are one of the main windows through which one can reveal and understand the Jovian magnetospheric dynamics and its interaction with the moons. DAMs are generated by energetic electrons through cyclotron-maser instability. For Io(the most active moon) related DAMs, the energetic electrons are sourced from Io volcanic activities, and quickly trapped by neighboring Jovian magnetic field. To properly interpret the physical processes behind DAMs, it is important to precisely locate the source field lines from which DAMs are emitted. Following the work by Hess et al.(2008, 2010), we develop a method to locate the source region as well as the associated field lines for any given DAM emission recorded in a radio dynamic spectrum by, e.g.,Wind/WAVES or STEREO/WAVES. The field lines are calculated by the state-of-art analytical model, called JRM09(Connerney et al., 2018).By using this method, we may also derive the emission cone angle and the energy of associated electrons. If multiple radio instruments at different perspectives observe the same DAM event, the evolution of its source region and associated field lines is able to be revealed. We apply the method to an Io-DAM event, and find that the method is valid and reliable. Some physical processes behind the DAM event are also discussed. 展开更多
关键词 radio decametric emissions jovian magnetosphere energetic electrons
下载PDF
Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters 被引量:3
3
作者 BinBin Ni Jing Huang +6 位作者 YaSong Ge Jun Cui Yong Wei XuDong Gu Song Fu Zheng Xiang ZhengYu Zhao 《Earth and Planetary Physics》 2018年第1期1-14,共14页
Whistler-mode chorus waves are regarded as an important acceleration mechanism contributing to the formation of relativistic and ultra-relativistic electrons in the Jovian radiation belts. Quantitative determination o... Whistler-mode chorus waves are regarded as an important acceleration mechanism contributing to the formation of relativistic and ultra-relativistic electrons in the Jovian radiation belts. Quantitative determination of the chorus wave driven electron scattering effect in the Jovian magnetosphere requires detailed information of both ambient magnetic field and plasma density and wave spectral property, which however cannot be always readily acquired from observations of existed missions to Jupiter. We therefore perform a comprehensive analysis of the sensitivity of chorus induced electron scattering rates to ambient magnetospheric and wave parameters in the Jovian radiation belts to elaborate to which extent the diffusion coefficients depend on a number of key input parameters. It is found that quasi-linear electron scattering rates by chorus can be strongly affected by the ambient magnetic field intensity, the wave latitudinal coverage, and the peak frequency and bandwidth of the wave spectral distribution in the Jovian magnetosphere, while they only rely slightly on the background plasma density profile and the peak wave normal angle, especially when the wave emissions are confined at lower latitudes. Given the chorus wave amplitude, chorus induced electron scattering rates strongly depend on Jovian L-shell to exhibit a tendency approximately proportional to L_J^3. Our comprehensive analysis explicitly demonstrates the importance of reliable information of both the ambient magnetospheric state and wave distribution property to understanding the dynamic electron evolution in the Jovian radiation belts and therefore has implications for future mission planning to explore the extreme particle radiation environment of Jupiter and its satellites. 展开更多
