期刊文献+
共找到2,211篇文章
< 1 2 111 >
每页显示 20 50 100
基于改进KNN算法的新能源发电单元运行状态识别 被引量:2
1
作者 史林军 戴滔 +5 位作者 劳文洁 吴峰 林克曼 李杨 朱玲 黄锡芳 《电力自动化设备》 EI CSCD 北大核心 2024年第5期65-72,共8页
目前识别发电单元运行状态的研究较少,数据来源以数据采集与监控系统为主,采集速度较慢。为此,提出了一种基于发电单元机端电气量数据并融合改进k近邻(KNN)算法的新能源发电单元状态识别方法,直接采集机端电气量数据用于快速判断发电单... 目前识别发电单元运行状态的研究较少,数据来源以数据采集与监控系统为主,采集速度较慢。为此,提出了一种基于发电单元机端电气量数据并融合改进k近邻(KNN)算法的新能源发电单元状态识别方法,直接采集机端电气量数据用于快速判断发电单元状态。提出KNN算法的改进策略,克服了传统KNN算法准确度低、识别速度慢的缺点。利用电力系统分析综合程序获取用于状态识别的发电单元机端电气量数据,利用改进策略对数据进行预处理,并对比传统KNN算法、逐条使用改进策略的KNN算法对新能源发电单元状态识别的耗时与准确度。结果表明所提算法较传统算法的识别准确度和速度明显提升,能满足稳定控制过程中对新能源发电单元的状态感知需求。 展开更多
关键词 状态识别 改进knn算法 新能源发电单元 特征提取 特征加权
下载PDF
基于改进KNN-RF的信息补全算法
2
作者 张烈平 陈耀 +2 位作者 郑新鹏 卢海钊 张翠 《电子测量技术》 北大核心 2024年第13期74-80,共7页
针对室内指纹定位指纹库数据在实际环境中存在数据缺失导致定位误差大的问题,本文提出了一种改进距离公式的K近邻-随机森林的信息补全算法。首先,采用高斯滤波对收集的指纹数据进行预处理,去除干扰数据项,提高数据可靠性。其次,在将指... 针对室内指纹定位指纹库数据在实际环境中存在数据缺失导致定位误差大的问题,本文提出了一种改进距离公式的K近邻-随机森林的信息补全算法。首先,采用高斯滤波对收集的指纹数据进行预处理,去除干扰数据项,提高数据可靠性。其次,在将指纹数据划分为训练集和测试集的基础上,采用结合欧氏距离和曼哈顿距离的KNN算法获得近邻集合样本,随后用RF算法对近邻集合训练进行优化,再把各个决策树的预测结果取平均值,得到缺失数据的预测值。最后,将改进的补全算法与KNN、改进的KNN、RF和KNN-RF补全算法进行对比。实验结果表明,本文的改进补全算法的预测准确率和精度均优于其他算法,预测的准确率达91.3%。同时本文补全算法的指纹库平均定位误差为1.82 m,相较于其他补全算法的指纹库定位误差降低了1.6%~7.2%,定位性能更好。 展开更多
关键词 室内定位 knn RF 指纹数据库 信息补全
下载PDF
基于小波包分析和优化KNN的电动开度阀故障检测方法
3
作者 唐炜 陈远 程鲲鹏 《液压与气动》 北大核心 2024年第1期46-55,共10页
针对以微控制器MCU为控制核心的电动开度阀控制系统难以集成高效且计算量小的故障检测子系统的问题,基于小波包变换和优化K近邻(K-Nearest Neighbor,KNN)算法提出了一种电动开度阀故障检测方法。对阀门振动信号进行小波包变换,计算小波... 针对以微控制器MCU为控制核心的电动开度阀控制系统难以集成高效且计算量小的故障检测子系统的问题,基于小波包变换和优化K近邻(K-Nearest Neighbor,KNN)算法提出了一种电动开度阀故障检测方法。对阀门振动信号进行小波包变换,计算小波包节点的能量值与其重构信号的时域特征参数。根据Pearson系数筛选出两种与能量强相关的故障特征参数:峰峰值与均方根,并将两者作为KNN算法的样本评价指标;通过对评价指标进行加权优化了KNN算法的距离计算公式,分别在MATLAB和实验样机中进行故障检测测试,对应最高分类准确率分别为92.5%与86.7%。结果表明:实验测试与仿真分析具有较好的一致性,该故障检测方法的优势在于计算量小、故障识别率较高,并能有效地应用于以MCU为核心的电动开度阀控制系统。 展开更多
关键词 电动开度阀 小波包分析 优化knn 故障检测
下载PDF
基于特征加权的KNN模型岩性识别方法 被引量:1
4
作者 郭雨姗 王万银 《物探与化探》 CAS 2024年第2期428-436,共9页
