In situ white-beam synchrotron radiation topographic observations under an electric field have been made on the KTiOPO4(KTP) family of crystals.The investigation shows a strong enhancement of diffracted intensity for ...In situ white-beam synchrotron radiation topographic observations under an electric field have been made on the KTiOPO4(KTP) family of crystals.The investigation shows a strong enhancement of diffracted intensity for hkl reflections(l≠0) and topographic contrast in the form of fine striations when the external electric field is parallel to the polar axis.Severalk kinds of doped and undoped samples with various grown-in defects,such as domain boundaries.growth striations,growth-sector boundaries.dislocations.etc.,have been studied in detail.The results suggest that these defects have very little effect on the field-induced striations,It is believed that the movement of K^+ ions driven by the electric field leads to a local accumulation of charges and a lattice distortion.The stronly anisotropic conductivity is a governing factor in the explanation of the field-related phenomena in this kind of quasi-one-dimensional conductor.展开更多
In-situ white-beam synchrotron radiation topographic observations under an electric field have been made on KTiOPO4 family crystals.The investigation shows a strong enhancement of diffracted intensity of hkl reflectio...In-situ white-beam synchrotron radiation topographic observations under an electric field have been made on KTiOPO4 family crystals.The investigation shows a strong enhancement of diffracted intensity of hkl reflections(l≠0) and the topographic extinction contrast,when the field is applied along the polar axis.Doped and undoped samples with grown-in defects are studied in detail.It is believed that the movement of K^+ ions driven by the field leads to a local accumulation of charges and the lattice distortion.All the field-related phenomena appear to be related to the one-dimensional ionic conductance.展开更多
The finding of nonlinear nanometric-sized probes is of key importance for the development of nonlinear microscopy in physical as well as biological sciences. We isolate nonlinear KTiOPO4 nanocrystals and study them by...The finding of nonlinear nanometric-sized probes is of key importance for the development of nonlinear microscopy in physical as well as biological sciences. We isolate nonlinear KTiOPO4 nanocrystals and study them by second-harmonic generation microscopy (SHGM) and atomic force microscopy (AFM) independently. With both polarization analysis and defocused imaging of the emitted second harmonic field, we extract the Euler angles of the crystalline axes of a single nanocrystal. A balanced coherent optical homodyne detection shows the coherent nature of the nanocrystal nonlinear emission and allows a phase measurement of the emitted second-harmonic field. These features make the KTiOPO4 nanocrystal a good candidate for a vectorial probe of electromagnetic near fields.展开更多
A Kerr-lens, mode-locked YVO4∕Nd:YVO4laser coupled with an acousto-optic modulator(AOM) Q-switching near1064 nm was employed to pump an intracavity KTi OPO4(KTP) optical parametric oscillator. A subnanosecond sig...A Kerr-lens, mode-locked YVO4∕Nd:YVO4laser coupled with an acousto-optic modulator(AOM) Q-switching near1064 nm was employed to pump an intracavity KTi OPO4(KTP) optical parametric oscillator. A subnanosecond signal wave near 1572 nm with low repetition rate was realized. At an AOM repetition rate of 8 kHz, the maximum output power was 165 mW. The highest average pulse energy, the shortest duration, and the highest peak power of a mode-locking signal pulse were estimated to be ~10.3 μJ, ~120 ps, and ~82 kW, respectively.展开更多
文摘In situ white-beam synchrotron radiation topographic observations under an electric field have been made on the KTiOPO4(KTP) family of crystals.The investigation shows a strong enhancement of diffracted intensity for hkl reflections(l≠0) and topographic contrast in the form of fine striations when the external electric field is parallel to the polar axis.Severalk kinds of doped and undoped samples with various grown-in defects,such as domain boundaries.growth striations,growth-sector boundaries.dislocations.etc.,have been studied in detail.The results suggest that these defects have very little effect on the field-induced striations,It is believed that the movement of K^+ ions driven by the electric field leads to a local accumulation of charges and a lattice distortion.The stronly anisotropic conductivity is a governing factor in the explanation of the field-related phenomena in this kind of quasi-one-dimensional conductor.
文摘In-situ white-beam synchrotron radiation topographic observations under an electric field have been made on KTiOPO4 family crystals.The investigation shows a strong enhancement of diffracted intensity of hkl reflections(l≠0) and the topographic extinction contrast,when the field is applied along the polar axis.Doped and undoped samples with grown-in defects are studied in detail.It is believed that the movement of K^+ ions driven by the field leads to a local accumulation of charges and the lattice distortion.All the field-related phenomena appear to be related to the one-dimensional ionic conductance.
基金This work was supported by the AC Nanoscience Research Program and by Institut Universitaire de France. We are grateful to J. Lautru, N. Brosseau, C. Tard, S. Perruchas, T. Gacoin, F. Treussart, J.-P. Boilot, and J.-J. Greffet for their help.
文摘The finding of nonlinear nanometric-sized probes is of key importance for the development of nonlinear microscopy in physical as well as biological sciences. We isolate nonlinear KTiOPO4 nanocrystals and study them by second-harmonic generation microscopy (SHGM) and atomic force microscopy (AFM) independently. With both polarization analysis and defocused imaging of the emitted second harmonic field, we extract the Euler angles of the crystalline axes of a single nanocrystal. A balanced coherent optical homodyne detection shows the coherent nature of the nanocrystal nonlinear emission and allows a phase measurement of the emitted second-harmonic field. These features make the KTiOPO4 nanocrystal a good candidate for a vectorial probe of electromagnetic near fields.
基金supported by the National Natural Science Foundation of China (61378022)the National Natural Science Foundation of China for Youths (61205145)+2 种基金the Fundamental Research Funds of Shandong University (2014JC032)the China Postdoctoral Science Foundation (2013M541901)Independent Innovation Foundation of Shandong University, IIFSDU (2013HW013 and 2014TB011)
文摘A Kerr-lens, mode-locked YVO4∕Nd:YVO4laser coupled with an acousto-optic modulator(AOM) Q-switching near1064 nm was employed to pump an intracavity KTi OPO4(KTP) optical parametric oscillator. A subnanosecond signal wave near 1572 nm with low repetition rate was realized. At an AOM repetition rate of 8 kHz, the maximum output power was 165 mW. The highest average pulse energy, the shortest duration, and the highest peak power of a mode-locking signal pulse were estimated to be ~10.3 μJ, ~120 ps, and ~82 kW, respectively.