By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the el...By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the elasticity of the material at the interface effectively determines the wavelength, because explosive welding is basically a solid-state welding process. To this end, an analytical model of elastic hydrodynamic instabilities is proposed, and the most unstable mode is selected in the solid phase. Similar approaches have been widely used to study the interfacial behavior of solid metals in high-energy-density physics. By comparing the experimental and theoretical results, it is concluded that thermal softening,which significantly reduces the shear modulus, is necessary and sufficient for successful welding. The thermal softening is verified by theoretical analysis of the increase in temperature due to the impacting and sliding of the flyer and base plates, and some experimental observations are qualitatively validated.In summary, the combined effect of the KH and RT instabilities in solids determines the wavy morphology, and our theoretical results are in good qualitative agreement with experimental and numerical observations.展开更多
This paper investigates the interaction of a small number of modes in the two-fluid Kelvin-Helmholtz instability at the nonlinear regime by using a two-dimensional hydrodynamic code. This interaction is found to be re...This paper investigates the interaction of a small number of modes in the two-fluid Kelvin-Helmholtz instability at the nonlinear regime by using a two-dimensional hydrodynamic code. This interaction is found to be relatively long range in wave-number space and also it acts in both directions, i.e. short wavelengths affect long wavelengths and vice versa. There is no simple equivalent transformation from a band of similar modes to one mode representing their effective amplitude. Three distinct stages of interaction have been identified.展开更多
We have derived the analytical formulas for the Kelvin-Helmholtz instability(KHI)of two superposed finite-thickness fluid layers with the magnetic field effect into consideration.The linear growth rate of KHI will be ...We have derived the analytical formulas for the Kelvin-Helmholtz instability(KHI)of two superposed finite-thickness fluid layers with the magnetic field effect into consideration.The linear growth rate of KHI will be reduced when the thickness of the fluid with large density is decreased or the thickness of fluid with small density is increased.When the thickness and the magnetic field act together on the KHI,the effect of thickness is more obvious when the magnetic field intensity is weak.The magnetic field transition layer destabilizes(enforces)the KHI,especially in the case of small thickness of the magnetic field transition layer.When considering the effect of magnetic field,the linear growth rate of KHI always decreases after reaching the maximum with the increase of total thickness.The stronger the magnetic field intensity is,the more obvious the growth rate decreases with the total thickness.Thus,it should be included in applications where the effect of fluid thickness on the KHI cannot be ignored,such as in double-cone ignition scheme for inertial confinement fusion.展开更多
Nonlinear MHD Kelvin-Helmholtz(K-H)instability in a pipe is treated with the deriva- tive expansion method in the present paper The linear stability problem was discussed in the past by Chandrasekhar(1961)and Xu et al...Nonlinear MHD Kelvin-Helmholtz(K-H)instability in a pipe is treated with the deriva- tive expansion method in the present paper The linear stability problem was discussed in the past by Chandrasekhar(1961)and Xu et al.(1981).Nagano(1979)discussed the nonlinear MHD K-H instability with infinite depth.He used the singular perturbation method and extrapolated the ob- tained second order modifier of amplitude vs.frequency to seek the nonlinear effect on the instability growth rate γ.However,in our view,such an extrapolation is inappropriate.Because when the instabili- ty sets in,the growth rates of higher,order terms on the right hand side of equations will exceed the cor- responding secular producing terms,so the expansion will still become meaningless even if the secular producing terms are eliminated.Mathematically speaking,it's impossible to derive formula(39) when γ_0~2 is negative in Nagano's paper.Moreover,even as early as γ_0~2→O^+,the expansion be- comes invalid because the 2nd order modifier γ_2(in his formula(56))tends to infinity.This weak- ness is removed in this paper,and the result is extended to the case of a pipe with finite depth.展开更多
Characteristics of the Kelvin-Helmholtz (KH) instability of the interfaces formed by two semi-infinitely distributed fluids and one interlayer were studied. It was found that the coupling effects between theinterfac...Characteristics of the Kelvin-Helmholtz (KH) instability of the interfaces formed by two semi-infinitely distributed fluids and one interlayer were studied. It was found that the coupling effects between theinterfaces should be considered if the interlayer thickness was less than 0. 5 times of the disturbation wave-length. And the degenerate modes could be produced in the situation with proper parameters.展开更多
The sixth-order accurate phase error flux-corrected transport numerical algorithm is introduced, and used to simulate Kelvin-Helmholtz instability. Linear growth rates of the simulation agree with the linear theories ...The sixth-order accurate phase error flux-corrected transport numerical algorithm is introduced, and used to simulate Kelvin-Helmholtz instability. Linear growth rates of the simulation agree with the linear theories of Kelvin Helmholtz instability. It indicates the validity and accuracy of this simulation method. The method also has good capturing ability of the instability interface deformation.展开更多
