The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy ...The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.展开更多
The process of selecting features or reducing dimensionality can be viewed as a multi-objective minimization problem in which both the number of features and error rate must be minimized.While it is a multi-objective ...The process of selecting features or reducing dimensionality can be viewed as a multi-objective minimization problem in which both the number of features and error rate must be minimized.While it is a multi-objective problem,current methods tend to treat feature selection as a single-objective optimization task.This paper presents enhanced multi-objective grey wolf optimizer with Lévy flight and mutation phase(LMuMOGWO)for tackling feature selection problems.The proposed approach integrates two effective operators into the existing Multi-objective Grey Wolf optimizer(MOGWO):a Lévy flight and a mutation operator.The Lévy flight,a type of random walk with jump size determined by the Lévy distribution,enhances the global search capability of MOGWO,with the objective of maximizing classification accuracy while minimizing the number of selected features.The mutation operator is integrated to add more informative features that can assist in enhancing classification accuracy.As feature selection is a binary problem,the continuous search space is converted into a binary space using the sigmoid function.To evaluate the classification performance of the selected feature subset,the proposed approach employs a wrapper-based Artificial Neural Network(ANN).The effectiveness of the LMuMOGWO is validated on 12 conventional UCI benchmark datasets and compared with two existing variants of MOGWO,BMOGWO-S(based sigmoid),BMOGWO-V(based tanh)as well as Non-dominated Sorting Genetic Algorithm II(NSGA-II)and Multi-objective Particle Swarm Optimization(BMOPSO).The results demonstrate that the proposed LMuMOGWO approach is capable of successfully evolving and improving a set of randomly generated solutions for a given optimization problem.Moreover,the proposed approach outperforms existing approaches in most cases in terms of classification error rate,feature reduction,and computational cost.展开更多
Aiming at tracking control of a class of innovative control effector(ICE) aircraft with distributed arrays of actuators, this paper proposes a control allocation scheme based on the Lévy flight.Different from the...Aiming at tracking control of a class of innovative control effector(ICE) aircraft with distributed arrays of actuators, this paper proposes a control allocation scheme based on the Lévy flight.Different from the conventional aircraft control allocation problem,the particular characteristic of actuators makes the actuator control command totally subject to integer constraints. In order to tackle this problem, first, the control allocation problem is described as an integer programming problem with two desired objectives. Then considering the requirement of real-time, a metaheuristic algorithm based on the Lévy flight is introduced to tackling this problem. In order to improve the searching efficiency, several targeted and heuristic strategies including variable step length and inherited population initialization according to feedback and so on are designed. Moreover, to prevent the incertitude of the metaheuristic algorithm and ensure the flight stability, a guaranteed control strategy is designed. Finally, a time-varying simulation model is introduced to verifying the effectiveness of the proposed scheme. The contrastive simulation results indicate that the proposed scheme achieves superior tracking performance with appropriate actuator dynamics and computational time, and the improvements for efficiency are active and the parameter settings are reasonable.展开更多
In response to the shortcomings of Dwarf Mongoose Optimization(DMO)algorithm,such as insufficient exploitation capability and slow convergence speed,this paper proposes a multi-strategy enhanced DMO,referred to as GLS...In response to the shortcomings of Dwarf Mongoose Optimization(DMO)algorithm,such as insufficient exploitation capability and slow convergence speed,this paper proposes a multi-strategy enhanced DMO,referred to as GLSDMO.Firstly,we propose an improved solution search equation that utilizes the Gbest-guided strategy with different parameters to achieve a trade-off between exploration and exploitation(EE).Secondly,the Lévy flight is introduced to increase the diversity of population distribution and avoid the algorithm getting stuck in a local optimum.In addition,in order to address the problem of low convergence efficiency of DMO,this study uses the strong nonlinear convergence factor Sigmaid function as the moving step size parameter of the mongoose during collective activities,and combines the strategy of the salp swarm leader with the mongoose for cooperative optimization,which enhances the search efficiency of agents and accelerating the convergence of the algorithm to the global optimal solution(Gbest).Subsequently,the superiority of GLSDMO is verified on CEC2017 and CEC2019,and the optimization effect of GLSDMO is analyzed in detail.The results show that GLSDMO is significantly superior to the compared algorithms in solution quality,robustness and global convergence rate on most test functions.Finally,the optimization performance of GLSDMO is verified on three classic engineering examples and one truss topology optimization example.The simulation results show that GLSDMO achieves optimal costs on these real-world engineering problems.展开更多
