In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual ...In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.展开更多
在线、实时、准确监测舰船螺旋桨推力对船-机-桨匹配设计、舰船快速性预报及推进轴系健康管理等具有重要意义。然而,受轴系振动及环境干扰等测量噪声影响,螺旋桨推力产生的微弱应变信号易被测量噪声淹没,导致难以准确测量推力。当前,一...在线、实时、准确监测舰船螺旋桨推力对船-机-桨匹配设计、舰船快速性预报及推进轴系健康管理等具有重要意义。然而,受轴系振动及环境干扰等测量噪声影响,螺旋桨推力产生的微弱应变信号易被测量噪声淹没,导致难以准确测量推力。当前,一些常用的信号降噪方法,比如傅里叶变换、小波分析等均是基于纯数据降噪,未考虑测量数据中潜藏的力学机制。不同于这类降噪方法,Kalman滤波可同时考虑测量数据噪声及数据中的力学机制,对目标实现最小方差无偏估计,因而有更高的估计精度。因此,本文利用Kalman滤波结合应变测量信号提出一种螺旋桨推力高精度、在线辨识方法。以恒定转速、变转速及低频波动转速3种工况为例,研究了不同信噪比下本文方法的推力辨识精度与鲁棒性。研究表明,在信噪比仅为20 d B时,推力辨识最大相对误差仅为4.85%,因此本文方法在低信噪比下仍有很高的辨识精度与鲁棒性。同时,本文提出方法属于时域辨识方法,在转速突变、螺旋桨缠绕渔网等突发工况时亦能实时跟踪推力变化,因此可用于螺旋桨推力及轴系状态的在线、实时监测。展开更多
The measurement and mapping of objects in the outer environment have traditionally been conducted using ground-based monitoring systems,as well as satellites.More recently,unmanned aerial vehicles have also been emplo...The measurement and mapping of objects in the outer environment have traditionally been conducted using ground-based monitoring systems,as well as satellites.More recently,unmanned aerial vehicles have also been employed for this purpose.The accurate detection and mapping of a target such as buildings,trees,and terrains are of utmost importance in various applications of unmanned aerial vehicles(UAVs),including search and rescue operations,object transportation,object detection,inspection tasks,and mapping activities.However,the rapid measurement and mapping of the object are not currently achievable due to factors such as the object’s size,the intricate nature of the sites,and the complexity of mapping algorithms.The present system introduces a costeffective solution for measurement and mapping by utilizing a small unmanned aerial vehicle(UAV)equipped with an 8-beam Light Detection and Ranging(LiDAR)system.This approach offers advantages over traditional methods that rely on expensive cameras and complex algorithm-based approaches.The reflective properties of laser beams have also been investigated.The system provides prompt results in comparison to traditional camerabased surveillance,with minimal latency and the need for complex algorithms.The Kalman estimation method demonstrates improved performance in the presence of noise.The measurement and mapping of external objects have been successfully conducted at varying distances,utilizing different resolutions.展开更多
Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled...Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data.The framework integrates Kalman filtering and Q-learning.Unlike smoothing Kalman filtering,our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error.Unlike traditional Q-learning,our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from high traffic on the road according to the maximum number of vehicles in the junction roads.For evaluation,the model has been simulated on a single intersection consisting of four roads:east,west,north,and south.A comparison of the developed adaptive quantized Q-learning(AQQL)framework with state-of-the-art and greedy approaches shows the superiority of AQQL with an improvement percentage in terms of the released number of vehicles of AQQL is 5%over the greedy approach and 340%over the state-of-the-art approach.Hence,AQQL provides an effective traffic control that can be applied in today’s intelligent traffic system.展开更多
The aging prediction of railway catenary is of profound significance for ensuring the regular operation of electrified trains.However,in real-world scenarios,accurate predictions are challenging due to various interfe...The aging prediction of railway catenary is of profound significance for ensuring the regular operation of electrified trains.However,in real-world scenarios,accurate predictions are challenging due to various interferences.This paper addresses this challenge by proposing a novel method for predicting the aging of railway catenary based on an improved Kalman filter(KF).The proposed method focuses on modifying the priori state estimate covariance and measurement error covariance of the KF to enhance accuracy in complex environments.By comparing the optimal displacement value with the theoretically calculated value based on the thermal expansion effect of metals,it becomes possible to ascertain the aging status of the catenary.To improve prediction accuracy,a railway catenary aging prediction model is constructed by integrating the Takagi-Sugeno(T-S)fuzzy neural network(FNN)and KF.In this model,an adaptive training method is introduced,allowing the FNN to use fewer fuzzy rules.The inputs of the model include time,temperature,and historical displacement,while the output is the predicted displacement.Furthermore,the KF is enhanced by modifying its prior state estimate covariance and measurement error covariance.These modifications contribute to more accurate predictions.Lastly,a low-power experimental platform based on FPGA is implemented to verify the effectiveness of the proposed method.The test results demonstrate that the proposed method outperforms the compared method,showcasing its superior performance.展开更多