关键词 jovian radiation BELTS whistler-mode CHORUS resonant wave-particle interactions magnetospheric state
下载PDF
Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons 被引量:2
4
作者 Jing Huang XuDong Gu +4 位作者 BinBin Ni Qiong Luo Song Fu Zheng Xiang WenXun Zhang 《Earth and Planetary Physics》 2018年第5期371-383,共13页
Wave-particle interactions triggered by whistler-mode chorus waves are an important contributor to the Jovian radiation belt electron dynamics. While the sensitivity of chorus-driven electron scattering to the ambient... Wave-particle interactions triggered by whistler-mode chorus waves are an important contributor to the Jovian radiation belt electron dynamics. While the sensitivity of chorus-driven electron scattering to the ambient magnetospheric and wave parameters has been investigated, there is rather limited understanding regarding the extent to which the dynamic evolution of Jovian radiation belt electrons, under the impact of chorus wave scattering, depends on the electron distribution profiles. We adopt a group of reasonable initial conditions based upon the available observations and models for quantitative analyses. We find that inclusion of pitch angle variation in initial conditions can result in increased electron losses at lower pitch angles and substantially modify the pitch angle evolution profiles of > ~500 keV electrons, while variations of electron energy spectrum tend to modify the evolution primarily of 1 MeV and 5 MeV electrons. Our results explicitly demonstrate the importance to the radiation belt electron dynamics in the Jovian magnetosphere of the initial shape of the electron phase space density, and indicate the extent to which variations in electron energy spectrum and pitch angle distribution can contribute to the evolution of Jovian radiation belt electrons caused by chorus wave scattering. 展开更多
关键词 jovian radiation belt whistler-mode chorus wave-particle interactions electron distribution profile
下载PDF
Reply to Comment by Lamy et al. on “Locating the source field lines of Jovian decametric radio emissions”
5
作者 YuMing Wang RuoBing Zheng +3 位作者 XianZhe Jia ChuanBing Wang Shui Wang V.Krupar 《Earth and Planetary Physics》 CSCD 2022年第1期13-17,共5页
Locating the source of decametric(DAM)radio emissions is a key step in the use of remote radio observations to understand the Jovian magnetospheric dynamics and their interaction with the planet’s moons.Wang YM et al... Locating the source of decametric(DAM)radio emissions is a key step in the use of remote radio observations to understand the Jovian magnetospheric dynamics and their interaction with the planet’s moons.Wang YM et al.(2020)presented a method by which recorded arc-shaped DAM emissions in the radio dynamic spectra can be used to locate the source of a DAM.An Io-related DAM event on March 14,2014 was used to demonstrate the method.A key parameter in the method is whether the DAM is emitted in the northern or the southern hemisphere;the hemisphere of origin can be determined definitively from the polarization of the emission.Unfortunately,polarization information for the emission on March 14,2014 event was not recorded.Our analysis assumed the source to be in the northern hemisphere.Lamy et al.(2022)argue convincingly that the source was probably in the southern hemisphere.We appreciate the helpful contribution of Lamy et al.(2022)to this discussion and have updated our analysis,this time assuming that the DAM source was in the southern hemisphere.We also explore the sensitivity of our method to another parameter-the height at which the value of fce,max,which is the maximal electron cyclotron frequency reached along the active magnetic flux tube,is adopted.Finally,we introduce our recent statistical study of 68 DAM events,which lays a more solid basis for testing the reliability of our method,which we continue to suggest is a promising tool by which remote radio observations can be used to locate the emission source of Jovian DAMs. 展开更多
