期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
High-order rational solutions and resonance solutions for a (3+1)-dimensional Kudryashov–Sinelshchikov equation
1
作者 Yun-Fei Yue Jin Lin Yong Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期134-141,共8页
We mainly investigate the rational solutions and N-wave resonance solutions for the(3+1)-dimensional Kudryashov–Sinelshchikov equation, which could be used to describe the liquid containing gas bubbles. With appropri... We mainly investigate the rational solutions and N-wave resonance solutions for the(3+1)-dimensional Kudryashov–Sinelshchikov equation, which could be used to describe the liquid containing gas bubbles. With appropriate transformations, two kinds of bilinear forms are derived. Employing the two bilinear equations, dynamical behaviors of nine district solutions for this equation are discussed in detail, including bright rogue wave-type solution, dark rogue wave-type solution, bright W-shaped solution, dark W-shaped rational solution, generalized rational solution and bright-fusion, darkfusion, bright-fission, and dark-fission resonance solutions. In addition, the generalized rational solutions, which depending on two arbitrary parameters, have an interesting structure: splitting from two peaks into three peaks. 展开更多
关键词 rational solution N-wave resonance solution Hirota bilinear method kudryashov–sinelshchikov equation
下载PDF
利用指数函数法求Kudryashov-Sinelshchikov方程的精确行波解 被引量:1
2
作者 何应辉 《红河学院学报》 2013年第2期25-26,30,共3页
Kudryashov-Sinelshchikov(K-S)方程具有重要的物理背景和研究意义,很多学者对其精确解进行了研究,在=-3和=-4时得到了各种形式的精确行波解.本文利用指数函数法对该方程的精确行波解进行了研究,获得了该方程在任意参数条件下具有一般... Kudryashov-Sinelshchikov(K-S)方程具有重要的物理背景和研究意义,很多学者对其精确解进行了研究,在=-3和=-4时得到了各种形式的精确行波解.本文利用指数函数法对该方程的精确行波解进行了研究,获得了该方程在任意参数条件下具有一般形式的精确行波解,包括孤立波解和周期波解,将原有的结果进行了有效的推广. 展开更多
关键词 非线性波方程 指数函数法 kudryashovsinelshchikov方程 精确解
下载PDF
New Exact Solutions for the Wick-Type Stochastic Kudryashov–Sinelshchikov Equation
3
作者 S.Saha Ray S.Singh 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第2期197-206,共10页
In this article, exact solutions of Wick-type stochastic Kudryashov–Sinelshchikov equation have been obtained by using improved Sub-equation method. We have used Hermite transform for transforming the Wick-type stoch... In this article, exact solutions of Wick-type stochastic Kudryashov–Sinelshchikov equation have been obtained by using improved Sub-equation method. We have used Hermite transform for transforming the Wick-type stochastic Kudryashov–Sinelshchikov equation to deterministic partial differential equation. Also we have applied inverse Hermite transform for obtaining a set of stochastic solutions in the white noise space. 展开更多
关键词 kudryashov–sinelshchikov Wick-product White noise space improved Sub-equation method Hermite transform inverse Hermite transform
原文传递
(3+1)维变系数Kudryashov⁃Sinelshchikov(K⁃S)方程的同宿呼吸波解和高阶怪波解 被引量:2
4
作者 张诗洁 套格图桑 《应用数学和力学》 CSCD 北大核心 2021年第8期852-858,共7页
基于Hirota双线性方法,利用拓展的同宿呼吸检验法得到了(3+1)维变系数Kudryashov⁃Sinelshchikov(K⁃S)方程的同宿呼吸波解,对该解的参数选取合适的数值,可得到不同结构的同宿呼吸波.通过对同宿呼吸波解的周期取极限,推导出方程的怪波解.... 基于Hirota双线性方法,利用拓展的同宿呼吸检验法得到了(3+1)维变系数Kudryashov⁃Sinelshchikov(K⁃S)方程的同宿呼吸波解,对该解的参数选取合适的数值,可得到不同结构的同宿呼吸波.通过对同宿呼吸波解的周期取极限,推导出方程的怪波解.最后,构造出一个特殊的高阶多项式作为测试函数,求得该方程的一阶怪波解和二阶怪波解. 展开更多
关键词 (3+1)维变系数kudryashovsinelshchikov(K⁃S)方程 HIROTA双线性方法 呼吸解 怪波解
下载PDF
利用改进的Kudryashov方法求非线性偏微分方程的精确解 被引量:1
5
作者 赵舒贤 欧耀骏 +1 位作者 龙双英 李红春 《红河学院学报》 2023年第5期138-144,共7页
非线性偏微分方程的求解在许多科学领域有重要作用.2012年,俄罗斯数学家Nikolay A.Kudryashov提出了一种新的方法,利用线性行波变换和辅助方程,可将所研究的非线性微分方程转化成常微分方程,既而实现计算的简化.改进的Kudryashov方法是... 非线性偏微分方程的求解在许多科学领域有重要作用.2012年,俄罗斯数学家Nikolay A.Kudryashov提出了一种新的方法,利用线性行波变换和辅助方程,可将所研究的非线性微分方程转化成常微分方程,既而实现计算的简化.改进的Kudryashov方法是在原方法的基础上改进了辅助方程,使得适用范围更加广泛.利用改进的Kudryashov方法求解六阶Boussinesq方程和空时分数阶Camassa-Holm方程,以这两个方程为例探究该方法在整数阶方程和分数阶方程中的应用. 展开更多