This paper improves the discrete vortex method for modeling Kelvin-Helmholtz instability and Rayleigh-Tay- lor instability by proper choice of velocity weighted average coefficients, redistribution of markers and succ...This paper improves the discrete vortex method for modeling Kelvin-Helmholtz instability and Rayleigh-Tay- lor instability by proper choice of velocity weighted average coefficients, redistribution of markers and successive adding of computational points with the increase of interfacial deformation and gives the numerical results of Rayleigh-Taylor instability. The numerical results show that the first two techniques greatly enhance the ability of the discrete vortex method for modeling large interracial deformations and the last technique greatly reduces the computational amounts of the numerical modeling at large deformation stage. The numerical modeling of Rayleigh- Taylor instability not only reproduces some phenomena such as the roll up at the end part of the spike observed in experiments but also finds some new phenomena such as the splashes at the roll up parts which needs to be tested by experiment.展开更多
The recently developed discrete Boltzmann method(DBM), which is based on a set of uniform linear evolution equations and has high parallel efficiency, is employed to investigate the dynamic nonequilibrium process of K...The recently developed discrete Boltzmann method(DBM), which is based on a set of uniform linear evolution equations and has high parallel efficiency, is employed to investigate the dynamic nonequilibrium process of Kelvin-Helmholtz instability(KHI). It is found that, the relaxation time always strengthens the global nonequilibrium(GNE), entropy of mixing, and free enthalpy of mixing. Specifically, as a combined effect of physical gradients and nonequilibrium area, the GNE intensity first increases but decreases during the whole life-cycle of KHI. The growth rate of entropy of mixing shows firstly reducing, then increasing, and finally decreasing trends during the KHI process. The trend of the free enthalpy of mixing is opposite to that of the entropy of mixing. Detailed explanations are:(i) Initially,binary diffusion smooths quickly the sharp gradient in the mole fraction, which results in a steeply decreasing mixing rate.(ii) Afterwards, the mixing process is significantly promoted by the increasing length of material interface in the evolution of the KHI.(iii) As physical gradients are smoothed due to the binary diffusion and dissipation, the mixing rate reduces and approaches zero in the final stage. Moreover, with the increasing Atwood number, the global strength of viscous stresses on the heavy(light) medium reduces(increases), because the heavy(light) medium has a relatively small(large) velocity change. Furthermore, for a smaller Atwood number, the peaks of nonequilibrium manifestations emerge earlier, the entropy of mixing and free enthalpy of mixing change faster, because the KHI initiates a higher growth rate.展开更多
We investigate the effects of viscosity and heat conduction on the onset and growth of Kelvin-Helmholtz instability (KHI) via an efficient discrete Boltzmann model.Technically,two effective approaches are presented to...We investigate the effects of viscosity and heat conduction on the onset and growth of Kelvin-Helmholtz instability (KHI) via an efficient discrete Boltzmann model.Technically,two effective approaches are presented to quantitatively analyze and understand the configurations and kinetic processes.One is to determine the thickness of mixing layers through tracking the distributions and evolutions of the thermodynamic nonequilibrium (TNE) measures;the other is to evaluate the growth rate of KHI from the slopes of morphological functionals.Physically,it is found that the time histories of width of mixing layer,TNE intensity,and boundary length show high correlation and attain their maxima simultaneously.The viscosity effects are twofold,stabilize the KHI,and enhance both the local and global TNE intensities.Contrary to the monotonically inhibiting effects of viscosity,the heat conduction effects firstly refrain then enhance the evolution afterwards.The physical reasons are analyzed and presented.展开更多
In the presented work, we consider applications of non-classical equations and their approaches to the solution of some classes of equations that arise in the Kelvin-Helmholtz Mechanism (KHM) and instability. In all a...In the presented work, we consider applications of non-classical equations and their approaches to the solution of some classes of equations that arise in the Kelvin-Helmholtz Mechanism (KHM) and instability. In all areas where the Kelvin-Helmholtz instability (KHI) problem is investigated with the corresponding data unchanged, the solution can be taken directly in a specific form (for example, to determine the horizontal structure of a perturbation in a barotropic rotational flow, which is a boundary condition taken, as well as other types of Kelvin-Helmholtz instability problems). In another example, the shear flow along the magnetic field in the Z direction, which is the width of the contact layer between fast and slow flows, has a velocity gradient along the X axis with wind shear. The most difficult problems arise when the above unmentioned equation has singularities simultaneously at points and in this case, our results also remain valid. In the case of linear wave analysis of Kelvin-Helmholtz instability (KHI) at a tangential discontinuity (TD) of ideal magneto-hydro-dynamic (MHD) plasma, it can be attributed to the presented class, and