This paper applied an integrated method combining grey relation analysis, wavelet analysis and statistical analysis to study climate change and its effects on runoff of the Kaidu River at multi-time scales. Major find...This paper applied an integrated method combining grey relation analysis, wavelet analysis and statistical analysis to study climate change and its effects on runoff of the Kaidu River at multi-time scales. Major findings are as follows: 1) Climatic factors were ranked in the order of importance to annual runoff as average annual temperature, average temperature in autumn, average temperature in winter, annual precipitation, precipitation in flood season, average temperature in summer, and average temperature in spring. The average annual temperature and annual precipi- tation were selected as the two representative factors that impact the annual runoff. 2) From the 32-year time scale, the annual runoff and the average annual temperature presented a significantly rising trend, whereas the annual precipita- tion showed little increase over the period of 1957-2002. By changing the time scale from 32-year to 4-year, we ob- served nonlinear trends with increasingly obvious oscillations for annual runoff, average annual temperature, and annual precipitation. 3) The changes of the runoff and the regional climate are closely related, indicating that the runoff change is the result of the regional climate changes. With time scales ranging from 32-year, 16-year, 8-year and to 4-year, there are highly significant linear correlations between the annual runoff and the average annual temperature and the annual precipitation.展开更多
To reveal the changing trend and annual distribution of the surface water hydrology and the local climate in the Bayanbuluk alpine-cold wetlands in the past 50 years, we used temperature, precipitation, different rank...To reveal the changing trend and annual distribution of the surface water hydrology and the local climate in the Bayanbuluk alpine-cold wetlands in the past 50 years, we used temperature, precipitation, different rank precipitation days, evaporation, water vapor pressure, relative humidity, dust storm days and snow depth to analyze their temporal variations. We conclude that there were no distinct changes in annual mean temperature, and no obvious changes in the maximum or minimum temperatures. Precipitation in warm season was the main water source in the wetlands of the study area and accounted for 92.0% of the annual total. Precipitation dropped to the lowest in the mid-1980s in the past 50 years and then increased gradually. The runoff of the Kaidu River has increased since 1987 which has a good linear response to the annual precipitation and mean temperature in Bayanbuluk alpine-cold wetland. Climate change also affected ecosystems in this area due to its direct relations to the surface water environment.展开更多
Runoff formation is a complex meteorological-hydrological process impacted by many factors,especially in the inland river basin.Based on the data of daily mean air temperature,precipitation and runoff during the perio...Runoff formation is a complex meteorological-hydrological process impacted by many factors,especially in the inland river basin.Based on the data of daily mean air temperature,precipitation and runoff during the period of 1958-2007 in the Kaidu River watershed,this paper analyzed the changes in air temperature,precipitation and runoff and revealed the direct and indirect impacts of daily air temperature and precipitation on daily runoff by path analysis.The results showed that mean temperature time series of the annual,summer and autumn had a significant fluctuant increase during the last 50 years(P 0.05).Only winter precipitation increased significantly(P 0.05) with a rate of 1.337 mm/10a.The annual and winter runoff depthes in the last 50 years significantly increased with the rates of 7.11 mm/10a and 1.85 mm/10a,respectively.The driving function of both daily temperature and precipitation on daily runoff in annual and seasonal levels is significant in the Kaidu River watershed by correlation analysis.The result of path analysis showed that the positive effect of daily air temperature on daily runoff depth is much higher than that of daily precipitation in annual,spring,autumn and winter,however,the trend is opposite in summer.展开更多
The main goal of this study was to assess the long-term impacts of global warming perturbation on water resources of the Kaidu River Basin in Northwest China. Temperature, precipitation and hydrology data during the p...The main goal of this study was to assess the long-term impacts of global warming perturbation on water resources of the Kaidu River Basin in Northwest China. Temperature, precipitation and hydrology data during the past 29 years from 1979 to 2007 were collected and analyzed using parametric and non-parametric methods, the connection between temperature and precipitation by the combination of grey correlation analysis method and the hypothesis testing for trend of climate change. The results show a high increase in temperature in the study area as well as an extreme and highly variable hydrological regime in this region, where flash floods can exceed the total runoff from a sequence of years. These variations may be due to the geographical location of the Kaidu River Basin in arid zone. It also reveals that precipitation has a much greater impact on stream flow than that of temperature. The development of new approaches was proposed as responses to climate change in this arid region.展开更多