The Berry-Tabor(BT)conjecture is a famous statistical inference in quantum chaos,which not only establishes the spectral fluctuations of quantum systems whose classical counterparts are integrable but can also be used...The Berry-Tabor(BT)conjecture is a famous statistical inference in quantum chaos,which not only establishes the spectral fluctuations of quantum systems whose classical counterparts are integrable but can also be used to describe other wave phenomena.In this paper,the BT conjecture has been extended to Lévy plates.As predicted by the BT conjecture,level clustering is present in the spectra of Lévy plates.The consequence of level clustering is studied by introducing the distribution of nearest neighbor frequency level spacing ratios P(r),which is calculated through the analytical solution obtained by the Hamiltonian approach.Our work investigates the impact of varying foundation parameters,rotary inertia,and boundary conditions on the frequency spectra,and we find that P(r)conforms to a Poisson distribution in all cases.The reason for the occurrence of the Poisson distribution in the Lévy plates is the independence between modal frequencies,which can be understood through mode functions.展开更多
In the past few years,attention has mainly been focused on the symmetric Brownian motor(BM)with Gaussian noises,whose current and energy conversion efficiency are very low.Here,we investigate the operating performance...In the past few years,attention has mainly been focused on the symmetric Brownian motor(BM)with Gaussian noises,whose current and energy conversion efficiency are very low.Here,we investigate the operating performance of the symmetric BM subjected to Lévy noise.Through numerical simulations,it is found that the operating performance of the motor can be greatly improved in asymmetric Lévy noise.Without any load,the Lévy noises with smaller stable indexes can let the motor give rise to a much greater current.With a load,the energy conversion efficiency of the motor can be enhanced by adjusting the stable indexes of the Lévy noises with symmetry breaking.The results of this research are of great significance for opening up BM’s intrinsic physical mechanism and promoting the development of nanotechnology.展开更多
The formation of spatial patterns is an important issue in reaction–diffusion systems.Previous studies have mainly focused on the spatial patterns in reaction–diffusion models equipped with symmetric diffusion(such ...The formation of spatial patterns is an important issue in reaction–diffusion systems.Previous studies have mainly focused on the spatial patterns in reaction–diffusion models equipped with symmetric diffusion(such as normal or fractional Laplace diffusion),namely,assuming that spatial environments of the systems are homogeneous.However,the complexity and heterogeneity of spatial environments of biochemical reactions in vivo can lead to asymmetric diffusion of reactants.Naturally,there arises an open question of how the asymmetric diffusion affects dynamical behaviors of biochemical reaction systems.To answer this,we build a general asymmetric L´evy diffusion model based on the theory of a continuous time random walk.In addition,we investigate the two-species Brusselator model with asymmetric L´evy diffusion,and obtain a general condition for the formation of Turing and wave patterns.More interestingly,we find that even though the Brusselator model with symmetric diffusion cannot produce steady spatial patterns for some parameters,the asymmetry of L´evy diffusion for this model can produce wave patterns.This is different from the previous result that wave instability requires at least a three-species model.In addition,the asymmetry of L´evy diffusion can significantly affect the amplitude and frequency of the spatial patterns.Our results enrich our knowledge of the mechanisms of pattern formation.展开更多
This paper addresses the estimation problem of an unknown drift parameter matrix for a fractional Ornstein-Uhlenbeck process in a multi-dimensional setting.To tackle this problem,we propose a novel approach based on r...This paper addresses the estimation problem of an unknown drift parameter matrix for a fractional Ornstein-Uhlenbeck process in a multi-dimensional setting.To tackle this problem,we propose a novel approach based on rough path theory that allows us to construct pathwise rough path estimators from both continuous and discrete observations of a single path.Our approach is particularly suitable for high-frequency data.To formulate the parameter estimators,we introduce a theory of pathwise Itôintegrals with respect to fractional Brownian motion.By establishing the regularity of fractional Ornstein-Uhlenbeck processes and analyzing the long-term behavior of the associated Lévy area processes,we demonstrate that our estimators are strongly consistent and pathwise stable.Our findings offer a new perspective on estimating the drift parameter matrix for fractional Ornstein-Uhlenbeck processes in multi-dimensional settings,and may have practical implications for fields including finance,economics,and engineering.展开更多
基金Project supported by the Zhejiang Provincial Natural Science Foundation (Grant No.LQ20F020011)the Gansu Provincial Foundation for Distinguished Young Scholars (Grant No.23JRRA766)+1 种基金the National Natural Science Foundation of China (Grant No.62162040)the National Key Research and Development Program of China (Grant No.2020YFB1713600)。
文摘The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.
