[Objective] The experiment aimed to determine the optimum ISSR-PCR reaction system of Picea crassifolia kom. [Method] Picea crassifolia kom. was used as material to select and optimize influencing factors of ISSR-PCR ...[Objective] The experiment aimed to determine the optimum ISSR-PCR reaction system of Picea crassifolia kom. [Method] Picea crassifolia kom. was used as material to select and optimize influencing factors of ISSR-PCR such as Mg2+, dNTPs, Taq DNA polymerase, template DNA, primers, annealing temperature. [Result] The optimum ISSR-PCR reaction system in 20 μl reaction system was consisted of 1 μl 10×buffer, 1.5 mmol/L Mg2+, 0.2 mmol/L dNTPs, 1.0 U Taq DNA polymerase, 40 ng template DNA, 0.6 μmol/L primers. According to gradient test of annealing temperature in optimum ISSR-PCR reaction system of Picea crassifolia kom, it was found that the optimum annealing temperature of UBC 818 was 54.2 ℃ and the annealing temperature was different for different primers.[Conclusion]The construction of ISSR-PCR reaction system provided technical basis for classification of germplasm resources, construction of genetic map, gene mapping of Picea crassifolia kom. through using ISSR technology.展开更多
In aquatic ecosystems, macrophytes and phytoplankton are main primary producers, in which macrophyte plays an important role in maintaining clear water state, while phytoplankton often dominates in turbid waterbodies....In aquatic ecosystems, macrophytes and phytoplankton are main primary producers, in which macrophyte plays an important role in maintaining clear water state, while phytoplankton often dominates in turbid waterbodies. In the present study, the growth and photosynthetic activity of the submerged aquatic plant Ceratophyllum oryzetorum Kom. in different cell densities of cyanobacterial bloom are studied. The results show that the plant length and fresh mass of C. oryzetorum are promoted by low cyanobacterial cell densities. Medium and high cyanobacterial cell densities, on the contrary, act as inhibitory. Furthermore, the photosynthetic activity of C. oryzetorum is strongly inhibited by high cyanobacterial cell densities. To a certain extent, the growth of cyanobacteria is inhibited by C. oryzetorurn, but no significant effect is found in this study.展开更多
Chemical investigation of Syringa velutina Kom. led to the isolation of two new secoiridoid glucosides. Their structures were identified as 6'-O-(6, 7-dihyrofoliamenthoyl)-8-epi-longisidic acid (syrveoside A, 1) ...Chemical investigation of Syringa velutina Kom. led to the isolation of two new secoiridoid glucosides. Their structures were identified as 6'-O-(6, 7-dihyrofoliamenthoyl)-8-epi-longisidic acid (syrveoside A, 1) and 6'-O-menthiafoloyl-8-epi-ldngisidic acid (syrveoside B, 2) on the basis of chemical and physicochemical evidence.展开更多
Global climate changes have significantly affected tree growth and forest structures and functions in some arid and semi-arid regions,which are becoming warmer and wetter.Due to natural factors such as climate and ter...Global climate changes have significantly affected tree growth and forest structures and functions in some arid and semi-arid regions,which are becoming warmer and wetter.Due to natural factors such as climate and terrain,some tree species may form different forest patches at the edges of their distribution areas.However,how forest patches of various sizes respond to climate change is unclear.In this study,we collected 203 tree cores from six different sizes of forest patches at the edge of the distribution area of Picea crassifolia Kom.in the northeast Tibetan Plateau.And we used the dendrochronology method to study the response of tree growth and resilience in different forest patches to climate change from 1961 to 2020.We simultaneously measured the contents of nonstructural carbohydrates(NSC),total nitrogen and total phosphorus of tree needles.Our results showed that the growth of trees in small-and medium-size forest patches(0.8–18.6 ha)has increased significantly.The early growing season(May–July)minimum temperature was the most important climate factor driving the growth of small-and medium-sized patch trees.The early growing season maximum temperature was the most important climate factor that inhibited the growth of trees in the largest patches(362.8 ha).The growth of individual trees in medium forest patches was better and the correlation with annual minimum temperature,maximum temperature,precipitation,actual evapotranspiration,and palmer drought severity index was stronger.The higher NSC content,stronger photosynthesis,and higher nitrogen utilization efficiency in leaves might be one of the reasons for the better growth of trees in moderate forest patches.In extreme drought years,as the forest patch area increased,the overall trend of tree growth resistance showed a unimodal pattern,with the highest at a forest patch area of 7.1 ha,while the overall trend of tree growth recovery was opposite.Therefore,we should strengthen the management of trees in large forest patches to cope with climate change.展开更多