The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends o...The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends on variation of temperature, precipitation and runoff, and the correlativity between temperature, precipitation, and runoffwere analyzed based on the past 40 years of observational data from the correlative hydrological and weather stations in the study areas. Various weather scene combinations are assumed and the response models of runoff to climate change are established in order to evaluate the sensitivity of runoff to climate change in the study areas based on the foregoing analysis, Results show that all variations of temperature, precipitation, and runoff overall present an oscillating and increasing trend since the 1960s and this increase are quite evident after 1990. There is a markedly positive correlation between mountain runoff, temperature, and precipitation while there are obvious regional differences of responding degree to precipitation and temperature between mountain runoff of Ummqi River and Kaidu River Basins Also, mountain runoff of Urumqi River Basin is more sensitive to precipitation change than that of Kaidu River Basin, and mountain runoff of Kaidu River Basin is more sensitive to temperature change than that of Ummqi River Basin.展开更多
Based on the hydrological data in the headwater region of the Kaidu River during 1972-2011, the multifractal process of runoff fluctuation was analyzed. Results indicated that, in the past 40 years, the overall runoff...Based on the hydrological data in the headwater region of the Kaidu River during 1972-2011, the multifractal process of runoff fluctuation was analyzed. Results indicated that, in the past 40 years, the overall runoff of the Kaidu River in Xinjiang has shown significant multifractal behavior. Its singular curve 1nχq(ε)-1n(ε) verified a favorable scale invariance over the entire time scale, r(q)-q proved that evolution of the runoff time series presented multifractal characteristics. Moreover, the multifractal spectrumf(α)-α curve was hooklike leftward which indicated that, compared to relatively large runoff events. And △f〈0 indicated that these relatively small events took the leading role; B〈0 explained the Kaidu River's daily-runoff ascending tendency presented during 1972-2011. Besides that, the multifractal behavior of the Kaidu River's runoff variability over four decades was also analyzed. Generally speaking, by decades, their four corresponding spectrum variations were not noticeable. These △α values showed larger runoff events occupied the leading position with some local values falling. During the 1970s to the 1990s, △f〈0 illustrated the probability of the daily runoff at the lowest point is always larger than that of the highest during three continuous decades. At the beginning of the 21 st century, for △f〉0 the trend presented was contrary from the 1970s to the 1990s. B values suggested an overall trend of increases during 1972-2011. Until the 21 st century, the runoff with a slightly descending tendency on the whole explained these relatively large runoff events taking the leading role for the Kaidu River; but sometimes, some small events also played the dominant role.展开更多
In the context of climate change and over-exploitation of water resources, water shortage and water pollution in arid regions have become major constraints to local sustainable development. In this study, we establish...In the context of climate change and over-exploitation of water resources, water shortage and water pollution in arid regions have become major constraints to local sustainable development. In this study, we established a Soil and Water Assessment Tool (SWAT) model for simulating non-point source (NPS) pollution in the irrigation area of the lower reaches of the Kaidu River Basin, based on spatial and attribute data (2010-2014). Four climate change scenarios (2040-2044) and two agricultural management scenarios were input into the SWAT model to quantify the effects of climate change and agricultural management on solvents and solutes of pollutants in the study area. The simulation results show that compared to the reference period (2010-2014), with a decline in streamflow from the Kaidu River, the average annual irrigation water consumption is expected to decrease by 3.84x10<sup>8</sup> m<sup>3</sup> or 8.87% during the period of 2040-2044. Meanwhile, the average annual total nitrogen (TN) and total phosphorus (TP) in agricultural drainage canals will also increase by 10.50% and 30.06%, respectively. Through the implementation of agricultural management measures, the TN and TP in farmland drainage can be reduced by 14.49% and 16.03%, respectively, reaching 661.56 t and 12.99 t, accordingly, and the increasing water efficiency can save irrigation water consumption by 4.41 x10<sup>8</sup> m<sup>3</sup> or 4.77%. The results indicate that although the water environment in the irrigation area in the lower reaches of the Kaidu River Basin is deteriorating, the situation can be improved by implementing appropriate agricultural production methods. The quantitative analysis results of NPS pollutants in the irrigation area under different scenarios provide a scientific basis for water environmental management in the Kaidu River Basin.展开更多