岩性识别是一项重要的地质工作,为固体矿产勘探与油气勘探奠定了坚实的地质基础。岩石物性是连接岩性和地球物理场的桥梁,可以通过物性之间的差异进行岩性识别,但不同岩石的物性数据往往存在一定重合,仅靠交会图无法准确地识别岩性。KN... 岩性识别是一项重要的地质工作,为固体矿产勘探与油气勘探奠定了坚实的地质基础。岩石物性是连接岩性和地球物理场的桥梁,可以通过物性之间的差异进行岩性识别,但不同岩石的物性数据往往存在一定重合,仅靠交会图无法准确地识别岩性。KNN(K近邻)模型是一种简单、直接的机器学习方法,准确度和灵敏度都很高,适用于多分类问题。基于此,本文将基于特征加权的KNN模型引入岩性识别中,该方法将传统KNN模型与属性特征的信息增益相结合,对不同特征赋予不同权重,可以直观地反映属性特征对分类的重要程度。实验证明,相比于传统KNN方法,基于特征加权的KNN模型对岩性交界处的识别能力有大幅提升,整体提高了岩性识别的准确性和稳定性。 展开更多
关键词 knn 岩性识别 信息增益 特征权重
下载PDF
基于EMD和KNN的发动机辐射噪声预测研究 被引量:1
5
作者 王钰涵 郑旭 +1 位作者 周南 唐冬林 《现代机械》 2024年第1期1-5,共5页
针对基于发动机表面结构单通道振动的辐射噪声预测问题,提出了一种结合经验模态分解(Empirical Mode Decomposition,EMD)和KNN(K-Nearest neighbor)的预测算法,通过EMD将单一振动时域信号分解为多个本征模态函数(Intrinic Mode Function... 针对基于发动机表面结构单通道振动的辐射噪声预测问题,提出了一种结合经验模态分解(Empirical Mode Decomposition,EMD)和KNN(K-Nearest neighbor)的预测算法,通过EMD将单一振动时域信号分解为多个本征模态函数(Intrinic Mode Function,IMF)信号,并将每个IMF信号作为振动数据集的特征,最后以新的振动数据集为输入建立辐射噪声预测模型。试验结果表明,基于该算法建立的预测模型可解释方差分数为0.97,有着较小的预测误差。 展开更多
关键词 发动机 辐射噪声 经验模态分解 knn预测模型
下载PDF
应用非线性KNN数据搜索的三维叠前自由表面多次波预测
6
作者 谢飞 朱成宏 +1 位作者 高鸿 徐蔚亚 《石油地球物理勘探》 EI CSCD 北大核心 2024年第3期424-432,共9页
自由表面多次波预测(SRMP)是自由表面多次波消除(SRME)以及成像的重要环节。SRME技术尽管有效,但理论上需要规则而密集的地震数据采集方式。然而实际炮点、检波点空间分布稀疏,地震数据不能满足SRME理论要求,常规的做法是在SRME之前将... 自由表面多次波预测(SRMP)是自由表面多次波消除(SRME)以及成像的重要环节。SRME技术尽管有效,但理论上需要规则而密集的地震数据采集方式。然而实际炮点、检波点空间分布稀疏,地震数据不能满足SRME理论要求,常规的做法是在SRME之前将地震数据规则化。为了避免数据规则化环节,首先建立索引数据树管理三维叠前地震数据,并采用基于树形数据结构的非线性K近邻算法(KNN)从地震数据中实时搜索两道近似地震数据;然后利用动校—反动校消除实时搜索得到的近似地震道与实际地震道之间的旅行时误差;由以上两步获得单道孔径内任意向下反射点(DRP)所需要的两道地震数据用于SRMP。单道孔径内任意DRP均可由SRMP预测对应的多次波模型道,叠加所有DRP对应的预测结果可获得该道稳定的多次波模型数据。将该方法用于扩展的三维Pluto模型数据,结果表明该方法能有效预测三维自由表面多次波,从而保证高质量的自由表面多次波衰减结果。实际地震数据的应用证明了方法的实用性。 展开更多
关键词 自由表面多次波 预测 消除 索引数据树 非线性K近邻(knn)算法
下载PDF
基于KNN-XGBOOST堆叠模型在PCB RFID天线阻抗预测的研究
7
作者 姜延坤 洪涛 章吉丽 《现代电子技术》 北大核心 2024年第19期14-20,共7页