in this case, as far as we know, solutions for eigen modes of instability KH in MHD plasma that satisfy suitable homogeneous boundary conditions. Based on the above mentioned area of application for degenerating ordinary differential equations in this work, the method of functional analysis in order to prove the generalized solution is used. The investigated equation covers a class of a number of difficult-to-solve problems, namely, generalized solutions are found for classes of problems that have analytical and mathematical descriptions. With the aid of lemmas and theorems, the existence and uniqueness of generalized solutions in the weight space are proved, and then general and particular exact solutions are found for the considered problems that are expressed analytically explicitly. Obtained our results may be used for all the difficult-to-solve processes of KHM and instabilities and instabilities, which cover widely studied areas like galaxies, Kelvin-Helmholtz instability in the atmospheres of planets, oceans, clouds and moons, for example, during the formation of the Earth or the Red Spot on Jupiter, as well as in the atmospheres of the Sun and other stars. In this paper, also, a fairly common class of equations and examples are indicated that can be used directly to enter data for the use of the studied suitable tasks.展开更多
BACKGROUND Long non-coding RNAs(LncRNAs)have been found to be a potential prognostic factor for cancers,including hepatocellular carcinoma(HCC).Some LncRNAs have been confirmed as potential indicators to quantify geno...BACKGROUND Long non-coding RNAs(LncRNAs)have been found to be a potential prognostic factor for cancers,including hepatocellular carcinoma(HCC).Some LncRNAs have been confirmed as potential indicators to quantify genomic instability(GI).Nevertheless,GI-LncRNAs remain largely unexplored.This study established a GI-derived LncRNA signature(GILncSig)that can predict the prognosis of HCC patients.AIM To establish a GILncSig that can predict the prognosis of HCC patients.METHODS Identification of GI-LncRNAs was conducted by combining LncRNA expression and somatic mutation profiles.The GI-LncRNAs were then analyzed for functional enrichment.The GILncSig was established in the training set by Cox regression analysis,and its predictive ability was verified in the testing set and TCGA set.In addition,we explored the effects of the GILncSig and TP53 on prognosis.RESULTS A total of 88 GI-LncRNAs were found,and functional enrichment analysis showed that their functions were mainly involved in small molecule metabolism and GI.The GILncSig was constructed by 5 LncRNAs(miR210HG,AC016735.1,AC116351.1,AC010643.1,LUCAT1).In the training set,the prognosis of high-risk patients was significantly worse than that of low-risk patients,and similar results were verified in the testing set and TCGA set.Multivariate Cox regression analysis and stratified analysis confirmed that the GILncSig could be used as an independent prognostic factor.Receiver operating characteristic curve analysis of the GILncSig showed that the area under the curve(0.773)was higher than the two LncRNA signatures published recently.Furthermore,the GILncSig may have a better predictive performance than TP53 mutation status alone.CONCLUSION We established a GILncSig that can predict the prognosis of HCC patients,which will help to guide prognostic evaluation and treatment decisions.展开更多
This paper studies the effect of the irrotational viscous pressure on Kelvin-Helmholtz instability of the plane interface of two viscous and incompressible fluids in a fully saturated porous media with mass and heat t...This paper studies the effect of the irrotational viscous pressure on Kelvin-Helmholtz instability of the plane interface of two viscous and incompressible fluids in a fully saturated porous media with mass and heat transfers across the interface. In the earlier work, the instability of the plane interface of two viscous and streaming miscible fluids through porous media was studied by assuming that the motion and the pressure are irrotational and the viscosity enters the normal stress balance. This theory is called the viscous potential flow theory. Here, we use another irrotational theory in which the discontinuities in the irrotational tangential velocity and shear stress are eliminated in the global energy balance by considering viscous contributions of the irrotational pressure. The Darcy-Brinkman model is used in the investigation and the stability criterion is formulated in terms of a critical value of the relative velocity. It is observed that the heat and mass transfer has a destabilizing effect on the stability of the system while the irrotational shearing stresses stabilize the system.展开更多
<正> One of the main problems in Tokamaks is plasma heating. Neutral beam heating has made a considerable stride recently, the ion temperature T_i as high as 7.1 KeV has been obtained in PLT. But toroidal plasma...<正> One of the main problems in Tokamaks is plasma heating. Neutral beam heating has made a considerable stride recently, the ion temperature T_i as high as 7.1 KeV has been obtained in PLT. But toroidal plasma rotational velocities up to 1×10~7 cm/sec due to an unbalanced injector system bas also been observed in the experiments. S.展开更多