Caragana korshinskii Kom, which is a kind of excellent shrubs, has strong resistance to windstorms, and it is also a kind of forage that is of high nutritional value as well as a forming fuel conversion resource that ...Caragana korshinskii Kom, which is a kind of excellent shrubs, has strong resistance to windstorms, and it is also a kind of forage that is of high nutritional value as well as a forming fuel conversion resource that is of high caloric. Caragana korshinskii Kom is of high lignifications after growing for a few years and the toughness of it is considerably high. Currently in China, equipments of harvesting and processing for ripe crops can hardly finish the mechanized production for Caragana korshinskii Kom. Friction characteristics of woody material for Caragana korshinskii Kom under different conditions should be given when the relevant operation machinery is designed, which can provide physical parameters for transportation of Caragana korshinskii Kom as well as the designing of relevant machinery. The paper bases on the research of friction characteristics between Caragana korshinskii Kom whose diameter of 7, 10, and 13 mm under sampling directions of 0°, 45°,and 90° and machinery materials that are commonly used such as steel plate, rubber sheet and so on, and meanwhile the test considers factors such as different conditions of Caragana korshinskii Kom, different materials of machines, different angles and so on. The data strongly suggests that the average static, dynamic friction coefficient between Caragana korshinskii Kom and steel plate is 0.399 711 and0.353 022, respectively; The average static and dynamic friction coefficient between Caragana korshinskii Kom and rubber sheet is 0.965 178 and 0.883 667, respectively. The maximum of static and dynamic friction coefficients is when the angle between the direction of sampling and the direction of movement is vertical. As the angle increased, the dynamic and static friction coefficient decreased. The friction coefficient between Caragana korshinskii Kom and steel plate were increased with the increase of the diameter of Caragana korshinskii Kom, but the diameter have no effect on the dynamic friction coefficient between Caragana korshinskii Kom and rubber plate. The conclusion of this paper can provide references for research on machines that are relevant to transportation and particle forming of Caragana korshinskii Kom.展开更多
Kom Ombo temple is one of temples which were belted over high plateau close to the River Nile, near to Aswan in Egypt in the Greek-Roman period. The expected archaeological remains in the selected area are the hidden ...Kom Ombo temple is one of temples which were belted over high plateau close to the River Nile, near to Aswan in Egypt in the Greek-Roman period. The expected archaeological remains in the selected area are the hidden tunnels of the mummified crocodiles. The aim of the present work is to detect any of these tunnels by the application of the (GPR) and (SP) methods. The interpretation of the 10 GPR profiles revealed some locations of possible hidden tunnels. These locations show different contrasts and high amplitudes of the reflected signals, compared to the enclosing soil;also the scattering of the signals is higher than the bed layer in these locations, which may reveal the possible buried mummified crocodile tunnels in the study area. The depths of the possible targets range from 2.0 m to 2.5 m. The SP electric map shows that the study area possesses a range of about 135 mV of the potential differences between the measured stations. The positive response of the SP data is mainly concentrated at the central part of the study area. The relatively weak, negative SP anomalies may be related to moisture in the soil. The positive SP anomalies on the SP electric map display possible significant correlation between them and the inferred tunnel locations from the GPR data. The calculated depths from the SP profiles show significant agreement with that estimated from GPR data depths, which indicate that the SP electric method can be used as a successful tool in detecting buried archaeological remains in support of GPR.展开更多