针对传统的天线仿真建模过程中需要的天线阻抗耗时长问题,文中提出一种基于KNN-XGBOOST模型的天线阻抗预测方法。现有研究大多为单一预测算法,旨在通过对比寻求预测效果更优的算法。首先通过ANSYS仿真软件收集大量的PCB RFID天线阻抗设... 针对传统的天线仿真建模过程中需要的天线阻抗耗时长问题,文中提出一种基于KNN-XGBOOST模型的天线阻抗预测方法。现有研究大多为单一预测算法,旨在通过对比寻求预测效果更优的算法。首先通过ANSYS仿真软件收集大量的PCB RFID天线阻抗设计数据,然后结合影响阻抗中天线长度和频率共8个有效特征,以KNN和XGBOOST两种算法作为基模型,线性回归作为元模型,构建了一个堆叠集成学习模型。在实验过程中,通过交叉验证和网格搜索技术,对模型的超参数进行了精细调优,以确保模型能够达到最优的预测性能。实验结果显示,与单一的KNN和XGBOOST模型相比,KNN-XGBOOST模型的均方根误差降低了30%~70%,R^(2)提高了10%。在预测PCB RFID天线的阻抗实部和虚部时,KNNXGBOOST模型具有较高的准确率和较低的预测误差,证明了其在电磁仿真设计优化中的应用价值。 展开更多
关键词 PCB RFID天线 阻抗预测 knn算法 XGBOOST算法 融合堆叠 电磁仿真
下载PDF
基于PCA+KNN和kernal-PCA+KNN算法的废旧纺织物鉴别
8
作者 李宁宁 刘正东 +2 位作者 王海滨 韩熹 李文霞 《分析测试学报》 CAS CSCD 北大核心 2024年第7期1039-1045,共7页
该研究采集了15类废旧纺织物的4 998张近红外谱图,以7∶3的比例分为训练集和验证集,并分别采用主成分分析(PCA)与核主成分分析(kernal-PCA)两种不同降维方法对数据进行降维,并选用余弦相似度(cosine)核作为kernal-PCA的最佳核函数,最后... 该研究采集了15类废旧纺织物的4 998张近红外谱图,以7∶3的比例分为训练集和验证集,并分别采用主成分分析(PCA)与核主成分分析(kernal-PCA)两种不同降维方法对数据进行降维,并选用余弦相似度(cosine)核作为kernal-PCA的最佳核函数,最后分别将PCA和kernal-PCA降维处理后的数据进行k-近邻算法(KNN)训练。结果表明,kernal-PCA+KNN的模型准确率(95.17%)优于PCA+KNN模型的准确率(92.34%)。研究表明,kernal-PCA+KNN算法可以实现15类废旧纺织物识别准确率的提升,为废旧纺织物在线近红外自动分拣提供有力的技术支撑。 展开更多
关键词 废旧纺织物 主成分分析(PCA) 核主成分分析(kernel-PCA) k-近邻算法(knn) 分类识别
下载PDF
基于Triplet Loss和KNN的非侵入式未知负荷识别
9
作者 张胜 陈铁 《现代电子技术》 北大核心 2024年第18期8-14,共7页
针对在接入新负荷时传统非侵入式负荷识别算法会产生误分类的问题,提出一种基于三元组损失(Triplet Loss)和KNN的非侵入式未知负荷识别算法。首先,采用负荷稳态运行时的电流、电压构造多特征融合的彩色V-I轨迹图像;然后,挖掘在线的Semi-... 针对在接入新负荷时传统非侵入式负荷识别算法会产生误分类的问题,提出一种基于三元组损失(Triplet Loss)和KNN的非侵入式未知负荷识别算法。首先,采用负荷稳态运行时的电流、电压构造多特征融合的彩色V-I轨迹图像;然后,挖掘在线的Semi-Hard样本对,使用Triplet Loss训练神经网络,并得到各样本的特征向量;最后,对特征向量进行PCA降维,并基于类中心构造邻域,使用KNN算法来进行负荷识别。使用PLAID、COOLL数据集对所提算法进行测试。测试结果表明,所提的负荷识别算法在已知类别负荷的分类和未知负荷的识别方面均有较高的准确率。 展开更多
关键词 三元组损失 knn 非侵入式负荷监测 V-I轨迹 PCA降维 特征融合
下载PDF
基于改进穿线法和KNN的数码管字符识别研究 被引量:1
10
作者 刘祎爽 黄理瑞 魏敏捷 《电子设计工程》 2024年第4期12-16,共5页
针对传统穿线法过度依赖数码管字符分割效果、无法对小数点字符进行识别以及机器学习算法识别数码管用时过长的问题,提出了基于改进穿线法与KNN算法相融合的数码管字符识别方法,达到了对不同数码管字符及小数点识别的目的,减少了对字符... 针对传统穿线法过度依赖数码管字符分割效果、无法对小数点字符进行识别以及机器学习算法识别数码管用时过长的问题,提出了基于改进穿线法与KNN算法相融合的数码管字符识别方法,达到了对不同数码管字符及小数点识别的目的,减少了对字符预处理效果的依赖。在嵌入OpenCV图像处理程序的LabVIEW人机交互平台采集到实时图像后,输出识别结果。经多次实验,该方法的识别时间相比单独使用KNN的识别时间明显缩短,识别率可以达到95%以上,具有识别速度快、精度高的优势。 展开更多