Using the hydrological and meteorological data in the Kaidu River Basin during 1957-2008, we simulated the hydro-climatic process by back-propagation artificial neural network (BPANN) based on wavelet analysis (WA...Using the hydrological and meteorological data in the Kaidu River Basin during 1957-2008, we simulated the hydro-climatic process by back-propagation artificial neural network (BPANN) based on wavelet analysis (WA), and then compared the simulated results with those from a multiple linear regression (MLR). The results show that the variation of runoff responded to regional climate change. The annual runoff (AR) was mainly affected by annual average temperature (AAT) and annual precipitation (AP), which revealed different varia- tion patterns at five time scales. At the time scale of 32-years, AR presented a monotonically increasing trend with the similar trend of AAT and AP. But at the 2-year, 4- year, 8-year, and 16-year time-scale, AR presented non-linear variation with fluctuations of AAT and AP. Both MLR and BPANN successfully simulated the hydro- climatic process based on WA at each time scale, but the simulated effect from BPANN is better than that from MLR.展开更多
This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a dis...This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a distributed hydrological model with an interval two-stage stochastic programing (ITSP). The distributed hydrological model was used for establishing a rainfall-runoff forecast system, while random parameters were pro- vided by the statistical analysis of simulation outcomes water resources management planning in Kaidu-Konqi The developed STIP model was applied to a real case of watershed, where three scenarios with different water re- sources management policies were analyzed. The results indicated that water shortage mainly occurred in agri- culture, ecology and forestry sectors. In comparison, the water demand from municipality, industry and stock- breeding sectors can be satisfied due to their lower consumptions and higher economic values. Different policies for ecological water allocation can result in varied system benefits, and can help to identify desired water allocation plans with a maximum economic benefit and a minimum risk of system disruption under uncertainty.展开更多
基金Under the auspices of Second-stage Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-XB2-03)the major direction of Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW- 127)Shanghai Academic Discipline Project (Human Geography) (No. B410)
文摘This paper applied an integrated method combining grey relation analysis, wavelet analysis and statistical analysis to study climate change and its effects on runoff of the Kaidu River at multi-time scales. Major findings are as follows: 1) Climatic factors were ranked in the order of importance to annual runoff as average annual temperature, average temperature in autumn, average temperature in winter, annual precipitation, precipitation in flood season, average temperature in summer, and average temperature in spring. The average annual temperature and annual precipi- tation were selected as the two representative factors that impact the annual runoff. 2) From the 32-year time scale, the annual runoff and the average annual temperature presented a significantly rising trend, whereas the annual precipita- tion showed little increase over the period of 1957-2002. By changing the time scale from 32-year to 4-year, we ob- served nonlinear trends with increasingly obvious oscillations for annual runoff, average annual temperature, and annual precipitation. 3) The changes of the runoff and the regional climate are closely related, indicating that the runoff change is the result of the regional climate changes. With time scales ranging from 32-year, 16-year, 8-year and to 4-year, there are highly significant linear correlations between the annual runoff and the average annual temperature and the annual precipitation.
基金China Desert Meteorological Science Research Fund No.SQJ2004014 The Special Fund for Commonweal Project of the Ministry of Science and Technology: Research on the Monitoring and Prediction of Snow Storm Disasters in Northern China Rangelands
文摘To reveal the changing trend and annual distribution of the surface water hydrology and the local climate in the Bayanbuluk alpine-cold wetlands in the past 50 years, we used temperature, precipitation, different rank precipitation days, evaporation, water vapor pressure, relative humidity, dust storm days and snow depth to analyze their temporal variations. We conclude that there were no distinct changes in annual mean temperature, and no obvious changes in the maximum or minimum temperatures. Precipitation in warm season was the main water source in the wetlands of the study area and accounted for 92.0% of the annual total. Precipitation dropped to the lowest in the mid-1980s in the past 50 years and then increased gradually. The runoff of the Kaidu River has increased since 1987 which has a good linear response to the annual precipitation and mean temperature in Bayanbuluk alpine-cold wetland. Climate change also affected ecosystems in this area due to its direct relations to the surface water environment.