基金supported by Universiti Teknologi PETRONAS,under the Yayasan Universiti Teknologi PETRONAS (YUTP)Fundamental Research Grant Scheme (YUTPFRG/015LC0-274)support by Researchers Supporting Project Number (RSP-2023/309),King Saud University,Riyadh,Saudi Arabia.
文摘The process of selecting features or reducing dimensionality can be viewed as a multi-objective minimization problem in which both the number of features and error rate must be minimized.While it is a multi-objective problem,current methods tend to treat feature selection as a single-objective optimization task.This paper presents enhanced multi-objective grey wolf optimizer with Lévy flight and mutation phase(LMuMOGWO)for tackling feature selection problems.The proposed approach integrates two effective operators into the existing Multi-objective Grey Wolf optimizer(MOGWO):a Lévy flight and a mutation operator.The Lévy flight,a type of random walk with jump size determined by the Lévy distribution,enhances the global search capability of MOGWO,with the objective of maximizing classification accuracy while minimizing the number of selected features.The mutation operator is integrated to add more informative features that can assist in enhancing classification accuracy.As feature selection is a binary problem,the continuous search space is converted into a binary space using the sigmoid function.To evaluate the classification performance of the selected feature subset,the proposed approach employs a wrapper-based Artificial Neural Network(ANN).The effectiveness of the LMuMOGWO is validated on 12 conventional UCI benchmark datasets and compared with two existing variants of MOGWO,BMOGWO-S(based sigmoid),BMOGWO-V(based tanh)as well as Non-dominated Sorting Genetic Algorithm II(NSGA-II)and Multi-objective Particle Swarm Optimization(BMOPSO).The results demonstrate that the proposed LMuMOGWO approach is capable of successfully evolving and improving a set of randomly generated solutions for a given optimization problem.Moreover,the proposed approach outperforms existing approaches in most cases in terms of classification error rate,feature reduction,and computational cost.
基金supported by the National Natural Science Foundation of China(61803357)。
文摘Aiming at tracking control of a class of innovative control effector(ICE) aircraft with distributed arrays of actuators, this paper proposes a control allocation scheme based on the Lévy flight.Different from the conventional aircraft control allocation problem,the particular characteristic of actuators makes the actuator control command totally subject to integer constraints. In order to tackle this problem, first, the control allocation problem is described as an integer programming problem with two desired objectives. Then considering the requirement of real-time, a metaheuristic algorithm based on the Lévy flight is introduced to tackling this problem. In order to improve the searching efficiency, several targeted and heuristic strategies including variable step length and inherited population initialization according to feedback and so on are designed. Moreover, to prevent the incertitude of the metaheuristic algorithm and ensure the flight stability, a guaranteed control strategy is designed. Finally, a time-varying simulation model is introduced to verifying the effectiveness of the proposed scheme. The contrastive simulation results indicate that the proposed scheme achieves superior tracking performance with appropriate actuator dynamics and computational time, and the improvements for efficiency are active and the parameter settings are reasonable.
基金National Natural Science Foundation of China,Grant No.52375264.
文摘In response to the shortcomings of Dwarf Mongoose Optimization(DMO)algorithm,such as insufficient exploitation capability and slow convergence speed,this paper proposes a multi-strategy enhanced DMO,referred to as GLSDMO.Firstly,we propose an improved solution search equation that utilizes the Gbest-guided strategy with different parameters to achieve a trade-off between exploration and exploitation(EE).Secondly,the Lévy flight is introduced to increase the diversity of population distribution and avoid the algorithm getting stuck in a local optimum.In addition,in order to address the problem of low convergence efficiency of DMO,this study uses the strong nonlinear convergence factor Sigmaid function as the moving step size parameter of the mongoose during collective activities,and combines the strategy of the salp swarm leader with the mongoose for cooperative optimization,which enhances the search efficiency of agents and accelerating the convergence of the algorithm to the global optimal solution(Gbest).Subsequently,the superiority of GLSDMO is verified on CEC2017 and CEC2019,and the optimization effect of GLSDMO is analyzed in detail.The results show that GLSDMO is significantly superior to the compared algorithms in solution quality,robustness and global convergence rate on most test functions.Finally,the optimization performance of GLSDMO is verified on three classic engineering examples and one truss topology optimization example.The simulation results show that GLSDMO achieves optimal costs on these real-world engineering problems.