关键词 OPENCV 图像处理 knn 穿线法 LABVIEW
下载PDF
基于LSTM-CNN特征提取和PSO-KNN分类的自动抓梁液压系统故障诊断
11
作者 刘文忠 张世杰 +1 位作者 金兰 王瑞辰 《机床与液压》 北大核心 2024年第18期203-207,共5页
针对自动抓梁液压系统故障诊断正确率低、深层特征提取困难的问题,提出一种基于长短期记忆卷积(LSTM-CNN)特征提取网络和粒子群优化K最近邻(PSO-KNN)结合的自动抓梁液压系统故障诊断模型。以自动抓梁液压系统关键节点压力信息为输入,采... 针对自动抓梁液压系统故障诊断正确率低、深层特征提取困难的问题,提出一种基于长短期记忆卷积(LSTM-CNN)特征提取网络和粒子群优化K最近邻(PSO-KNN)结合的自动抓梁液压系统故障诊断模型。以自动抓梁液压系统关键节点压力信息为输入,采用LSTM提取一维特征与CNN提取的二维特征融合,采用优化后的KNN模型对提取的特征进行故障分类。基于真实数据搭建AMESim自动抓梁模型进行仿真,验证所提方法的有效性与先进性。结果表明:所提模型的诊断正确率达到97.92%,能够有效识别自动抓梁液压系统中的常见故障。 展开更多
关键词 液压自动抓梁 LSTM-CNN PSO-knn 故障诊断
下载PDF
基于KNN和FAHP-熵值法的民用飞机结构修理方案生成方法
12
作者 马新宇 李鑫 +2 位作者 陈奥博 黄建文 李伟男 《南京工程学院学报(自然科学版)》 2024年第2期31-38,共8页
为提高民用飞机结构维修决策效率,确保飞机飞行适航性,提出了一种基于KNN和FAHP熵值法结合的民用飞机结构修理方案生成方法.首先,根据飞机结构维修案例的特征类型,筛选影响维修决策的关键特征;然后,运用FAHP熵值法对案例特征属性的权重... 为提高民用飞机结构维修决策效率,确保飞机飞行适航性,提出了一种基于KNN和FAHP熵值法结合的民用飞机结构修理方案生成方法.首先,根据飞机结构维修案例的特征类型,筛选影响维修决策的关键特征;然后,运用FAHP熵值法对案例特征属性的权重进行定量描述;最后,结合航空公司实际维修案例,采用改进的KNN算法计算源案例与目标案例的相似度,评估二者的接近度.研究结果表明,将KNN与FAHP-熵值法相结合能有效计算飞机结构维修案例的相似度,对民机结构的数字化维修和智能化决策具有重要的理论意义和工程应用价值. 展开更多
关键词 结构维修 FAHP 熵值法 knn 相似度
下载PDF
基于KNN算法的复合绝缘子憎水性等级分类
13
作者 乔逸卓 张红旗 +2 位作者 杨逸宸 王海楠 钱卓昊 《山西电力》 2024年第3期17-20,共4页
传统的复合绝缘子憎水性等级分类主要依靠电网工作人员在高空下进行,受到环境、天气等因素的影响,检测质量难以保证,工作效率低下。提出一种基于KNN算法的复合绝缘子憎水性等级分类方法,并对KNN算法进行试验,选择最合适的参数进行复合... 传统的复合绝缘子憎水性等级分类主要依靠电网工作人员在高空下进行,受到环境、天气等因素的影响,检测质量难以保证,工作效率低下。提出一种基于KNN算法的复合绝缘子憎水性等级分类方法,并对KNN算法进行试验,选择最合适的参数进行复合绝缘子憎水性等级分类。试验结果表明,当K=8,使用曼哈顿距离,对复合绝缘子憎水性等级分类准确率最高,达到86.41%。 展开更多
关键词 复合绝缘子 憎水性 knn 曼哈顿距离
下载PDF
基于KNN算法的教学质量评价模型建立
14
作者 张晓东 张晓晓 《宁德师范学院学报(自然科学版)》 2024年第3期324-329,共6页
针对当前教学质量评价存在主观性较强的不足,基于K-最近邻(K-nearest neighbor,KNN)算法,提出教学质量评价模型.确立教学质量评价体系;以教学督导的评价数据为样本数据,通过交叉验证求解最近邻算法参数K的最佳值,从而建立教学质量评价模... 针对当前教学质量评价存在主观性较强的不足,基于K-最近邻(K-nearest neighbor,KNN)算法,提出教学质量评价模型.确立教学质量评价体系;以教学督导的评价数据为样本数据,通过交叉验证求解最近邻算法参数K的最佳值,从而建立教学质量评价模型.模型以专家数据为样本,评价精度高,评价结果具有较高的可靠性,能根据相关指标快速产生评价等级,提高了教学质量评价效率,使教学质量评价更加客观全面. 展开更多