基金supported by the National Natural Sciences Foundation of China (40871027)the Initial Project of State Key Basic R & D Program of China (2009CB426309)the Knowledge Innovation Project of Chinese Academy of Sciences (KZCX2-YW-334)
文摘Runoff formation is a complex meteorological-hydrological process impacted by many factors,especially in the inland river basin.Based on the data of daily mean air temperature,precipitation and runoff during the period of 1958-2007 in the Kaidu River watershed,this paper analyzed the changes in air temperature,precipitation and runoff and revealed the direct and indirect impacts of daily air temperature and precipitation on daily runoff by path analysis.The results showed that mean temperature time series of the annual,summer and autumn had a significant fluctuant increase during the last 50 years(P 0.05).Only winter precipitation increased significantly(P 0.05) with a rate of 1.337 mm/10a.The annual and winter runoff depthes in the last 50 years significantly increased with the rates of 7.11 mm/10a and 1.85 mm/10a,respectively.The driving function of both daily temperature and precipitation on daily runoff in annual and seasonal levels is significant in the Kaidu River watershed by correlation analysis.The result of path analysis showed that the positive effect of daily air temperature on daily runoff depth is much higher than that of daily precipitation in annual,spring,autumn and winter,however,the trend is opposite in summer.
基金supported by the State Key Development Program for Basic Research of China (973 program (Grant No. 2010CB951002)the Natural Sciences Foundation of China (Grant No. 40871027)+1 种基金the Project from Xinjiang Key Laboratory of Water Cycle and Utilization in Arid Zone (Grant No. XJYS0907-2011-03)the Knowledge Innovation project of Chinese Academy of Science (KZCX2-YW-334) for financial supports
文摘The main goal of this study was to assess the long-term impacts of global warming perturbation on water resources of the Kaidu River Basin in Northwest China. Temperature, precipitation and hydrology data during the past 29 years from 1979 to 2007 were collected and analyzed using parametric and non-parametric methods, the connection between temperature and precipitation by the combination of grey correlation analysis method and the hypothesis testing for trend of climate change. The results show a high increase in temperature in the study area as well as an extreme and highly variable hydrological regime in this region, where flash floods can exceed the total runoff from a sequence of years. These variations may be due to the geographical location of the Kaidu River Basin in arid zone. It also reveals that precipitation has a much greater impact on stream flow than that of temperature. The development of new approaches was proposed as responses to climate change in this arid region.
基金supported by the funding of the Key Laboratory of Eco-hydrology Open FundChinese Academy of Sciences and Knowledge Innovation Program of the Chinese Academy of Sciences, No.KZCX2-YW-328
文摘The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends on variation of temperature, precipitation and runoff, and the correlativity between temperature, precipitation, and runoffwere analyzed based on the past 40 years of observational data from the correlative hydrological and weather stations in the study areas. Various weather scene combinations are assumed and the response models of runoff to climate change are established in order to evaluate the sensitivity of runoff to climate change in the study areas based on the foregoing analysis, Results show that all variations of temperature, precipitation, and runoff overall present an oscillating and increasing trend since the 1960s and this increase are quite evident after 1990. There is a markedly positive correlation between mountain runoff, temperature, and precipitation while there are obvious regional differences of responding degree to precipitation and temperature between mountain runoff of Ummqi River and Kaidu River Basins Also, mountain runoff of Urumqi River Basin is more sensitive to precipitation change than that of Kaidu River Basin, and mountain runoff of Kaidu River Basin is more sensitive to temperature change than that of Ummqi River Basin.
基金supported by the National Training Program of Innovation and Entrepreneurship for Undergraduates(No.201611319050)Science and Technology Project of Jiangxi Provincial Department of Education(No.GJJ161097)+4 种基金China Postdoctoral Science Foundation(No.2016M600515)Jiangxi Province Postdoctoral Science Foundation(No.2017KY48)the Open Research Fund of Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing(2016WICSIP012)the Opening Fund of the Key Laboratory of Poyang Lake Wetland and Watershed Research(Jiangxi Normal University)Ministry of Education(No.PK2017002)
文摘Based on the hydrological data in the headwater region of the Kaidu River during 1972-2011, the multifractal process of runoff fluctuation was analyzed. Results indicated that, in the past 40 years, the overall runoff of the Kaidu River in Xinjiang has shown significant multifractal behavior. Its singular curve 1nχq(ε)-1n(ε) verified a favorable scale invariance over the entire time scale, r(q)-q proved that evolution of the runoff time series presented multifractal characteristics. Moreover, the multifractal spectrumf(α)-α curve was hooklike leftward which indicated that, compared to relatively large runoff events. And △f〈0 indicated that these relatively small events took the leading role; B〈0 explained the Kaidu River's daily-runoff ascending tendency presented during 1972-2011. Besides that, the multifractal behavior of the Kaidu River's runoff variability over four decades was also analyzed. Generally speaking, by decades, their four corresponding spectrum variations were not noticeable. These △α values showed larger runoff events occupied the leading position with some local values falling. During the 1970s to the 1990s, △f〈0 illustrated the probability of the daily runoff at the lowest point is always larger than that of the highest during three continuous decades. At the beginning of the 21 st century, for △f〉0 the trend presented was contrary from the 1970s to the 1990s. B values suggested an overall trend of increases during 1972-2011. Until the 21 st century, the runoff with a slightly descending tendency on the whole explained these relatively large runoff events taking the leading role for the Kaidu River; but sometimes, some small events also played the dominant role.