The explicit analytical solution of Rosensweig instability spikes'shapes obtained by Navier-Stokes(NS)equation in diverse magnetic field H vertical to the flat free surface of ferrofluids are systematically studie...The explicit analytical solution of Rosensweig instability spikes'shapes obtained by Navier-Stokes(NS)equation in diverse magnetic field H vertical to the flat free surface of ferrofluids are systematically studied experimentally and theoretically.After carefully analyzing and solving the NS equation in elliptic form,the force balanced surface equations of spikes in Rosensweig instability are expressed as cosine wave in perturbated magnetic field and hyperbolic tangent in large magnetic field,whose results both reveal the wave-like nature of Rosensweig instability.The results of hyperbolic tangent form are perfectly fitted to the experimental results in this paper,which indicates that the analytical solution is basically correct.Using the forementioned theoretical results,the total energy of the spike distribution pattern is calculated.By analyzing the energy components under different magnetic field intensities H,the hexagon-square transition of Rosensweig instability is systematically discussed and explained in an explicit way.展开更多
Introduction: There has been a surge in the use of tendoscopic surgery for treating peroneal tendons instability. The novelty of this approach demanded a literature review of its indications, limitations, and clinical...Introduction: There has been a surge in the use of tendoscopic surgery for treating peroneal tendons instability. The novelty of this approach demanded a literature review of its indications, limitations, and clinical outcomes. Aim: a literature review of the clinical studies reporting on tendoscopic peroneal tendon stabilisation surgery along with its outcomes and complications. Methods: We carried out a comprehensive review of the literature up until September 2022 with an extensive search of the MEDLINE, Embase and Cochrane library databases. Results: Initial search resulted in 66 articles. Four duplicate articles were removed. Further 30 articles were excluded after title and abstract screening. Eight studies satisfied the inclusion criteria and were included in this review. Articles were analysed for outcomes and complications. Conclusion: The tendoscopic technique for peroneal tendon instability is an effective and safe surgical technique with very low failure rate. Levels of Evidence: Level IV.展开更多
Transverse mode-coupling instability(TMCI)is a dangerous transverse single-bunch instability that can lead to severe par-ticle loss.The mechanism of TMCI can be explained by the coupling of transverse coherent oscilla...Transverse mode-coupling instability(TMCI)is a dangerous transverse single-bunch instability that can lead to severe par-ticle loss.The mechanism of TMCI can be explained by the coupling of transverse coherent oscillation modes owing to the transverse short-range wakefield(i.e.,the transverse broadband impedance).Recent studies on future circular colliders,e.g.,FCC-ee,showed that the threshold of TMCI decreased significantly when both longitudinal and transverse impedances were included.We performed computations for the circular electron-positron collider(CEPC)and observed a similar phenom-enon.Systematic studies on the influence of longitudinal impedance on the TMCI threshold were conducted.We concluded that the imaginary part of the longitudinal impedance,which caused a reduction in the incoherent synchrotron tune,was the primary reason for the reduction in the TMCI threshold.Additionally,the real part of the longitudinal impedance assists in increasing the TMCI threshold.展开更多
Background and Objectives: Ankle injuries are the most common type of injury in healthy active individuals. If not treated properly, recurrent sprains can lead to a condition of chronic ankle instability (CAI). The pr...Background and Objectives: Ankle injuries are the most common type of injury in healthy active individuals. If not treated properly, recurrent sprains can lead to a condition of chronic ankle instability (CAI). The present paper examines some subjects with a previous history of acute inversion ankle sprain who have developed a subsequent condition of instability, grouping them according to inclusion criteria and analyzing them through four field tests considered objective by the scientific literature: SEBT test, BEES test, TIBT test, SHT test. The data obtained were stored in order to compare them following a re-education protocol aimed at improving proprioception, balance, walking and strengthening the extrinsic and intrinsic muscles of the foot. per year. The subjects were then divided into two categories: subjects with CAI > 1 year and subjects with CAI ≤ 1 year. A protocol lasting 6 weeks was administered to both groups, trying to work on improving balance in single stance, improving static and dynamic stability, strengthening the gluteus medius and maximus (pelvis stabilizers) and strengthening of the intrinsic muscles of the foot. At the end of the protocol the subjects were all re-evaluated with the same field tests used previously and the data obtained were compared both with the pre-protocol data and with the data measured by the control subjects.展开更多
We study the nonlinear stage of modulation instability(MI)in the non-intergrable pure-quartic nonlinear Schrödinger equation where the fourth-order dispersion is modulated periodically.Using the three-mode trunca...We study the nonlinear stage of modulation instability(MI)in the non-intergrable pure-quartic nonlinear Schrödinger equation where the fourth-order dispersion is modulated periodically.Using the three-mode truncation,we reveal the complex recurrence of parametric resonance(PR)breathers,where each recurrence is associated with two oscillation periods(PR period and internal oscillation period).The nonlinear stage of parametric instability admits the maximum energy exchange between the spectrum sidebands and central mode occurring outside the MI gain band.展开更多
基金the National Natural Science Foundation of China(Grant Nos.12002037 and 12141201).