关键词 radio decametric emissions jovian magnetosphere energetic electrons
下载PDF
Gravitationally Quantized Orbits in the Solar System: Computations Based on the Global Polytropic Model
6
作者 Vassilis Geroyannis Florendia Valvi Themis Dallas 《International Journal of Astronomy and Astrophysics》 2014年第3期464-473,共10页
The so-called “global polytropic model” is based on the assumption of hydrostatic equilibrium for the solar system, or for a planet’s system of statellites (like the Jovian system), described by the Lane-Emden diff... The so-called “global polytropic model” is based on the assumption of hydrostatic equilibrium for the solar system, or for a planet’s system of statellites (like the Jovian system), described by the Lane-Emden differential equation. A polytropic sphere of polytropic index?n?and radius?R1?represents the central component?S1?(Sun or planet) of a polytropic configuration with further components the polytropic spherical shells?S2,?S3,?..., defined by the pairs of radi (R1,?R2), (R2,?R3),?..., respectively.?R1,?R2,?R3,?..., are the roots of the real part Re(θ) of the complex Lane-Emden function?θ. Each polytropic shell is assumed to be an appropriate place for a planet, or a planet’s satellite, to be “born” and “live”. This scenario has been studied numerically for the cases of the solar and the Jovian systems. In the present paper, the Lane-Emden differential equation is solved numerically in the complex plane by using the Fortran code DCRKF54 (modified Runge-Kutta-Fehlberg code of fourth and fifth order for solving initial value problems in the complex plane along complex paths). We include in our numerical study some trans-Neptunian objects. 展开更多
关键词 Complex-Plane Strategy GLOBAL Polytropic Model jovian system QUANTIZED ORBITS Solar system Trans-Neptunian Objects
下载PDF
Jovian Problem: Performance of Some High-Order Numerical Integrators
7
作者 Shafiq Ur Rehman 《American Journal of Computational Mathematics》 2013年第3期195-204,共10页
N-body simulations of the Sun, the planets, and small celestial bodies are frequently used to model the evolution of the Solar System. Large numbers of numerical integrators for performing such simulations have been d... N-body simulations of the Sun, the planets, and small celestial bodies are frequently used to model the evolution of the Solar System. Large numbers of numerical integrators for performing such simulations have been developed and used;see, for example, [1,2]. The primary objective of this paper is to analyse and compare the efficiency and the error growth for different numerical integrators. Throughout the paper, the error growth is examined in terms of the global errors in the positions and velocities, and the relative errors in the energy and angular momentum of the system. We performed numerical experiments for the different integrators applied to the Jovian problem over a long interval of duration, as long as one million years, with the local error tolerance ranging from 10-16 to 10-18. 展开更多
关键词 N-BODY Simulations jovian PROBLEM NUMERICAL INTEGRATORS CPU-Time
下载PDF