The Kom-Ombo and Nuqra basins in southern Egypt have recently been discovered as potential hydrocarbon basins. The lack of information about the geothermal gradient and heat flow in the study area gives importance to ...The Kom-Ombo and Nuqra basins in southern Egypt have recently been discovered as potential hydrocarbon basins. The lack of information about the geothermal gradient and heat flow in the study area gives importance to studying the heat flow and the geothermal gradient. Several studies were carried out to investigate the geothermal analyses of the northwestern desert, as well as the west and east of the Nile River, using density, compressive wave velocity, and bottom hole temperature (BHT) measured from deep oil wells. This research relies on spectral analysis of airborne magnetic survey data in the Kom-Ombo and Nuqra basins in order to estimate the geothermal gradient based on calculating the depth to the bottom of the magnetic source that caused the occurrence of these magnetic deviations. This depth is equal to the CPD, at which the material loses its magnetic polarisation. This method is fast and gives satisfactory results. Usually, it can be applied as a reconnaissance technique for geothermal exploration targets due to the abundance of magnetic data. The depth of the top (Z<sub>t</sub>) and centroid (Z<sub>0</sub>) of the magnetic source bodies was calculated for the 32 windows representing the study area using spectral analysis of airborne magnetic data. The curie-isotherm depth, geothermal gradient, and heat flow maps were constructed for the study area. The results showed that the CPD in the study area ranges from 13 km to 20 km. The heat flow map values range from 69 to 109 mW/m<sup>2</sup>, with an average of about 80 mW/m<sup>2</sup>. The calculated heat flow values in the assigned areas (A, B, C, and D) of the study area are considered to have high heat flow values, reaching 109 mW/m<sup>2</sup>. On the other hand, the heat flow values in the other parts range from 70 to 85 mW/m<sup>2</sup>. Since heat flow plays an essential role in the maturation of organic matter, it is recommended that hydrocarbon accumulations be located in places with high heat flow values, while deep drilling of hydrocarbon wells is recommended in places with low to moderate heat flow values.展开更多
Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Q...Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Qing-hai spruce(Picea crassifolia),a widely distributed native conifer in northwestern China in different environments,we developed chronologies for tree-ring widths and δ^(13)C in trees on the southern and northern slopes of the Qilian Mountains,and analysed the relationship between these tree-ring variables and major climatic factors.Tree-ring widths were strongly influenced by climatic factors early in the growing season,and the radial growth in trees on the northern slopes was more sensitive to climate than in trees on the southern.Tree-ring δ^(13)C was more sensitive to climate than radial growth.δ^(13)C fractionation was mainly influenced by summer temperature and precipitation early in the growing season.Stomatal conductance more strongly limited stable carbon isotope fractionation in tree rings than photosynthetic rate did.The response between tree rings and climate in mountains gradually weakened as climate warmed.Changes in radial growth and stable carbon isotope fractionation of P.crassifolia in response to climate in the Qilian Mountains may be further complicated by continued climate change.展开更多
文摘[Objective] The experiment aimed to determine the optimum ISSR-PCR reaction system of Picea crassifolia kom. [Method] Picea crassifolia kom. was used as material to select and optimize influencing factors of ISSR-PCR such as Mg2+, dNTPs, Taq DNA polymerase, template DNA, primers, annealing temperature. [Result] The optimum ISSR-PCR reaction system in 20 μl reaction system was consisted of 1 μl 10×buffer, 1.5 mmol/L Mg2+, 0.2 mmol/L dNTPs, 1.0 U Taq DNA polymerase, 40 ng template DNA, 0.6 μmol/L primers. According to gradient test of annealing temperature in optimum ISSR-PCR reaction system of Picea crassifolia kom, it was found that the optimum annealing temperature of UBC 818 was 54.2 ℃ and the annealing temperature was different for different primers.[Conclusion]The construction of ISSR-PCR reaction system provided technical basis for classification of germplasm resources, construction of genetic map, gene mapping of Picea crassifolia kom. through using ISSR technology.
基金Supported by the Innovation Project of CAS (No.KZCX2-YW-426)a Provincial Project of Hubei (No. 2006AA305A0402)the National Basic Research Program of China (973 Program, No. 2002CB 412306)
文摘In aquatic ecosystems, macrophytes and phytoplankton are main primary producers, in which macrophyte plays an important role in maintaining clear water state, while phytoplankton often dominates in turbid waterbodies. In the present study, the growth and photosynthetic activity of the submerged aquatic plant Ceratophyllum oryzetorum Kom. in different cell densities of cyanobacterial bloom are studied. The results show that the plant length and fresh mass of C. oryzetorum are promoted by low cyanobacterial cell densities. Medium and high cyanobacterial cell densities, on the contrary, act as inhibitory. Furthermore, the photosynthetic activity of C. oryzetorum is strongly inhibited by high cyanobacterial cell densities. To a certain extent, the growth of cyanobacteria is inhibited by C. oryzetorurn, but no significant effect is found in this study.