In light of the prevailing issue that the existing convolutional neural network(CNN)power quality disturbance identification method can only extract single-scale features,which leads to a lack of feature information a...In light of the prevailing issue that the existing convolutional neural network(CNN)power quality disturbance identification method can only extract single-scale features,which leads to a lack of feature information and weak anti-noise performance,a new approach for identifying power quality disturbances based on an adaptive Kalman filter(KF)and multi-scale channel attention(MS-CAM)fused convolutional neural network is suggested.Single and composite-disruption signals are generated through simulation.The adaptive maximum likelihood Kalman filter is employed for noise reduction in the initial disturbance signal,and subsequent integration of multi-scale features into the conventional CNN architecture is conducted.The multi-scale features of the signal are captured by convolution kernels of different sizes so that the model can obtain diverse feature expressions.The attention mechanism(ATT)is introduced to adaptively allocate the extracted features,and the features are fused and selected to obtain the new main features.The Softmax classifier is employed for the classification of power quality disturbances.Finally,by comparing the recognition accuracy of the convolutional neural network(CNN),the model using the attention mechanism,the bidirectional long-term and short-term memory network(MS-Bi-LSTM),and the multi-scale convolutional neural network(MSCNN)with the attention mechanism with the proposed method.The simulation results demonstrate that the proposed method is higher than CNN,MS-Bi-LSTM,and MSCNN,and the overall recognition rate exceeds 99%,and the proposed method has significant classification accuracy and robust classification performance.This achievement provides a new perspective for further exploration in the field of power quality disturbance classification.展开更多
For the last two decades,low-cost Global Navigation Satellite System(GNSS)receivers have been used in various applications.These receivers are mini-size,less expensive than geodetic-grade receivers,and in high demand....For the last two decades,low-cost Global Navigation Satellite System(GNSS)receivers have been used in various applications.These receivers are mini-size,less expensive than geodetic-grade receivers,and in high demand.Irrespective of these outstanding features,low-cost GNSS receivers are potentially poorer hardwares with internal signal processing,resulting in lower quality.They typically come with low-cost GNSS antenna that has lower performance than their counterparts,particularly for multipath mitigation.Therefore,this research evaluated the low-cost GNSS device performance using a high-rate kinematic survey.For this purpose,these receivers were assembled with an Inertial Measurement Unit(IMU)sensor,which actively transmited data on acceleration and orientation rate during the observation.The position and navigation parameter data were obtained from the IMU readings,even without GNSS signals via the U-blox F9R GNSS/IMU device mounted on a vehicle.This research was conducted in an area with demanding conditions,such as an open sky area,an urban environment,and a shopping mall basement,to examine the device’s performance.The data were processed by two approaches:the Single Point Positioning-IMU(SPP/IMU)and the Differential GNSS-IMU(DGNSS/IMU).The Unscented Kalman Filter(UKF)was selected as a filtering algorithm due to its excellent performance in handling nonlinear system models.The result showed that integrating GNSS/IMU in SPP processing mode could increase the accuracy in eastward and northward components up to 68.28%and 66.64%.Integration of DGNSS/IMU increased the accuracy in eastward and northward components to 93.02%and 93.03%compared to the positioning of standalone GNSS.In addition,the positioning accuracy can be improved by reducing the IMU noise using low-pass and high-pass filters.This application could still not gain the expected position accuracy under signal outage conditions.展开更多
基金supported by China Postdoctoral Science Foundation(2023M741882)the National Natural Science Foundation of China(62103222,62273195)。
文摘In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.