关键词 教学质量评价 K-最近邻(knn)算法 交叉验证
下载PDF
面向电力物联网流数据的一种具有隐私保护的KNN查询方法
15
作者 易叶青 易颖杰 +1 位作者 刘云如 毛伊敏 《计算机应用研究》 CSCD 北大核心 2024年第4期1198-1207,共10页
电力物联网是一个智慧服务系统,为人们提供了状态全面感知、信息高效处理、应用便捷灵活的服务,然而在享受服务的同时却面临着隐私泄露的风险。目前有关电力数据的隐私保护的成果主要集中在安全聚合,对于诸多基础服务的核心技术(如KNN查... 电力物联网是一个智慧服务系统,为人们提供了状态全面感知、信息高效处理、应用便捷灵活的服务,然而在享受服务的同时却面临着隐私泄露的风险。目前有关电力数据的隐私保护的成果主要集中在安全聚合,对于诸多基础服务的核心技术(如KNN查询)却鲜有涉及。与传统关系型数据不同的是,电力物联网采集的是用户用电的流数据,并且电力参数的各数据之间还具有动态相关性,攻击者可以通过数据挖掘等手段推测未来数据的变化趋势。为此,提出了一种具有隐私保护的KNN查询方法。首先,提出了基于桶距离的相似性度量模型,并证明了桶距离的相似性度量模型与基于欧氏距离的相似性度量模型的误差上界和下界;同时通过该模型,能将相似性度量转换为集合的交操作;构造了一种隐私保护函数,通过代入不同参数,可为各智能终端生成不同的数据隐私保护函数和查询隐私保护函数;在此基础上,提出了基于桶划分和随机数分配的数据编码方案,编码数据经过隐私保护函数加密后,具有密文不可区分的特点,能有效抵抗选择明文攻击、数据挖掘攻击、统计分析攻击、ICA攻击以及推理预测等攻击手段。分析和仿真表明,提出的安全KNN查询方法不仅具有较高的安全性,而且开销较低。 展开更多
关键词 电力物联网 隐私保护 安全knn查询 边缘服务器
下载PDF
基于PCA-BOA-KNN模型的水下爆炸舰船结构破损评估
16
作者 梁潇帝 刘寅东 《中国舰船研究》 CSCD 北大核心 2024年第3期150-157,共8页
[目的]为解决水下爆炸作用下舰船结构破口损伤评估问题,建立一种基于PCA-BOA-KNN模型的破口预报方法。[方法]首先,分别建立五舱段和七舱段有限元模型,对21组水下爆炸工况进行爆炸仿真分析;然后,基于主成分分析(PCA)法,对加速度峰值、速... [目的]为解决水下爆炸作用下舰船结构破口损伤评估问题,建立一种基于PCA-BOA-KNN模型的破口预报方法。[方法]首先,分别建立五舱段和七舱段有限元模型,对21组水下爆炸工况进行爆炸仿真分析;然后,基于主成分分析(PCA)法,对加速度峰值、速度峰值、位移峰值、应力峰值和超压峰值进行降维处理,得到2个本征特征量;最后,将由主成分分析法得到的结果代入贝叶斯网络优化(BOA)的KNN模型,通过建立的破口预报模型,预测一组工况下舰船不同剖面处的破口情况。[结果]结果显示,通过主成分分析法提取的前2个因子的累计贡献率为85.165%,这2个因子可代表5个特征量的主要信息;基于PCA-BOAKNN模型的破口预报结果与仿真结果基本一致。[结论]所提的预报模型方法对舰船结构破口预报有效,对于不同主尺度船体结构破口预报有一定的参考价值。 展开更多
关键词 结构分析 主成分分析 knn算法 水下爆炸
下载PDF
Study on neutron-gamma discrimination methods based on GMM-KNN and LabVIEW implementation
17
作者 Ting-Meng Ding Yu-Hang Jiang +1 位作者 Xuan-Xi Wang Xiao-Fei Jiang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第11期82-97,共16页