关键词 改进的kudryashov方法 空时分数阶Camassa-Holm方程 六阶Boussinesq方程 精确解
下载PDF
Boussinesq方程的精确行波解
6
作者 杨忠鑫 刘小华 《延边大学学报(自然科学版)》 CAS 2024年第1期76-80,共5页
利用广义kudryashov方法讨论了Boussinesq方程的行波解,给出了其5个精确指数函数解的显式表达式,并利用Maple软件给出了该方程3个精确解的性态。
关键词 BOUSSINESQ方程 广义kudryashov方法 行波解 精确指数函数解 解的性态
下载PDF
New analytical exact solutions of time fractional KdV KZK equation by Kudryashov methods 被引量:4
7
作者 S Saha Ray 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第4期30-36,共7页
In this paper, new exact solutions of the time fractional KdV-Khokhlov-Zabolotskaya-Kuznetsov (KdV-KZK) equa- tion are obtained by the classical Kudryashov method and modified Kudryashov method respectively. For thi... In this paper, new exact solutions of the time fractional KdV-Khokhlov-Zabolotskaya-Kuznetsov (KdV-KZK) equa- tion are obtained by the classical Kudryashov method and modified Kudryashov method respectively. For this purpose, the modified Riemann-Liouville derivative is used to convert the nonlinear time fractional KdV-KZK equation into the non- linear ordinary differential equation. In the present analysis, the classical Kudryashov method and modified Kudryashov method are both used successively to compute the analytical solutions of the time fractional KdV-KZK equation. As a result, new exact solutions involving the symmetrical Fibonacci function, hyperbolic function and exponential function are obtained for the first time. The methods under consideration are reliable and efficient, and can be used as an alternative to establish new exact solutions of different types of fractional differential equations arising from mathematical physics. The obtained results are exhibited graphically in order to demonstrate the efficiencies and applicabilities of these proposed methods of solving the nonlinear time fractional KdV-KZK equation. 展开更多
关键词 KdV-Khokhlov-Zabolotskaya-Kuznetsov equation kudryashov method modified kudryashovmethod fractional complex transform modified Riemann-Liouville derivative
下载PDF
Application of the Improved Kudryashov Method to Solve the Fractional Nonlinear Partial Differential Equations 被引量:2
8
作者 Md. Abdus Salam Umme Habiba 《Journal of Applied Mathematics and Physics》 2019年第4期912-920,共9页
Our purpose of this paper is to apply the improved Kudryashov method for solving various types of nonlinear fractional partial differential equations. As an application, the time-space fractional Korteweg-de Vries-Bur... Our purpose of this paper is to apply the improved Kudryashov method for solving various types of nonlinear fractional partial differential equations. As an application, the time-space fractional Korteweg-de Vries-Burger (KdV-Burger) equation is solved using this method and we get some new travelling wave solutions. To acquire our purpose a complex transformation has been also used to reduce nonlinear fractional partial differential equations to nonlinear ordinary differential equations of integer order, in the sense of the Jumarie’s modified Riemann-Liouville derivative. Afterwards, the improved Kudryashov method is implemented and we get our required reliable solutions where the results are justified by mathematical software Maple-13. 展开更多
关键词 IMPROVED kudryashov METHOD Time-Space FRACTIONAL KdV-Burger Equation TRAVELLING Wave Solutions Jumarie’s Modified Riemann-Liouville Derivative
下载PDF
应用改进的Kudryashov方法求解演化方程
9
作者 于洋 庞晶 《内蒙古工业大学学报(自然科学版)》 2018年第4期241-245,共5页
非线性发展方程的行波解在许多应用科学领域中有重要作用.本文在(2+1)维KaupKupershmidt(KK)方程组中应用改进的Kudryashov方法构造行波解,该方法适用于非线性波动方程(组)的求解.应用该方法得到全新的解,其解具有某些特殊的物理现象.