文摘In the context of climate change and over-exploitation of water resources, water shortage and water pollution in arid regions have become major constraints to local sustainable development. In this study, we established a Soil and Water Assessment Tool (SWAT) model for simulating non-point source (NPS) pollution in the irrigation area of the lower reaches of the Kaidu River Basin, based on spatial and attribute data (2010-2014). Four climate change scenarios (2040-2044) and two agricultural management scenarios were input into the SWAT model to quantify the effects of climate change and agricultural management on solvents and solutes of pollutants in the study area. The simulation results show that compared to the reference period (2010-2014), with a decline in streamflow from the Kaidu River, the average annual irrigation water consumption is expected to decrease by 3.84x10<sup>8</sup> m<sup>3</sup> or 8.87% during the period of 2040-2044. Meanwhile, the average annual total nitrogen (TN) and total phosphorus (TP) in agricultural drainage canals will also increase by 10.50% and 30.06%, respectively. Through the implementation of agricultural management measures, the TN and TP in farmland drainage can be reduced by 14.49% and 16.03%, respectively, reaching 661.56 t and 12.99 t, accordingly, and the increasing water efficiency can save irrigation water consumption by 4.41 x10<sup>8</sup> m<sup>3</sup> or 4.77%. The results indicate that although the water environment in the irrigation area in the lower reaches of the Kaidu River Basin is deteriorating, the situation can be improved by implementing appropriate agricultural production methods. The quantitative analysis results of NPS pollutants in the irrigation area under different scenarios provide a scientific basis for water environmental management in the Kaidu River Basin.
文摘Using the hydrological and meteorological data in the Kaidu River Basin during 1957-2008, we simulated the hydro-climatic process by back-propagation artificial neural network (BPANN) based on wavelet analysis (WA), and then compared the simulated results with those from a multiple linear regression (MLR). The results show that the variation of runoff responded to regional climate change. The annual runoff (AR) was mainly affected by annual average temperature (AAT) and annual precipitation (AP), which revealed different varia- tion patterns at five time scales. At the time scale of 32-years, AR presented a monotonically increasing trend with the similar trend of AAT and AP. But at the 2-year, 4- year, 8-year, and 16-year time-scale, AR presented non-linear variation with fluctuations of AAT and AP. Both MLR and BPANN successfully simulated the hydro- climatic process based on WA at each time scale, but the simulated effect from BPANN is better than that from MLR.
基金supported by the National Basic Research Program of China(2010CB951002)the Dr.Western-funded Project of Chinese Academy of Science(XBBS201010 and XBBS201005)+1 种基金the National Natural Sciences Foundation of China (51190095)the Open Research Fund Program of State Key Laboratory of Hydro-science and Engineering(sklhse-2012-A03)
文摘This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a distributed hydrological model with an interval two-stage stochastic programing (ITSP). The distributed hydrological model was used for establishing a rainfall-runoff forecast system, while random parameters were pro- vided by the statistical analysis of simulation outcomes water resources management planning in Kaidu-Konqi The developed STIP model was applied to a real case of watershed, where three scenarios with different water re- sources management policies were analyzed. The results indicated that water shortage mainly occurred in agri- culture, ecology and forestry sectors. In comparison, the water demand from municipality, industry and stock- breeding sectors can be satisfied due to their lower consumptions and higher economic values. Different policies for ecological water allocation can result in varied system benefits, and can help to identify desired water allocation plans with a maximum economic benefit and a minimum risk of system disruption under uncertainty.