期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Knowledge-Driven Possibilistic Clustering with Automatic Cluster Elimination
1
作者 Xianghui Hu Yiming Tang +2 位作者 Witold Pedrycz Jiuchuan Jiang Yichuan Jiang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4917-4945,共29页
Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have ... Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have been introduced to formknowledge-driven clustering algorithms,which reveal a data structure that considers not only the relationships between data but also the compatibility with knowledge hints.However,these algorithms cannot produce the optimal number of clusters by the clustering algorithm itself;they require the assistance of evaluation indices.Moreover,knowledge hints are usually used as part of the data structure(directly replacing some clustering centers),which severely limits the flexibility of the algorithm and can lead to knowledgemisguidance.To solve this problem,this study designs a newknowledge-driven clustering algorithmcalled the PCM clusteringwith High-density Points(HP-PCM),in which domain knowledge is represented in the form of so-called high-density points.First,a newdatadensitycalculation function is proposed.The Density Knowledge Points Extraction(DKPE)method is established to filter out high-density points from the dataset to form knowledge hints.Then,these hints are incorporated into the PCM objective function so that the clustering algorithm is guided by high-density points to discover the natural data structure.Finally,the initial number of clusters is set to be greater than the true one based on the number of knowledge hints.Then,the HP-PCM algorithm automatically determines the final number of clusters during the clustering process by considering the cluster elimination mechanism.Through experimental studies,including some comparative analyses,the results highlight the effectiveness of the proposed algorithm,such as the increased success rate in clustering,the ability to determine the optimal cluster number,and the faster convergence speed. 展开更多
关键词 Fuzzy C-Means(FCM) possibilistic clustering optimal number of clusters knowledge-driven machine learning fuzzy logic
下载PDF
Structural knowledge-driven meta-learning for task offloading in vehicular networks with integrated communications,sensing and computing
2
作者 Ruijin Sun Yao Wen +3 位作者 Nan Cheng Wei Wang Rong Chai Yilong Hui 《Journal of Information and Intelligence》 2024年第4期302-324,共23页
Task offloading is a potential solution to satisfy the strict requirements of computation-intensive and latency-sensitive vehicular applications due to the limited onboard computing resources.However,the overwhelming ... Task offloading is a potential solution to satisfy the strict requirements of computation-intensive and latency-sensitive vehicular applications due to the limited onboard computing resources.However,the overwhelming upload traffic may lead to unacceptable uploading time.To tackle this issue,for tasks taking environmental data as input,the data perceived by roadside units(RSU)equipped with several sensors can be directly exploited for computation,resulting in a novel task offloading paradigm with integrated communications,sensing and computing(I-CSC).With this paradigm,vehicles can select to upload their sensed data to RSUs or transmit computing instructions to RSUs during the offloading.By optimizing the computation mode and network resources,in this paper,we investigate an I-CSC-based task offloading problem to reduce the cost caused by resource consumption while guaranteeing the latency of each task.Although this nonconvex problem can be handled by the alternating minimization(AM)algorithm that alternatively minimizes the divided four sub-problems,it leads to high computational complexity and local optimal solution.To tackle this challenge,we propose a creative structural knowledge-driven meta-learning(SKDML)method,involving both the model-based AM algorithm and neural networks.Specifically,borrowing the iterative structure of the AM algorithm,also referred to as structural knowledge,the proposed SKDML adopts long short-term memory(LSTM)networkbased meta-learning to learn an adaptive optimizer for updating variables in each sub-problem,instead of the handcrafted counterpart in the AM algorithm.Furthermore,to pull out the solution from the local optimum,our proposed SKDML updates parameters in LSTM with the global loss function.Simulation results demonstrate that our method outperforms both the AM algorithm and the meta-learning without structural knowledge in terms of both the online processing time and the network performance. 展开更多
关键词 knowledge-driven meta-learning Integration of communication Sensing and computing Task offloading Vehicular networks
原文传递
Transfer Learning for Prognostics and Health Management:Advances,Challenges,and Opportunities
3
作者 Ruqiang Yan Weihua Li +5 位作者 Siliang Lu Min Xia Zhuyun Chen Zheng Zhou Yasong Li Jingfeng Lu 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第2期60-82,共23页