Delay of planet formation at large radius and the outward decrease in mass and gas content of Jovian planets
8
作者 Li-Ping Jin Chun-Jian Liu Yu Zhang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2015年第9期1597-1603,共7页
A prominent observation of the solar system is that the mass and gas content of Jovian planets decrease outward with orbital radius, except that, in terms of these properties, Neptune is almost the same as Uranus. In ... A prominent observation of the solar system is that the mass and gas content of Jovian planets decrease outward with orbital radius, except that, in terms of these properties, Neptune is almost the same as Uranus. In previous studies, the solar nebula was assumed to preexist and the formation process of the solar nebula was not considered. It was therefore assumed that planet formation at different radii started at the same time in the solar nebula. We show that planet formation at different radii does not start at the same time and is delayed at large radii. We suggest that this delay might be one of the factors that causes the outward decrease in the masses of Jovian planets. The nebula starts to form from its inner part because of the inside-out collapse of its progenitorial molecular cloud core. The nebula then expands outward due to viscosity. Material first reaches a small radius and then reaches a larger radius, so planet formation is delayed at the large radius. The later the material reaches a planet's location, the less time it has to gain mass and gas content. Hence, the delay tends to cause the outward decrease in mass and gas content of Jovian planets. Our nebula model shows that the material reaches Jupiter, Saturn, Uranus and Neptune at t = 0.40, 0.57, 1.50 and 6.29 × 10^6 yr, respectively. We discuss the effects of time delay on the masses of Jovian planets in the framework of the core accretion model of planet formation. Saturn's formation is not delayed by much time relative to Jupiter so that they both reach the rapid gas accretion phase and become gas giants. However, the delay in formation of Uranus and Neptune is long and might be one of the factors that cause them not to reach the rapid gas accretion phase before the gas nebula is dispersed. Saturn has less time to go through the rapid gas accretion, so Saturn's mass and gas content are significantly less than those of Jupiter. 展开更多
关键词 planetary systems -- planets and satellites: formation -- planets and satellites: gaseous planets -- planets and satellites: individual jovian planets) -- protoplanetary disks
下载PDF
木星系多目标探测轨道设计研究 被引量:5
9
作者 张磊 田百义 +2 位作者 周文艳 田岱 朱安文 《航天器工程》 CSCD 北大核心 2018年第1期31-36,共6页
针对木星系多目标探测任务,对木星及其卫星系统的探测目标及工程约束进行了梳理和分析,在此基础上提出了3种候选轨道设计方案,以实现对木星极区、木星表面精细结构以及木星伽利略卫星的探测。利用改进的协作进化算法对木星系内引力辅助... 针对木星系多目标探测任务,对木星及其卫星系统的探测目标及工程约束进行了梳理和分析,在此基础上提出了3种候选轨道设计方案,以实现对木星极区、木星表面精细结构以及木星伽利略卫星的探测。利用改进的协作进化算法对木星系内引力辅助转移轨道进行了设计与优化,最终得到3种轨道方案的总速度增量分别为3.47km/s、2.95km/s和2.48km/s,其中:方案一能够满足所有探测目标,方案二具有更低的辐射总剂量,方案三能够实现对木星极区及伽利略卫星的多次飞掠探测。上述3种候选轨道设计方案可为未来我国首次木星系探测任务的实施提供参考。 展开更多
关键词 木星系探测 转移轨道 伽利略卫星 引力辅助
下载PDF
木星系科学探测研究与展望 被引量:4
10
作者 邹昕 彭兢 缪远明 《中国空间科学技术》 CSCD 北大核心 2023年第6期1-10,共10页
为了更好地规划中国首次木星系科学探测任务,对国外历次木星系探测任务的发展状况进行了调研分析,包括7次飞越探测、2次环绕探测(伽利略号和朱诺号),归纳总结了木星系探测任务的科学目标、载荷配置及其探测成果情况,分析得到了木星系科... 为了更好地规划中国首次木星系科学探测任务,对国外历次木星系探测任务的发展状况进行了调研分析,包括7次飞越探测、2次环绕探测(伽利略号和朱诺号),归纳总结了木星系探测任务的科学目标、载荷配置及其探测成果情况,分析得到了木星系科学探测任务特点和启示。最后,在上述分析和待解决问题的基础上,提出了中国木星系科学探测任务的初步设想与发展展望。 展开更多
关键词 木星系 科学探测 科学目标 载荷配置 飞越探测 环绕探测
下载PDF
国外木星系环绕飞行任务规划研究 被引量:3
11
作者 董捷 孟林智 +1 位作者 赵洋 马继楠 《航天器工程》 北大核心 2015年第3期85-92,共8页