文摘By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the elasticity of the material at the interface effectively determines the wavelength, because explosive welding is basically a solid-state welding process. To this end, an analytical model of elastic hydrodynamic instabilities is proposed, and the most unstable mode is selected in the solid phase. Similar approaches have been widely used to study the interfacial behavior of solid metals in high-energy-density physics. By comparing the experimental and theoretical results, it is concluded that thermal softening,which significantly reduces the shear modulus, is necessary and sufficient for successful welding. The thermal softening is verified by theoretical analysis of the increase in temperature due to the impacting and sliding of the flyer and base plates, and some experimental observations are qualitatively validated.In summary, the combined effect of the KH and RT instabilities in solids determines the wavy morphology, and our theoretical results are in good qualitative agreement with experimental and numerical observations.
基金Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No 20070290008)the National Basic Research Program of China (Grant No 2007CB815100)
文摘This paper investigates the interaction of a small number of modes in the two-fluid Kelvin-Helmholtz instability at the nonlinear regime by using a two-dimensional hydrodynamic code. This interaction is found to be relatively long range in wave-number space and also it acts in both directions, i.e. short wavelengths affect long wavelengths and vice versa. There is no simple equivalent transformation from a band of similar modes to one mode representing their effective amplitude. Three distinct stages of interaction have been identified.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA25051000 and XDA25010100)the Fundamental Research Funds for the Central Universities(Grant No.2022YQLX01)
文摘We have derived the analytical formulas for the Kelvin-Helmholtz instability(KHI)of two superposed finite-thickness fluid layers with the magnetic field effect into consideration.The linear growth rate of KHI will be reduced when the thickness of the fluid with large density is decreased or the thickness of fluid with small density is increased.When the thickness and the magnetic field act together on the KHI,the effect of thickness is more obvious when the magnetic field intensity is weak.The magnetic field transition layer destabilizes(enforces)the KHI,especially in the case of small thickness of the magnetic field transition layer.When considering the effect of magnetic field,the linear growth rate of KHI always decreases after reaching the maximum with the increase of total thickness.The stronger the magnetic field intensity is,the more obvious the growth rate decreases with the total thickness.Thus,it should be included in applications where the effect of fluid thickness on the KHI cannot be ignored,such as in double-cone ignition scheme for inertial confinement fusion.
基金The project is supported by the National Natural Science Foundation of China.
文摘Nonlinear MHD Kelvin-Helmholtz(K-H)instability in a pipe is treated with the deriva- tive expansion method in the present paper The linear stability problem was discussed in the past by Chandrasekhar(1961)and Xu et al.(1981).Nagano(1979)discussed the nonlinear MHD K-H instability with infinite depth.He used the singular perturbation method and extrapolated the ob- tained second order modifier of amplitude vs.frequency to seek the nonlinear effect on the instability growth rate γ.However,in our view,such an extrapolation is inappropriate.Because when the instabili- ty sets in,the growth rates of higher,order terms on the right hand side of equations will exceed the cor- responding secular producing terms,so the expansion will still become meaningless even if the secular producing terms are eliminated.Mathematically speaking,it's impossible to derive formula(39) when γ_0~2 is negative in Nagano's paper.Moreover,even as early as γ_0~2→O^+,the expansion be- comes invalid because the 2nd order modifier γ_2(in his formula(56))tends to infinity.This weak- ness is removed in this paper,and the result is extended to the case of a pipe with finite depth.
文摘Characteristics of the Kelvin-Helmholtz (KH) instability of the interfaces formed by two semi-infinitely distributed fluids and one interlayer were studied. It was found that the coupling effects between theinterfaces should be considered if the interlayer thickness was less than 0. 5 times of the disturbation wave-length. And the degenerate modes could be produced in the situation with proper parameters.