As failure data is usually scarce in practice upon preventive maintenance strategy in prognostics and health management(PHM)domain,transfer learning provides a fundamental solution to enhance generalization of datadri... As failure data is usually scarce in practice upon preventive maintenance strategy in prognostics and health management(PHM)domain,transfer learning provides a fundamental solution to enhance generalization of datadriven methods.In this paper,we briefly discuss general idea and advances of various transfer learning techniques in PHM domain,including domain adaptation,domain generalization,federated learning,and knowledge-driven transfer learning.Based on the observations from state of the art,we provide extensive discussions on possible challenges and opportunities of transfer learning in PHM domain to direct future development. 展开更多
关键词 domain adaptation domain generalization federated learning knowledge-driven PHM transfer learning
下载PDF
A flower image retrieval method based on ROI feature 被引量:6
4
作者 洪安祥 陈刚 +2 位作者 李均利 池哲儒 张亶 《Journal of Zhejiang University Science》 CSCD 2004年第7期764-772,共9页
Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower... Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower regions from flower images. For flower retrieval, we use the color histogram of a flower region to characterize the color features of flower and two shape-based features sets, Centroid-Contour Distance (CCD) and Angle Code Histogram (ACH), to characterize the shape features of a flower contour. Experimental results showed that our flower region extraction method based on color clustering and domain knowledge can produce accurate flower regions. Flower retrieval results on a database of 885 flower images collected from 14 plant species showed that our Region-of-Interest (ROI) based retrieval approach using both color and shape features can perform better than a method based on the global color histogram proposed by Swain and Ballard (1991) and a method based on domain knowledge-driven segmentation and color names proposed by Das et al.(1999). 展开更多
关键词 Flower image retrieval knowledge-driven segmentation Flower image characterization Region-of-Interest (ROI) Color features Shape features
下载PDF
The future of competitive advantage in Oman: Integrating green product innovation, Al, and intellectual capital in business strategies
5
作者 Fadi Abdelfattah Mohammed Salah +2 位作者 Khalid Dahleez Riyad Darwazeh Hussam Al Halbusi 《International Journal of Innovation Studies》 2024年第2期154-171,共18页
This study delves into the dynamics of green product innovation,artificial intelligence(Al)adaption,and intellectual capital,investigating their impact on the competitiveness of firms in Oman.It emphasizes the crucial... This study delves into the dynamics of green product innovation,artificial intelligence(Al)adaption,and intellectual capital,investigating their impact on the competitiveness of firms in Oman.It emphasizes the crucial role of government intervention and R&D investments in this process.Based on the responses of 214 top managers in Oman,the research employs structural equation modeling to analyze the intricate relationships between these factors.The findings underscore a significant positive correlation between green innovation,Al implementation,and intellectual capital,with government involvement and R&D investments as vital moderators.This study provides a novel perspective on the synergy of technology,innovation,and intellectual capital in developing economies.It offers essential insights for business leaders,policymakers,and scholars,highlighting the necessity of integrating advanced technologies and sustainable practices in business strategies to achieve competitive advantage.The research adds to the existing body of knowledge on innovation and competitiveness.It offers practical implications for enhancing firm performance in Oman and similar emerging markets. 展开更多
关键词 Green product innovation R&D investments AI adoption Intellectual capital Government involvement knowledge-driven culture Oman
原文传递
An Evaluation of Chinese Human-Computer Dialogue Technology
6
作者 Zixian Feng Caihai Zhu +4 位作者 Weinan Zhang Zhigang Chen Wanxiang Che Minlie Huang Linlin Li 《Data Intelligence》 2021年第2期274-286,共13页
There is a growing interest in developing human-computer dialogue systems which is an important branch in the field of artificial intelligence(AI).However,the evaluation of large-scale Chinese human-computer dialogues... There is a growing interest in developing human-computer dialogue systems which is an important branch in the field of artificial intelligence(AI).However,the evaluation of large-scale Chinese human-computer dialogues is still a challenging task.To attract more attention to dialogue evaluation work,we held the fourth Evaluation of Chinese Human-Computer Dialogue Technology(ECDT).It consists of few-shot learning in spoken language understanding(SLU)(Task 1)and knowledge-driven multi-turn dialogue competition(Task 2),the data sets of which are provided by Harbin Institute of Technology and Tsinghua University.In this paper,we will introduce the evaluation tasks and data sets in detail.Meanwhile,we will also analyze the evaluation results and the existing problems in the evaluation. 展开更多
关键词 Chinese human-computer dialogue evaluation Evaluation data Few-shot learning knowledge-driven multi-turn dialogue
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部