调研了国外3项典型的木星系环绕任务(伽利略号、朱诺号和木星冰卫星探测器(JUICE)),归纳总结了行星借力飞行、利用天体摄动演化轨道、高精度导航、限制近木点高度以及利用飞越实现任务拓展等任务规划方法。最后,提出了我国木星系环绕探... 调研了国外3项典型的木星系环绕任务(伽利略号、朱诺号和木星冰卫星探测器(JUICE)),归纳总结了行星借力飞行、利用天体摄动演化轨道、高精度导航、限制近木点高度以及利用飞越实现任务拓展等任务规划方法。最后,提出了我国木星系环绕探测任务规划的初步设想,即以木星和木卫二为主要探测目标,采用金星-地球-地球的地木转移借力序列,以及基于木卫二、木卫三和木卫四借力方式开展木星系探测任务规划,实现飞掠、环绕和穿透多种方式的木星系探测任务。 展开更多
关键词 木星系 借力飞行 飞行任务规划 导航
下载PDF
木星系及行星际飞越探测的多次借力飞行轨道设计研究 被引量:7
12
作者 田百义 张磊 +1 位作者 周文艳 朱安文 《航天器工程》 CSCD 北大核心 2018年第1期25-30,共6页
根据我国木星系及行星际穿越探测任务规划,瞄准工程方案可行,对使用多次借力的地木转移轨道及行星飞越飞行轨道进行了深入研究分析。首先,对星际飞越目标进行了探讨,明确了满足任务约束的星际飞越目标;其次,对行星际飞行序列进行了优选... 根据我国木星系及行星际穿越探测任务规划,瞄准工程方案可行,对使用多次借力的地木转移轨道及行星飞越飞行轨道进行了深入研究分析。首先,对星际飞越目标进行了探讨,明确了满足任务约束的星际飞越目标;其次,对行星际飞行序列进行了优选,从探测器发射日期、发射双曲剩余速度的平方(C3)、深空机动、木星到达C3和总的任务时间角度,对比分析了多个星际飞行序列,给出了最优序列设计结果;最后,基于工程约束,对探测器的连续发射机会进行了优化设计,给出了探测器连续8天、11天和16天发射所需的发射C3和深空机动大小需求。研究结果表明:在2029—2032年期间,木星系及行星际穿越探测任务最优的深空飞行序列为地球-金星-地球-地球-木星-天王星,最优的发射日期集中在2029年10月份。 展开更多
关键词 深空探测 木星系探测 行星际飞越 多次借力
下载PDF
面向木星卫星交会任务的探测器飞行路径规划 被引量:1
13
作者 田百义 张熇 +3 位作者 冯昊 张相宇 高博宇 周文艳 《宇航学报》 EI CAS CSCD 北大核心 2022年第12期1587-1596,共10页
针对探测器在木星系统内多次借力的飞行路径和轨道优化设计问题,提出了一种基于三层优化思想的飞行路径规划方法,该方法可根据给定的任务约束和交会目标,自动搜索探测器在木星系统内的借力飞行序列,同时完成标称飞行轨道的优化设计。首... 针对探测器在木星系统内多次借力的飞行路径和轨道优化设计问题,提出了一种基于三层优化思想的飞行路径规划方法,该方法可根据给定的任务约束和交会目标,自动搜索探测器在木星系统内的借力飞行序列,同时完成标称飞行轨道的优化设计。首先,文章在给定轨道动力学模型和木卫借力模型基础上,建立了面向木卫交会任务的两次借力飞行轨道优化设计模型和求解方法;然后,采用结合遗传算法、全局遍历和贪婪算法的三层优化设计思路,给出了一种环木飞行路径规划方法;最后,以木星四颗卫星的交会任务为例进行了仿真分析。仿真结果表明:针对木卫的交会任务,探测器速度增量需求随木卫借力次数的增多,呈现先显著减小后逐渐增大的现象;探测器采用多次木卫借力的策略,可显著降低探测器的速度增量需求;探测器速度增量达到最优之后,借力目标收敛于交会目标,且速度增量随借力次数的进一步增多而逐渐增大。 展开更多
关键词 深空探测 木星系统 轨道优化 飞行路径规划
下载PDF
国外木星探测任务进展与分析 被引量:2
14
作者 高博宇 陈忠贵 周文艳 《航天器工程》 CSCD 北大核心 2021年第5期107-114,共8页
为了更好地规划我国木星探测任务,文章对国外木星探测任务的发展状况进行了调研分析。对比分析了伽利略号、朱诺号、木星冰月探测者和欧罗巴快帆任务的探测目标,并对上述任务采用的运载火箭、探测轨道与通信系统进行了分析总结。指出未... 为了更好地规划我国木星探测任务,文章对国外木星探测任务的发展状况进行了调研分析。对比分析了伽利略号、朱诺号、木星冰月探测者和欧罗巴快帆任务的探测目标,并对上述任务采用的运载火箭、探测轨道与通信系统进行了分析总结。指出未来木星探测任务所需运载火箭地球同步轨道转移能力应在10t以上,以对木卫展开全面覆盖探测,采用Ka频段作为下行数据载波。在上述分析的基础上,提出了我国木星探测的任务目标和初步规划的建议。 展开更多
关键词 木星系探测 深空探测 深空网
下载PDF
Meridional Circulation with Latitude Bands of Long-Lived Cyclones in Jupiter’s Convective Atmosphere
15
作者 Hans G. Mayr Kwing L. Chan 《International Journal of Astronomy and Astrophysics》 2021年第3期392-405,共14页
Mayr <em>et al.</em><a href="#ref1"> [1]</a> proposed that the vertical velocities in the global scale meridional circulation can produce distinct latitude bands where Jovian vortices... Mayr <em>et al.</em><a href="#ref1"> [1]</a> proposed that the vertical velocities in the global scale meridional circulation can produce distinct latitude bands where Jovian vortices like the white and brown are observed, and we present here a brief review of the mechanism. The observed life times of the ovals are much longer than the estimated spin-down times, which indicates that the vortices must be sustained through the release of internal energy. Like Jupiter’s Great Red Spot (GRS), the white/brown ovals are treated like terrestrial hurricanes or cyclones, which are generated by convection. The planetary energy Jupiter emits is transferred by convection, and under this condition the upward motions in the meridional circulation, around the equator for example, release energy from below and decrease the convective instability to suppress the formation of cyclones. But the downward motions in the circulation, near 20<span style="white-space:nowrap;">&deg;</span> latitude for example, carry energy down so that the convective instability is amplified to produce a dynamical environment that is favorable for the development of cyclones like the GRS and white/brown ovals. This picture is supported by an analysis of results from a numerical model of Jupiter’s alternating jets (Chan and Mayr <a href="#ref2" target="_blank">[2]</a>). Generated by alternating vertical winds in the meridional circulation, the vertical temperature variations reveal distinct latitude bands with enhanced convective instability, most prominent at high latitudes where long-lived circumpolar cyclones are observed from the Juno spacecraft. 展开更多