基金supported by the National Basic Research Program(973 Program)under Grant No.2007CB815100the Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070290008
文摘The sixth-order accurate phase error flux-corrected transport numerical algorithm is introduced, and used to simulate Kelvin-Helmholtz instability. Linear growth rates of the simulation agree with the linear theories of Kelvin Helmholtz instability. It indicates the validity and accuracy of this simulation method. The method also has good capturing ability of the instability interface deformation.
文摘This paper improves the discrete vortex method for modeling Kelvin-Helmholtz instability and Rayleigh-Tay- lor instability by proper choice of velocity weighted average coefficients, redistribution of markers and successive adding of computational points with the increase of interfacial deformation and gives the numerical results of Rayleigh-Taylor instability. The numerical results show that the first two techniques greatly enhance the ability of the discrete vortex method for modeling large interracial deformations and the last technique greatly reduces the computational amounts of the numerical modeling at large deformation stage. The numerical modeling of Rayleigh- Taylor instability not only reproduces some phenomena such as the roll up at the end part of the spike observed in experiments but also finds some new phenomena such as the splashes at the roll up parts which needs to be tested by experiment.
基金Supported by the Natural Science Foundation of China under Grant Nos.91441120,51806116,11875001,and 11602162the China Postdoctoral Science Foundation under Grant No.2017M620757+2 种基金the Center for Combustion Energy at Tsinghua Universitythe Natural Science Foundation of Hebei Province under Grant Nos.A2017409014,ZD2017001,and A201500111the UK Engineering and Physical Sciences Research Council under Project UK Consortium on Mesoscale Engineering Sciences(UKCOMES)under Grant Nos.EP/L00030X/1 and EP/R029598/1
文摘The recently developed discrete Boltzmann method(DBM), which is based on a set of uniform linear evolution equations and has high parallel efficiency, is employed to investigate the dynamic nonequilibrium process of Kelvin-Helmholtz instability(KHI). It is found that, the relaxation time always strengthens the global nonequilibrium(GNE), entropy of mixing, and free enthalpy of mixing. Specifically, as a combined effect of physical gradients and nonequilibrium area, the GNE intensity first increases but decreases during the whole life-cycle of KHI. The growth rate of entropy of mixing shows firstly reducing, then increasing, and finally decreasing trends during the KHI process. The trend of the free enthalpy of mixing is opposite to that of the entropy of mixing. Detailed explanations are:(i) Initially,binary diffusion smooths quickly the sharp gradient in the mole fraction, which results in a steeply decreasing mixing rate.(ii) Afterwards, the mixing process is significantly promoted by the increasing length of material interface in the evolution of the KHI.(iii) As physical gradients are smoothed due to the binary diffusion and dissipation, the mixing rate reduces and approaches zero in the final stage. Moreover, with the increasing Atwood number, the global strength of viscous stresses on the heavy(light) medium reduces(increases), because the heavy(light) medium has a relatively small(large) velocity change. Furthermore, for a smaller Atwood number, the peaks of nonequilibrium manifestations emerge earlier, the entropy of mixing and free enthalpy of mixing change faster, because the KHI initiates a higher growth rate.
基金Y. G.,C.L., H. L. and Z. L. acknowledge the support from the National Natural Science Foundation of China (Grant Nos.11875001,51806116, and 11602162)Natural Science Foundation of Hebei Province (Grants Nos. A2017409014 and 2018J01654)+4 种基金Natural Science Foundations of Hebei Educational Commission (Grant No.ZD2017001)A. X. and G.Z.acknowledge the support from the National Natural Science Foundation of China (Grant No. 11772064)CAEP Foundation (Grant No. CX2019033)Science Challenge Project (Grant No.JCKY2016212A501)the opening project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology, Grant No. KFJJ19-01M).
文摘We investigate the effects of viscosity and heat conduction on the onset and growth of Kelvin-Helmholtz instability (KHI) via an efficient discrete Boltzmann model.Technically,two effective approaches are presented to quantitatively analyze and understand the configurations and kinetic processes.One is to determine the thickness of mixing layers through tracking the distributions and evolutions of the thermodynamic nonequilibrium (TNE) measures;the other is to evaluate the growth rate of KHI from the slopes of morphological functionals.Physically,it is found that the time histories of width of mixing layer,TNE intensity,and boundary length show high correlation and attain their maxima simultaneously.The viscosity effects are twofold,stabilize the KHI,and enhance both the local and global TNE intensities.Contrary to the monotonically inhibiting effects of viscosity,the heat conduction effects firstly refrain then enhance the evolution afterwards.The physical reasons are analyzed and presented.