基金supported by the National Key Project of Scientific and Technical Supporting Programs fundedby Ministry of Science & Technology of China(No.2006BAD31B05)
文摘Chemical investigation of Syringa velutina Kom. led to the isolation of two new secoiridoid glucosides. Their structures were identified as 6'-O-(6, 7-dihyrofoliamenthoyl)-8-epi-longisidic acid (syrveoside A, 1) and 6'-O-menthiafoloyl-8-epi-ldngisidic acid (syrveoside B, 2) on the basis of chemical and physicochemical evidence.
基金supported by the National Natural Science Foundation of China(Nos.31971460 and 32271646s).
文摘Global climate changes have significantly affected tree growth and forest structures and functions in some arid and semi-arid regions,which are becoming warmer and wetter.Due to natural factors such as climate and terrain,some tree species may form different forest patches at the edges of their distribution areas.However,how forest patches of various sizes respond to climate change is unclear.In this study,we collected 203 tree cores from six different sizes of forest patches at the edge of the distribution area of Picea crassifolia Kom.in the northeast Tibetan Plateau.And we used the dendrochronology method to study the response of tree growth and resilience in different forest patches to climate change from 1961 to 2020.We simultaneously measured the contents of nonstructural carbohydrates(NSC),total nitrogen and total phosphorus of tree needles.Our results showed that the growth of trees in small-and medium-size forest patches(0.8–18.6 ha)has increased significantly.The early growing season(May–July)minimum temperature was the most important climate factor driving the growth of small-and medium-sized patch trees.The early growing season maximum temperature was the most important climate factor that inhibited the growth of trees in the largest patches(362.8 ha).The growth of individual trees in medium forest patches was better and the correlation with annual minimum temperature,maximum temperature,precipitation,actual evapotranspiration,and palmer drought severity index was stronger.The higher NSC content,stronger photosynthesis,and higher nitrogen utilization efficiency in leaves might be one of the reasons for the better growth of trees in moderate forest patches.In extreme drought years,as the forest patch area increased,the overall trend of tree growth resistance showed a unimodal pattern,with the highest at a forest patch area of 7.1 ha,while the overall trend of tree growth recovery was opposite.Therefore,we should strengthen the management of trees in large forest patches to cope with climate change.
文摘Caragana korshinskii Kom, which is a kind of excellent shrubs, has strong resistance to windstorms, and it is also a kind of forage that is of high nutritional value as well as a forming fuel conversion resource that is of high caloric. Caragana korshinskii Kom is of high lignifications after growing for a few years and the toughness of it is considerably high. Currently in China, equipments of harvesting and processing for ripe crops can hardly finish the mechanized production for Caragana korshinskii Kom. Friction characteristics of woody material for Caragana korshinskii Kom under different conditions should be given when the relevant operation machinery is designed, which can provide physical parameters for transportation of Caragana korshinskii Kom as well as the designing of relevant machinery. The paper bases on the research of friction characteristics between Caragana korshinskii Kom whose diameter of 7, 10, and 13 mm under sampling directions of 0°, 45°,and 90° and machinery materials that are commonly used such as steel plate, rubber sheet and so on, and meanwhile the test considers factors such as different conditions of Caragana korshinskii Kom, different materials of machines, different angles and so on. The data strongly suggests that the average static, dynamic friction coefficient between Caragana korshinskii Kom and steel plate is 0.399 711 and0.353 022, respectively; The average static and dynamic friction coefficient between Caragana korshinskii Kom and rubber sheet is 0.965 178 and 0.883 667, respectively. The maximum of static and dynamic friction coefficients is when the angle between the direction of sampling and the direction of movement is vertical. As the angle increased, the dynamic and static friction coefficient decreased. The friction coefficient between Caragana korshinskii Kom and steel plate were increased with the increase of the diameter of Caragana korshinskii Kom, but the diameter have no effect on the dynamic friction coefficient between Caragana korshinskii Kom and rubber plate. The conclusion of this paper can provide references for research on machines that are relevant to transportation and particle forming of Caragana korshinskii Kom.