关键词 jovian Vortices Like Great Red Spot Convection Latitudinal Vortex Stratification Meridional Flow Numerical Model Results
下载PDF
Hybrid method for accurate multi-gravity-assist trajectory design using pseudostate theory and deep neural networks 被引量:2
16
作者 YANG Bin FENG JingLang +1 位作者 HUANG XuXing LI Shuang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第3期595-610,共16页
This paper presents a novel hybrid method to design the continuous and accurate multi-gravity-assist trajectory for a high-fidelity dynamics.The gravitational perturbation of the primary body is considered during the ... This paper presents a novel hybrid method to design the continuous and accurate multi-gravity-assist trajectory for a high-fidelity dynamics.The gravitational perturbation of the primary body is considered during the gravity assistance.The pseudostate technique is applied to approximate the gravity-assisted trajectory,where the optimal sweepback duration is solved using a trained deep neural network.The major factors that affect the optimal sweepback duration of the approach and departure segments are investigated.The results show that the optimal sweepback duration of the approach segment only relies on the shape of the approach trajectory and is independent of the flight time.Then,a gravity-assisted trajectory patched strategy and a hybrid algorithm combining the particle swarm optimization and the sequential quadratic programming are developed to optimize the multi-gravity-assist trajectory.The proposed hybrid method is applied to the Europa orbiter mission.In comparison with the traditional patched conic method,this method demonstrates outstanding performance on accuracy and significantly reduces the computational time and complexity of the trajectory correction with the high-fidelity dynamics. 展开更多
关键词 pseudostate theory multiple gravity assist deep neural network trajectory optimization jovian system
原文传递
10th China Trajectory Optimization Competition:Problem description and summary of the results 被引量:1
17
作者 Xuxing Huang Bin Yang +2 位作者 Pan Sun Shuang Li Hongwei Yang 《Astrodynamics》 CSCD 2021年第1期1-11,共11页
From March 20,2019 to April 30,2019,the 10th China Trajectory Optimization Competition(CTOC10)was jointly held by the Chinese Society of Theoretical and Applied Mechanics and Nanjing University of Aeronautics and Astr... From March 20,2019 to April 30,2019,the 10th China Trajectory Optimization Competition(CTOC10)was jointly held by the Chinese Society of Theoretical and Applied Mechanics and Nanjing University of Aeronautics and Astronautics.The CTOC10 focused on trajectory optimization for Jovian exploration.The team from Harbin Institute of Technology won the first prize.In this paper,first,the history of the CTOC is presented.Subsequently,the mission of the CTOC10 is introduced,and an account of the final rankings of the competition is given.Finally,trajectory optimization methods are discussed,and suggestions for practical missions are provided. 展开更多
关键词 China Trajectory Optimization Competition(CTOC) mission design trajectory optimization jovian exploration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部