文摘In the presented work, we consider applications of non-classical equations and their approaches to the solution of some classes of equations that arise in the Kelvin-Helmholtz Mechanism (KHM) and instability. In all areas where the Kelvin-Helmholtz instability (KHI) problem is investigated with the corresponding data unchanged, the solution can be taken directly in a specific form (for example, to determine the horizontal structure of a perturbation in a barotropic rotational flow, which is a boundary condition taken, as well as other types of Kelvin-Helmholtz instability problems). In another example, the shear flow along the magnetic field in the Z direction, which is the width of the contact layer between fast and slow flows, has a velocity gradient along the X axis with wind shear. The most difficult problems arise when the above unmentioned equation has singularities simultaneously at points and in this case, our results also remain valid. In the case of linear wave analysis of Kelvin-Helmholtz instability (KHI) at a tangential discontinuity (TD) of ideal magneto-hydro-dynamic (MHD) plasma, it can be attributed to the presented class, and in this case, as far as we know, solutions for eigen modes of instability KH in MHD plasma that satisfy suitable homogeneous boundary conditions. Based on the above mentioned area of application for degenerating ordinary differential equations in this work, the method of functional analysis in order to prove the generalized solution is used. The investigated equation covers a class of a number of difficult-to-solve problems, namely, generalized solutions are found for classes of problems that have analytical and mathematical descriptions. With the aid of lemmas and theorems, the existence and uniqueness of generalized solutions in the weight space are proved, and then general and particular exact solutions are found for the considered problems that are expressed analytically explicitly. Obtained our results may be used for all the difficult-to-solve processes of KHM and instabilities and instabilities, which cover widely studied areas like galaxies, Kelvin-Helmholtz instability in the atmospheres of planets, oceans, clouds and moons, for example, during the formation of the Earth or the Red Spot on Jupiter, as well as in the atmospheres of the Sun and other stars. In this paper, also, a fairly common class of equations and examples are indicated that can be used directly to enter data for the use of the studied suitable tasks.
文摘BACKGROUND Long non-coding RNAs(LncRNAs)have been found to be a potential prognostic factor for cancers,including hepatocellular carcinoma(HCC).Some LncRNAs have been confirmed as potential indicators to quantify genomic instability(GI).Nevertheless,GI-LncRNAs remain largely unexplored.This study established a GI-derived LncRNA signature(GILncSig)that can predict the prognosis of HCC patients.AIM To establish a GILncSig that can predict the prognosis of HCC patients.METHODS Identification of GI-LncRNAs was conducted by combining LncRNA expression and somatic mutation profiles.The GI-LncRNAs were then analyzed for functional enrichment.The GILncSig was established in the training set by Cox regression analysis,and its predictive ability was verified in the testing set and TCGA set.In addition,we explored the effects of the GILncSig and TP53 on prognosis.RESULTS A total of 88 GI-LncRNAs were found,and functional enrichment analysis showed that their functions were mainly involved in small molecule metabolism and GI.The GILncSig was constructed by 5 LncRNAs(miR210HG,AC016735.1,AC116351.1,AC010643.1,LUCAT1).In the training set,the prognosis of high-risk patients was significantly worse than that of low-risk patients,and similar results were verified in the testing set and TCGA set.Multivariate Cox regression analysis and stratified analysis confirmed that the GILncSig could be used as an independent prognostic factor.Receiver operating characteristic curve analysis of the GILncSig showed that the area under the curve(0.773)was higher than the two LncRNA signatures published recently.Furthermore,the GILncSig may have a better predictive performance than TP53 mutation status alone.CONCLUSION We established a GILncSig that can predict the prognosis of HCC patients,which will help to guide prognostic evaluation and treatment decisions.
文摘This paper studies the effect of the irrotational viscous pressure on Kelvin-Helmholtz instability of the plane interface of two viscous and incompressible fluids in a fully saturated porous media with mass and heat transfers across the interface. In the earlier work, the instability of the plane interface of two viscous and streaming miscible fluids through porous media was studied by assuming that the motion and the pressure are irrotational and the viscosity enters the normal stress balance. This theory is called the viscous potential flow theory. Here, we use another irrotational theory in which the discontinuities in the irrotational tangential velocity and shear stress are eliminated in the global energy balance by considering viscous contributions of the irrotational pressure. The Darcy-Brinkman model is used in the investigation and the stability criterion is formulated in terms of a critical value of the relative velocity. It is observed that the heat and mass transfer has a destabilizing effect on the stability of the system while the irrotational shearing stresses stabilize the system.