文摘在线、实时、准确监测舰船螺旋桨推力对船-机-桨匹配设计、舰船快速性预报及推进轴系健康管理等具有重要意义。然而,受轴系振动及环境干扰等测量噪声影响,螺旋桨推力产生的微弱应变信号易被测量噪声淹没,导致难以准确测量推力。当前,一些常用的信号降噪方法,比如傅里叶变换、小波分析等均是基于纯数据降噪,未考虑测量数据中潜藏的力学机制。不同于这类降噪方法,Kalman滤波可同时考虑测量数据噪声及数据中的力学机制,对目标实现最小方差无偏估计,因而有更高的估计精度。因此,本文利用Kalman滤波结合应变测量信号提出一种螺旋桨推力高精度、在线辨识方法。以恒定转速、变转速及低频波动转速3种工况为例,研究了不同信噪比下本文方法的推力辨识精度与鲁棒性。研究表明,在信噪比仅为20 d B时,推力辨识最大相对误差仅为4.85%,因此本文方法在低信噪比下仍有很高的辨识精度与鲁棒性。同时,本文提出方法属于时域辨识方法,在转速突变、螺旋桨缠绕渔网等突发工况时亦能实时跟踪推力变化,因此可用于螺旋桨推力及轴系状态的在线、实时监测。
基金funded through the Researchers Supporting Project Number(RSPD2024R596),King Saud University,Riyadh,Saudi Arabia.
文摘The measurement and mapping of objects in the outer environment have traditionally been conducted using ground-based monitoring systems,as well as satellites.More recently,unmanned aerial vehicles have also been employed for this purpose.The accurate detection and mapping of a target such as buildings,trees,and terrains are of utmost importance in various applications of unmanned aerial vehicles(UAVs),including search and rescue operations,object transportation,object detection,inspection tasks,and mapping activities.However,the rapid measurement and mapping of the object are not currently achievable due to factors such as the object’s size,the intricate nature of the sites,and the complexity of mapping algorithms.The present system introduces a costeffective solution for measurement and mapping by utilizing a small unmanned aerial vehicle(UAV)equipped with an 8-beam Light Detection and Ranging(LiDAR)system.This approach offers advantages over traditional methods that rely on expensive cameras and complex algorithm-based approaches.The reflective properties of laser beams have also been investigated.The system provides prompt results in comparison to traditional camerabased surveillance,with minimal latency and the need for complex algorithms.The Kalman estimation method demonstrates improved performance in the presence of noise.The measurement and mapping of external objects have been successfully conducted at varying distances,utilizing different resolutions.
文摘Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data.The framework integrates Kalman filtering and Q-learning.Unlike smoothing Kalman filtering,our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error.Unlike traditional Q-learning,our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from high traffic on the road according to the maximum number of vehicles in the junction roads.For evaluation,the model has been simulated on a single intersection consisting of four roads:east,west,north,and south.A comparison of the developed adaptive quantized Q-learning(AQQL)framework with state-of-the-art and greedy approaches shows the superiority of AQQL with an improvement percentage in terms of the released number of vehicles of AQQL is 5%over the greedy approach and 340%over the state-of-the-art approach.Hence,AQQL provides an effective traffic control that can be applied in today’s intelligent traffic system.
基金supported by the Science and Technology Research Project of Henan Province (No.222102210087)the Science and Technology Research Project of Henan Province (No.222102220102).