关键词 改进的kudryashov方法 (2+1)维Kaup-Kupershmidt(KK)方程组 孤子解
下载PDF
The Traveling Wave Solutions of Space-Time Fractional Partial Differential Equations by Modified Kudryashov Method
10
作者 Md. Mahfujur Rahman Umme Habiba +1 位作者 Md. Abdus Salam Mousumi Datta 《Journal of Applied Mathematics and Physics》 2020年第11期2683-2690,共8页
In this paper, the modified Kudryashov method is employed to find the traveling wave solutions of two well-known space-time fractional partial differential equations, namely the Zakharov Kuznetshov Benjamin Bona Mahon... In this paper, the modified Kudryashov method is employed to find the traveling wave solutions of two well-known space-time fractional partial differential equations, namely the Zakharov Kuznetshov Benjamin Bona Mahony equation and Kolmogorov Petrovskii Piskunov equation, and as a helping tool, the sense of modified Riemann-Liouville derivative is also used. The propagation properties of obtained solutions are investigated where the graphical representations and justifications of the results are done by mathematical software Maple. 展开更多
关键词 Traveling Wave Solutions Modified kudryashov Method Zakharov Kuznetshov Benjamin Bona Mahony (ZKBBM) Equation Kolmogorov Petrovskii Piskunov (KPP) Equation
下载PDF
Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method
11
作者 Zillur Rahman M Zulfikar Ali Harun-Or Roshid 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期192-205,共14页
We introduce a new integral scheme namely improved Kudryashov method for solving any nonlinear fractional differential model.Specifically,we apply the approach to the nonlinear space-time fractional model leading the ... We introduce a new integral scheme namely improved Kudryashov method for solving any nonlinear fractional differential model.Specifically,we apply the approach to the nonlinear space-time fractional model leading the wave to spread in electrical transmission lines(s-tfETL),the time fractional complex Schrödinger(tfcS),and the space-time M-fractional Schrödinger-Hirota(s-tM-fSH)models to verify the effectiveness of the proposed approach.The implementing of the introduced new technique based on the models provides us with periodic envelope,exponentially changeable soliton envelope,rational rogue wave,periodic rogue wave,combo periodic-soliton,and combo rational-soliton solutions,which are much interesting phenomena in nonlinear sciences.Thus the results disclose that the proposed technique is very effective and straight-forward,and such solutions of the models are much more fruitful than those from the generalized Kudryashov and the modified Kudryashov methods. 展开更多
关键词 improved kudryashov method fractional electrical transmission line equation fractional nonlinear complex Schrödinger equation M-fractional Schrödinger-Hirota(s-tM-fSH)
下载PDF
Bifurcation Analysis and Bounded Optical Soliton Solutions of the Biswas-Arshed Model
12
作者 Fahad Sameer Alshammari Md Fazlul Hoque +1 位作者 Harun-Or-Roshid Muhammad Nadeem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2197-2217,共21页
We investigate the bounded travelling wave solutions of the Biswas-Arshed model(BAM)including the low group velocity dispersion and excluding the self-phase modulation.We integrate the nonlinear structure of the model... We investigate the bounded travelling wave solutions of the Biswas-Arshed model(BAM)including the low group velocity dispersion and excluding the self-phase modulation.We integrate the nonlinear structure of the model to obtain bounded optical solitons which pass through the optical fibers in the non-Kerr media.The bifurcation technique of the dynamical system is used to achieve the parameter bifurcation sets and split the parameter space into various areaswhich correspond to different phase portraits.All bounded optical solitons and bounded periodic wave solutions are identified and derived conforming to each region of these phase portraits.We also apply the extended sinh-Gordon equation expansion and the generalized Kudryashov integral schemes to obtain additional bounded optical soliton solutions of the BAM nonlinearity.We present more bounded optical shock waves,the bright-dark solitary wave,and optical rogue waves for the structure model via these schemes in different aspects. 展开更多
关键词 The Biswas-Arshed model the extended sinh-Gordon equation expansion the generalized kudryashov approach shock wave double solitons optical singular double solitons chirp-free bright-dark double solitons
下载PDF
时间分数阶Sharma-Tasso-Olver方程和Zakharov方程组的新精确解 被引量:2
13
作者 任晓静 葛楠楠 《吉林大学学报(理学版)》 CAS 北大核心 2019年第3期562-566,共5页
利用推广的Kudryashov方法,借助分数阶行波变换和一致分数阶导数,给出非线性广义时间分数阶Sharma-Tasso-Olver方程和Zakharov方程组的若干双曲函数形式的精确解.