文摘<正> One of the main problems in Tokamaks is plasma heating. Neutral beam heating has made a considerable stride recently, the ion temperature T_i as high as 7.1 KeV has been obtained in PLT. But toroidal plasma rotational velocities up to 1×10~7 cm/sec due to an unbalanced injector system bas also been observed in the experiments. S.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51735006,51927810,and U1837206)Beijing Municipal Natural Science Foundation(Grant No.3182013).
文摘The explicit analytical solution of Rosensweig instability spikes'shapes obtained by Navier-Stokes(NS)equation in diverse magnetic field H vertical to the flat free surface of ferrofluids are systematically studied experimentally and theoretically.After carefully analyzing and solving the NS equation in elliptic form,the force balanced surface equations of spikes in Rosensweig instability are expressed as cosine wave in perturbated magnetic field and hyperbolic tangent in large magnetic field,whose results both reveal the wave-like nature of Rosensweig instability.The results of hyperbolic tangent form are perfectly fitted to the experimental results in this paper,which indicates that the analytical solution is basically correct.Using the forementioned theoretical results,the total energy of the spike distribution pattern is calculated.By analyzing the energy components under different magnetic field intensities H,the hexagon-square transition of Rosensweig instability is systematically discussed and explained in an explicit way.
文摘Introduction: There has been a surge in the use of tendoscopic surgery for treating peroneal tendons instability. The novelty of this approach demanded a literature review of its indications, limitations, and clinical outcomes. Aim: a literature review of the clinical studies reporting on tendoscopic peroneal tendon stabilisation surgery along with its outcomes and complications. Methods: We carried out a comprehensive review of the literature up until September 2022 with an extensive search of the MEDLINE, Embase and Cochrane library databases. Results: Initial search resulted in 66 articles. Four duplicate articles were removed. Further 30 articles were excluded after title and abstract screening. Eight studies satisfied the inclusion criteria and were included in this review. Articles were analysed for outcomes and complications. Conclusion: The tendoscopic technique for peroneal tendon instability is an effective and safe surgical technique with very low failure rate. Levels of Evidence: Level IV.
基金the National Natural Science Foundation of China(No.12375149)the National Key R&D Program of China(No.2022YFA1603401)the Innovation Study of the IHEP.
文摘Transverse mode-coupling instability(TMCI)is a dangerous transverse single-bunch instability that can lead to severe par-ticle loss.The mechanism of TMCI can be explained by the coupling of transverse coherent oscillation modes owing to the transverse short-range wakefield(i.e.,the transverse broadband impedance).Recent studies on future circular colliders,e.g.,FCC-ee,showed that the threshold of TMCI decreased significantly when both longitudinal and transverse impedances were included.We performed computations for the circular electron-positron collider(CEPC)and observed a similar phenom-enon.Systematic studies on the influence of longitudinal impedance on the TMCI threshold were conducted.We concluded that the imaginary part of the longitudinal impedance,which caused a reduction in the incoherent synchrotron tune,was the primary reason for the reduction in the TMCI threshold.Additionally,the real part of the longitudinal impedance assists in increasing the TMCI threshold.
文摘Background and Objectives: Ankle injuries are the most common type of injury in healthy active individuals. If not treated properly, recurrent sprains can lead to a condition of chronic ankle instability (CAI). The present paper examines some subjects with a previous history of acute inversion ankle sprain who have developed a subsequent condition of instability, grouping them according to inclusion criteria and analyzing them through four field tests considered objective by the scientific literature: SEBT test, BEES test, TIBT test, SHT test. The data obtained were stored in order to compare them following a re-education protocol aimed at improving proprioception, balance, walking and strengthening the extrinsic and intrinsic muscles of the foot. per year. The subjects were then divided into two categories: subjects with CAI > 1 year and subjects with CAI ≤ 1 year. A protocol lasting 6 weeks was administered to both groups, trying to work on improving balance in single stance, improving static and dynamic stability, strengthening the gluteus medius and maximus (pelvis stabilizers) and strengthening of the intrinsic muscles of the foot. At the end of the protocol the subjects were all re-evaluated with the same field tests used previously and the data obtained were compared both with the pre-protocol data and with the data measured by the control subjects.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12175178 and 12247103)the Natural Science Basic Research Program of Shaanxi Province,China(Grant No.2022KJXX-71)the Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.22JSY016).
文摘We study the nonlinear stage of modulation instability(MI)in the non-intergrable pure-quartic nonlinear Schrödinger equation where the fourth-order dispersion is modulated periodically.Using the three-mode truncation,we reveal the complex recurrence of parametric resonance(PR)breathers,where each recurrence is associated with two oscillation periods(PR period and internal oscillation period).The nonlinear stage of parametric instability admits the maximum energy exchange between the spectrum sidebands and central mode occurring outside the MI gain band.