文摘The aging prediction of railway catenary is of profound significance for ensuring the regular operation of electrified trains.However,in real-world scenarios,accurate predictions are challenging due to various interferences.This paper addresses this challenge by proposing a novel method for predicting the aging of railway catenary based on an improved Kalman filter(KF).The proposed method focuses on modifying the priori state estimate covariance and measurement error covariance of the KF to enhance accuracy in complex environments.By comparing the optimal displacement value with the theoretically calculated value based on the thermal expansion effect of metals,it becomes possible to ascertain the aging status of the catenary.To improve prediction accuracy,a railway catenary aging prediction model is constructed by integrating the Takagi-Sugeno(T-S)fuzzy neural network(FNN)and KF.In this model,an adaptive training method is introduced,allowing the FNN to use fewer fuzzy rules.The inputs of the model include time,temperature,and historical displacement,while the output is the predicted displacement.Furthermore,the KF is enhanced by modifying its prior state estimate covariance and measurement error covariance.These modifications contribute to more accurate predictions.Lastly,a low-power experimental platform based on FPGA is implemented to verify the effectiveness of the proposed method.The test results demonstrate that the proposed method outperforms the compared method,showcasing its superior performance.
基金The project is supported by the National Natural Science Foundation of China(52067013)the Key Projects of the Natural Science Foundation of Gansu Provincial Science and Technology Department(22JR5RA318).
文摘In light of the prevailing issue that the existing convolutional neural network(CNN)power quality disturbance identification method can only extract single-scale features,which leads to a lack of feature information and weak anti-noise performance,a new approach for identifying power quality disturbances based on an adaptive Kalman filter(KF)and multi-scale channel attention(MS-CAM)fused convolutional neural network is suggested.Single and composite-disruption signals are generated through simulation.The adaptive maximum likelihood Kalman filter is employed for noise reduction in the initial disturbance signal,and subsequent integration of multi-scale features into the conventional CNN architecture is conducted.The multi-scale features of the signal are captured by convolution kernels of different sizes so that the model can obtain diverse feature expressions.The attention mechanism(ATT)is introduced to adaptively allocate the extracted features,and the features are fused and selected to obtain the new main features.The Softmax classifier is employed for the classification of power quality disturbances.Finally,by comparing the recognition accuracy of the convolutional neural network(CNN),the model using the attention mechanism,the bidirectional long-term and short-term memory network(MS-Bi-LSTM),and the multi-scale convolutional neural network(MSCNN)with the attention mechanism with the proposed method.The simulation results demonstrate that the proposed method is higher than CNN,MS-Bi-LSTM,and MSCNN,and the overall recognition rate exceeds 99%,and the proposed method has significant classification accuracy and robust classification performance.This achievement provides a new perspective for further exploration in the field of power quality disturbance classification.
基金funded by the project scheme of the Publication Writing-IPR Incentive Program(PPHKI)2022Directorate of Research and Community Service(DRPM)Institut Teknologi Sepuluh Nopember(ITS)Surabaya,Indonesia for the financial supports。
文摘For the last two decades,low-cost Global Navigation Satellite System(GNSS)receivers have been used in various applications.These receivers are mini-size,less expensive than geodetic-grade receivers,and in high demand.Irrespective of these outstanding features,low-cost GNSS receivers are potentially poorer hardwares with internal signal processing,resulting in lower quality.They typically come with low-cost GNSS antenna that has lower performance than their counterparts,particularly for multipath mitigation.Therefore,this research evaluated the low-cost GNSS device performance using a high-rate kinematic survey.For this purpose,these receivers were assembled with an Inertial Measurement Unit(IMU)sensor,which actively transmited data on acceleration and orientation rate during the observation.The position and navigation parameter data were obtained from the IMU readings,even without GNSS signals via the U-blox F9R GNSS/IMU device mounted on a vehicle.This research was conducted in an area with demanding conditions,such as an open sky area,an urban environment,and a shopping mall basement,to examine the device’s performance.The data were processed by two approaches:the Single Point Positioning-IMU(SPP/IMU)and the Differential GNSS-IMU(DGNSS/IMU).The Unscented Kalman Filter(UKF)was selected as a filtering algorithm due to its excellent performance in handling nonlinear system models.The result showed that integrating GNSS/IMU in SPP processing mode could increase the accuracy in eastward and northward components up to 68.28%and 66.64%.Integration of DGNSS/IMU increased the accuracy in eastward and northward components to 93.02%and 93.03%compared to the positioning of standalone GNSS.In addition,the positioning accuracy can be improved by reducing the IMU noise using low-pass and high-pass filters.This application could still not gain the expected position accuracy under signal outage conditions.