Machine learning algorithms are considered as effective methods for improving the effectiveness of neutron-gamma(n-γ)discrimination.This study proposed an intelligent discrimination method that combined a Gaussian mi... Machine learning algorithms are considered as effective methods for improving the effectiveness of neutron-gamma(n-γ)discrimination.This study proposed an intelligent discrimination method that combined a Gaussian mixture model(GMM)with the K-nearest neighbor(KNN)algorithm,referred to as GMM-KNN.First,the unlabeled training and test data were categorized into three energy ranges:0–25 keV,25–100 keV,and 100–2100 keV.Second,GMM-KNN achieved small-batch clustering in three energy intervals with only the tail integral Q_(tail) and total integral Q_(total) as the pulse features.Subsequently,we selected the pulses with a probability greater than 99%from the GMM clustering results to construct the training set.Finally,we improved the KNN algorithm such that GMM-KNN realized the classification and regression algorithms through the LabVIEW language.The outputs of GMM-KNN were the category or regression predictions.The proposed GMM-KNN constructed the training set using unlabeled real pulse data and realized n-γdiscrimination of ^(241)Am-Be pulses using the LabVIEW program.The experimental results demonstrated the high robustness and flexibility of GMM-KNN.Even when using only 1/4 of the training set,the execution time of GMM-KNN was only 2021 ms,with a difference of only 0.13%compared with the results obtained on the full training set.Furthermore,GMM-KNN outperformed the charge comparison method in terms of accuracy,and correctly classified 5.52%of the ambiguous pulses.In addition,the GMM-KNN regressor achieved a higher figure of merit(FOM),with FOM values of 0.877,1.262,and 1.020,corresponding to the three energy ranges,with a 32.08%improvement in 0–25 keV.In conclusion,the GMM-KNN algorithm demonstrates accurate and readily deployable real-time n-γdiscrimination performance,rendering it suitable for on-site analysis. 展开更多