文摘Kom Ombo temple is one of temples which were belted over high plateau close to the River Nile, near to Aswan in Egypt in the Greek-Roman period. The expected archaeological remains in the selected area are the hidden tunnels of the mummified crocodiles. The aim of the present work is to detect any of these tunnels by the application of the (GPR) and (SP) methods. The interpretation of the 10 GPR profiles revealed some locations of possible hidden tunnels. These locations show different contrasts and high amplitudes of the reflected signals, compared to the enclosing soil;also the scattering of the signals is higher than the bed layer in these locations, which may reveal the possible buried mummified crocodile tunnels in the study area. The depths of the possible targets range from 2.0 m to 2.5 m. The SP electric map shows that the study area possesses a range of about 135 mV of the potential differences between the measured stations. The positive response of the SP data is mainly concentrated at the central part of the study area. The relatively weak, negative SP anomalies may be related to moisture in the soil. The positive SP anomalies on the SP electric map display possible significant correlation between them and the inferred tunnel locations from the GPR data. The calculated depths from the SP profiles show significant agreement with that estimated from GPR data depths, which indicate that the SP electric method can be used as a successful tool in detecting buried archaeological remains in support of GPR.
文摘The Kom-Ombo and Nuqra basins in southern Egypt have recently been discovered as potential hydrocarbon basins. The lack of information about the geothermal gradient and heat flow in the study area gives importance to studying the heat flow and the geothermal gradient. Several studies were carried out to investigate the geothermal analyses of the northwestern desert, as well as the west and east of the Nile River, using density, compressive wave velocity, and bottom hole temperature (BHT) measured from deep oil wells. This research relies on spectral analysis of airborne magnetic survey data in the Kom-Ombo and Nuqra basins in order to estimate the geothermal gradient based on calculating the depth to the bottom of the magnetic source that caused the occurrence of these magnetic deviations. This depth is equal to the CPD, at which the material loses its magnetic polarisation. This method is fast and gives satisfactory results. Usually, it can be applied as a reconnaissance technique for geothermal exploration targets due to the abundance of magnetic data. The depth of the top (Z<sub>t</sub>) and centroid (Z<sub>0</sub>) of the magnetic source bodies was calculated for the 32 windows representing the study area using spectral analysis of airborne magnetic data. The curie-isotherm depth, geothermal gradient, and heat flow maps were constructed for the study area. The results showed that the CPD in the study area ranges from 13 km to 20 km. The heat flow map values range from 69 to 109 mW/m<sup>2</sup>, with an average of about 80 mW/m<sup>2</sup>. The calculated heat flow values in the assigned areas (A, B, C, and D) of the study area are considered to have high heat flow values, reaching 109 mW/m<sup>2</sup>. On the other hand, the heat flow values in the other parts range from 70 to 85 mW/m<sup>2</sup>. Since heat flow plays an essential role in the maturation of organic matter, it is recommended that hydrocarbon accumulations be located in places with high heat flow values, while deep drilling of hydrocarbon wells is recommended in places with low to moderate heat flow values.
基金supported by Basic Research Operating Expenses of the Central level Non-profit Research Institutes (IDM2022003)National Natural Science Foundation of China (42375054)+2 种基金Regional collaborative innovation project of Xinjiang (2021E01022,2022E01045)Young Meteorological Talent Program of China Meteorological Administration,Tianshan Talent Program of Xinjiang (2022TSYCCX0003)Youth Innovation Team of China Meteorological Administration (CMA2023QN08).
文摘Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Qing-hai spruce(Picea crassifolia),a widely distributed native conifer in northwestern China in different environments,we developed chronologies for tree-ring widths and δ^(13)C in trees on the southern and northern slopes of the Qilian Mountains,and analysed the relationship between these tree-ring variables and major climatic factors.Tree-ring widths were strongly influenced by climatic factors early in the growing season,and the radial growth in trees on the northern slopes was more sensitive to climate than in trees on the southern.Tree-ring δ^(13)C was more sensitive to climate than radial growth.δ^(13)C fractionation was mainly influenced by summer temperature and precipitation early in the growing season.Stomatal conductance more strongly limited stable carbon isotope fractionation in tree rings than photosynthetic rate did.The response between tree rings and climate in mountains gradually weakened as climate warmed.Changes in radial growth and stable carbon isotope fractionation of P.crassifolia in response to climate in the Qilian Mountains may be further complicated by continued climate change.