关键词 一致分数阶导数 时间分数阶Sharma-Tasso-Olver方程 时间分数阶Zakharov 方程组 推广的kudryashov方法 精确解
下载PDF
破裂孤子方程的精确解
14
作者 蒋桂凤 《台州学院学报》 2019年第6期1-5,共5页
非线性微分方程的精确解的研究是一个重要的课题。利用改进的Kudryashov方法,研究了破裂孤子方程。通过行波变换,把高阶非线性偏微分方程转化为高阶非线性常微分方程;再选取适当的一阶常微分方程--Bermoulli方程和平衡方程;最终得到了(2... 非线性微分方程的精确解的研究是一个重要的课题。利用改进的Kudryashov方法,研究了破裂孤子方程。通过行波变换,把高阶非线性偏微分方程转化为高阶非线性常微分方程;再选取适当的一阶常微分方程--Bermoulli方程和平衡方程;最终得到了(2+1)维破裂孤子方程和(2+1)维Bogoyavlenskii’s广义破裂孤子方程的许多精确解。 展开更多
关键词 精确解 改进的kudryashov方法 (2+1)维破裂孤子方程 (2+1)维Bogoyavlenskii’s广义破裂孤子方程
下载PDF
几种广义的函数展开法在构建偏微分方程精确解中的文献综述与应用(G/G2)-展开法、(exp)-展开法构建(2 + 1)维Boiti-Leon-Pempinelli方程精确解
15
作者 吴大山 孙峪怀 杜玲禧 《应用数学进展》 2019年第10期1659-1674,共16页
首先,系统给出(G′/G2)-展开法、F-展开法、(exp)-展开法、改进的Kudryashov方法、直接截断法,构建偏微分方程的精确解的起源与研究现状的文献综述。接下来,采用对比方式给出上述五种广义的函数展开法在构建偏微分方程精确解的步骤。最... 首先,系统给出(G′/G2)-展开法、F-展开法、(exp)-展开法、改进的Kudryashov方法、直接截断法,构建偏微分方程的精确解的起源与研究现状的文献综述。接下来,采用对比方式给出上述五种广义的函数展开法在构建偏微分方程精确解的步骤。最后,通过上述五种广义的函数展开法中的(G′/G2)-展开法、(exp)-展开法构建(2 + 1)维Boiti-Leon-Pempinelli方程的精确解,并使用控制变量法进行数学实验分析了(2 + 1)维Boiti-Leon-Pempinelli方程中三个变量对于精确解的影响。 展开更多
关键词 (G /G2)-展开法 F-展开法 (exp)-展开法 改进的kudryashov方法 直接截断法 (2 + 1)维Boiti-Leon-Pempinelli方程 精确解 数学实验
下载PDF
应用改进的Kudryashov法求非线性方程的精确解 被引量:1
16
作者 冯庆江 杨娟 《数学的实践与认识》 北大核心 2020年第4期185-190,共6页
利用Kudryashov法分别得到(1+1)维Benjiamin Ono方程、(2+1)维AKNS方程、分数阶生物群体模型方程的精确解.实践证明,这种方法简洁方便,对于研究非线性发展方程具有十分重要的意义.