基金supported by the National Natural Science Foundation of China(Grant Nos.12261064 and 11861048)the Natural Science Foundation of Inner Mongolia,China(Grant No.2021MS01004)the Innovation Program for Graduate Education of Inner Mongolia University(Grant No.11200-5223737).
文摘The Berry-Tabor(BT)conjecture is a famous statistical inference in quantum chaos,which not only establishes the spectral fluctuations of quantum systems whose classical counterparts are integrable but can also be used to describe other wave phenomena.In this paper,the BT conjecture has been extended to Lévy plates.As predicted by the BT conjecture,level clustering is present in the spectra of Lévy plates.The consequence of level clustering is studied by introducing the distribution of nearest neighbor frequency level spacing ratios P(r),which is calculated through the analytical solution obtained by the Hamiltonian approach.Our work investigates the impact of varying foundation parameters,rotary inertia,and boundary conditions on the frequency spectra,and we find that P(r)conforms to a Poisson distribution in all cases.The reason for the occurrence of the Poisson distribution in the Lévy plates is the independence between modal frequencies,which can be understood through mode functions.
基金Project supported by the Research Group of Nonequilibrium Statistics(Grant No.14078206)Kunming University of Science and Technology,China.
文摘In the past few years,attention has mainly been focused on the symmetric Brownian motor(BM)with Gaussian noises,whose current and energy conversion efficiency are very low.Here,we investigate the operating performance of the symmetric BM subjected to Lévy noise.Through numerical simulations,it is found that the operating performance of the motor can be greatly improved in asymmetric Lévy noise.Without any load,the Lévy noises with smaller stable indexes can let the motor give rise to a much greater current.With a load,the energy conversion efficiency of the motor can be enhanced by adjusting the stable indexes of the Lévy noises with symmetry breaking.The results of this research are of great significance for opening up BM’s intrinsic physical mechanism and promoting the development of nanotechnology.
基金supported by the National Natural Science Foundation of China(Grant Nos.62066026,62363027,and 12071408)PhD program of Entrepreneurship and Innovation of Jiangsu Province,Jiangsu University’Blue Project’,the Natural Science Foundation of Jiangxi Province(Grant No.20224BAB202026)the Science and Technology Research Project of Jiangxi Provincial Department of Education(Grant No.GJJ2203316).
文摘The formation of spatial patterns is an important issue in reaction–diffusion systems.Previous studies have mainly focused on the spatial patterns in reaction–diffusion models equipped with symmetric diffusion(such as normal or fractional Laplace diffusion),namely,assuming that spatial environments of the systems are homogeneous.However,the complexity and heterogeneity of spatial environments of biochemical reactions in vivo can lead to asymmetric diffusion of reactants.Naturally,there arises an open question of how the asymmetric diffusion affects dynamical behaviors of biochemical reaction systems.To answer this,we build a general asymmetric L´evy diffusion model based on the theory of a continuous time random walk.In addition,we investigate the two-species Brusselator model with asymmetric L´evy diffusion,and obtain a general condition for the formation of Turing and wave patterns.More interestingly,we find that even though the Brusselator model with symmetric diffusion cannot produce steady spatial patterns for some parameters,the asymmetry of L´evy diffusion for this model can produce wave patterns.This is different from the previous result that wave instability requires at least a three-species model.In addition,the asymmetry of L´evy diffusion can significantly affect the amplitude and frequency of the spatial patterns.Our results enrich our knowledge of the mechanisms of pattern formation.
基金supported by Shanghai Artificial Intelligence Laboratory.
文摘This paper addresses the estimation problem of an unknown drift parameter matrix for a fractional Ornstein-Uhlenbeck process in a multi-dimensional setting.To tackle this problem,we propose a novel approach based on rough path theory that allows us to construct pathwise rough path estimators from both continuous and discrete observations of a single path.Our approach is particularly suitable for high-frequency data.To formulate the parameter estimators,we introduce a theory of pathwise Itôintegrals with respect to fractional Brownian motion.By establishing the regularity of fractional Ornstein-Uhlenbeck processes and analyzing the long-term behavior of the associated Lévy area processes,we demonstrate that our estimators are strongly consistent and pathwise stable.Our findings offer a new perspective on estimating the drift parameter matrix for fractional Ornstein-Uhlenbeck processes in multi-dimensional settings,and may have practical implications for fields including finance,economics,and engineering.