关键词 n-discrimination GMM knn LABVIEW Classification Regression
下载PDF
基于KNN算法的数控机床加工过程异常检测方法研究
18
作者 刘福民 凌思庆 +3 位作者 于音 冯子豪 董琦 高诚 《机床与液压》 北大核心 2024年第21期168-172,共5页
针对数控机床加工过程异常检测问题,提出一种基于KNN算法的数控机床加工过程异常检测方法。该方法利用机床加工过程信号,通过时、频域分析提取信号特征,利用KNN算法进行决策判断,可检测并识别出数控机床加工过程中存在的异常情况。利用... 针对数控机床加工过程异常检测问题,提出一种基于KNN算法的数控机床加工过程异常检测方法。该方法利用机床加工过程信号,通过时、频域分析提取信号特征,利用KNN算法进行决策判断,可检测并识别出数控机床加工过程中存在的异常情况。利用某生产线上的实验案例,在数控机床上完成了多组正常零件和常见异常零件的加工实验,采集了加工过程各轴的高频电流数据,对信号进行处理,完成了加工过程信号的特征提取并从中选取了对异常检测有效的特征,经过交叉实验,确定了KNN算法合适的K值。最后,通过训练,得到了异常检测模型,并利用验证集对模型进行了验证,证明了该异常检测模型具有较高的准确率。 展开更多
关键词 数控机床加工过程 异常检测 knn算法 特征提取
下载PDF
基于物理加密及KNN算法的核军控核查技术研究
19
作者 何小锁 王圣凯 +2 位作者 窦小敏 路凯凯 何庆华 《核科学与工程》 CAS CSCD 北大核心 2024年第3期660-666,共7页
现阶段军控核查技术所面临的困难在于:核查人员需要在不探测敏感信息的前提下,对被检核武器的真实性给出准确结论。本工作结合物理掩模加密技术与K近邻算法,提出一种可自主加密识别核武器身份信息的核查系统。利用Geant4搭建基于中子裂... 现阶段军控核查技术所面临的困难在于:核查人员需要在不探测敏感信息的前提下,对被检核武器的真实性给出准确结论。本工作结合物理掩模加密技术与K近邻算法,提出一种可自主加密识别核武器身份信息的核查系统。利用Geant4搭建基于中子裂变反应的物理加密辐射指纹采集装置,并通过构造多种作弊情景下的样本建立数据库,同时本研究选择KNN算法建立机器学习模型应用于未知项目的身份认证,并从鲁棒性和安全性两方面量化了该核查系统的可行性。结果表明,当样本同位素丰度由武器级铀变为较低级浓缩铀(235U的丰度由96%变为70%及以下)或者样本几何形状发生细微改变时,该系统对这两种典型的作弊情景具有优良的鉴别能力。该核查方法利用智能算法实现了核武器的自主认证,提高效率的同时有效规避了人工篡改和窥探敏感信息的风险,此外,结合物理掩模加密技术,使得敏感信息从始至终没被测量,在一定程度上降低了通过软件后门等手段作弊的风险。基于物理加密及K近邻算法的核军控核查技术能够在保护被测项目敏感信息的基础上,以较高的准确率和效率鉴定其真实性。 展开更多
关键词 核军控核查 物理加密 knn算法 随机掩模
下载PDF
基于kNN算法的智能电网5G海量接入数据异常检测
20
作者 林舒嫄 林晓敏 +2 位作者 欧亚 阚双星 莫裕全 《粘接》 CAS 2024年第2期155-158,共4页
为了更好适应智能电网高维数据异常识别,提出了一种加权kNN数据异常值检测识别方法,该方法使用Z阶曲线来识别kNN。利用Z阶曲线,提出了一种加权kNN异常数据检测方法。用信息熵衡量所有属性的重要性,用Z阶曲线对高维数据进行编码并映射为... 为了更好适应智能电网高维数据异常识别,提出了一种加权kNN数据异常值检测识别方法,该方法使用Z阶曲线来识别kNN。利用Z阶曲线,提出了一种加权kNN异常数据检测方法。用信息熵衡量所有属性的重要性,用Z阶曲线对高维数据进行编码并映射为Z值。实验结果表明,智能电网集群计算节点的数量越多,算法的运行速度就越短。发电数据异常检测准确率达到最高99.2%,较随机森林算法提高8.165%。且kNN算法的运行时间均优于随机森林算法运行时间,最小算法运行时间为4 s,进一步表明kNN算法可有效检测智能电网5G海量接入数据。 展开更多
关键词 knn算法 智能电网 5G 数据异常 检测
下载PDF
上一页 1 2 111 下一页 到第
使用帮助 返回顶部