关键词 kudryashov 非线性发展方程 精确解
原文传递
New solutions for four novel generalized nonlinear fractional fifth-order equations
17
作者 Mehmet Senol Lanre Akinyemi +1 位作者 Henrietta Nkansah Waleed Adel 《Journal of Ocean Engineering and Science》 SCIE 2024年第1期59-65,共7页
In this paper,new four fifth-order fractional nonlinear equations are derived and investigated.The frac-tional terms are defined in the conformable sense and these equations are then solved using two effective methods... In this paper,new four fifth-order fractional nonlinear equations are derived and investigated.The frac-tional terms are defined in the conformable sense and these equations are then solved using two effective methods,namely,the sub-equation and the generalized Kudryashov methods.These methods were tested on the proposed models and succeeded in finding new solutions with different values of parameters.A graphical representation of some results is provided and proves the efficiency and applicability of the proposed methods for providing solutions with known physical behavior.These methods are good candi-dates for solving other similar problems in the future. 展开更多
关键词 Conformable derivative Generalized kudryashov method Sub-equation method Riccati equation SOLITONS
原文传递
The higher-order modified Korteweg-de Vries equation:Its soliton,breather and approximate solutions
18
作者 Daniel Ntiamoah William Ofori-Atta Lanre Akinyemi 《Journal of Ocean Engineering and Science》 SCIE 2024年第6期554-565,共12页
In this study,the fifth-order modified Korteweg-de Vries(F-MKdV)equation is first addressed using Hi-rota’s bilinear method.Thereafter,the exact and approximative solutions of the generalized form of the F-MKdV equat... In this study,the fifth-order modified Korteweg-de Vries(F-MKdV)equation is first addressed using Hi-rota’s bilinear method.Thereafter,the exact and approximative solutions of the generalized form of the F-MKdV equation are investigated using the modified Kudryashov method,the Riccati equation and its Backlund transformation method,the solitary wave ansatz method,and the homotopy perturbation trans-form method(HPTM).As a result,solitons,breather,and solitary wave solutions are derived from these methods.In particular,we obtain some new solutions such as the dark soliton,bright soliton,singular soliton,periodic trigonometric,exponential,hyperbolic,and rational solutions.The constraint conditions associated with the resulting solutions are also discussed in detail.The HPTM is employed to construct approximate solutions to the aforementioned generalized model due to its strong nonlinear terms and only a few terms are required to obtain accurate solutions.These findings may help to understand com-plex nonlinear phenomena. 展开更多
关键词 F-MKdV equation Modified kudryashov method Hirota’s bilinear method HPTM Laplace transform Riccati equation and its Backlund transformation
原文传递
On some new travelling wave structures to the(3+1)-dimensional Boiti-Leon-Manna-Pempinelli model
19
作者 Kalim U.Tariq Ahmet Bekir Muhammad Zubair 《Journal of Ocean Engineering and Science》 SCIE 2024年第2期99-111,共13页
In this article,the(1/G')-expansion method,the Bernoulli sub-ordinary differential equation method and the modified Kudryashov method are implemented to construct a variety of novel analytical solutions to the(3+1... In this article,the(1/G')-expansion method,the Bernoulli sub-ordinary differential equation method and the modified Kudryashov method are implemented to construct a variety of novel analytical solutions to the(3+1)-dimensional Boiti-Leon-Manna-Pempinelli model representing the wave propagation through incompressible fluids.The linearization of the wave structure in shallow water necessitates more critical wave capacity conditions than it does in deep water,and the strong nonlinear properties are perceptible.Some novel travelling wave solutions have been observed including solitons,kink,periodic and rational solutions with the aid of the latest computing tools such as Mathematica or Maple.The physical and analytical properties of several families of closed-form solutions or exact solutions and rational form function solutions to the(3+1)-dimensional Boiti-Leon-Manna-Pempinelli model problem are examined using Mathematica. 展开更多
关键词 The(3+1)-dimensional Boiti-Leon-Manna-Pempinelli model The(1/G')-expansion method The Bernoulli sub-ODE method The modified kudryashov method
原文传递
Exact Solution of Space-Time Fractional Coupled EW and Coupled MEW Equations Using Modified Kudryashov Method 被引量:4
20
作者 K. R. Raslan Talaat S. EL-Danaf Khalid K. Ali 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第7期49-56,共8页
In the present paper, we established a traveling wave solution by using modified Kudryashov method for the space-time fractional nonlinear partial differential equations. The method is used to obtain the exact solutio... In the present paper, we established a traveling wave solution by using modified Kudryashov method for the space-time fractional nonlinear partial differential equations. The method is used to obtain the exact solutions for different types of the space-time fractional nonlinear partial differential equations such as, the space-time fractional coupled equal width wave equation(CEWE) and the space-time fractional coupled modified equal width wave equation(CMEW), which are the important soliton equations. Both equations are reduced to ordinary differential equations by the use of fractional complex transform and properties of modified Riemann–Liouville derivative. We plot the exact solutions for these equations at different time levels. 展开更多
关键词 fractional coupled EW fractional coupled MEW equations modified kudryashov method
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部