Non-pillar mining,top-coal caving and protected coal seam mining are the most popular mining methods in coal exploitation,and the different mining layouts will change the stress state and failure mechanism of coal in ...Non-pillar mining,top-coal caving and protected coal seam mining are the most popular mining methods in coal exploitation,and the different mining layouts will change the stress state and failure mechanism of coal in front of the working face.In this paper,mining-induced mechanical behaviors under three mining layouts have been simulated in the laboratory to investigate the effects of mining layouts on the deformation and strength of coal.Furthermore,the coal failure mechanism under different mining layouts is analyzed microscopically.The experimental results indicate that the stage characteristics of the coal deformation are obvious.Under the serial action of non-pillar mining,top-coal caving and protected coal seam mining layouts,the values of radial deformation,volume strain and Poisson's ratio increase,while the peak strength and deformation modulus decrease at the same buried depth,and the peak strength under non-pillar mining,top-coal caving and protected coal seam mining is about 3.0,2.5 and 2.0 times of the initial confining pressure,respectively.The results also indicate that the trend of the coal deformation decreases with the increase of the buried depth under the same mining layout,while the strength and deformation modulus increase,and the failure mechanism under three mining layouts is dominated with shear/tensile failure.展开更多
Both nMOS and pMOS transistors with two-edged and multi-finger layouts are fabricated in a standard commercial 0.6μm CMOS/bulk process to study their total ionizing dose (TID) radiation effects. The leakage current...Both nMOS and pMOS transistors with two-edged and multi-finger layouts are fabricated in a standard commercial 0.6μm CMOS/bulk process to study their total ionizing dose (TID) radiation effects. The leakage current, threshold voltage shift, and transconductance of the devices are monitored before and after T-ray irradiation. Different device bias conditions are used during irradiation. The experiment results show that TID radiation effects on nMOS devices are very sensitive to their layout structures. The impact of the layout on TID effects on pMOS devices is slight and can be neglected.展开更多
In this study, the spatial distributions of stress and fracture fields for three typical underground coal mining layouts, Le, non-pillar mining (NM), top-coal caving mining (TCM) and protective coal-seam mining (...In this study, the spatial distributions of stress and fracture fields for three typical underground coal mining layouts, Le, non-pillar mining (NM), top-coal caving mining (TCM) and protective coal-seam mining (PCM), are modeled using discrete element software UDEC, The numerical results show that different mining layouts can lead to different mining-induced stress fields, resulting in diverse fracture fields, For the PCM, the mining influenced area in front of the mining faces is the largest, and the stress concentration factor in front of the mining faces is the lowest, The spatial shapes of the mining-induced fracture fields under NM, TCM and PCM differ, and they are characterized by trapezoidal, triangular and tower shapes, respectively, The fractal dimensions of mining-induced fractures of the three mining layouts decrease in the order of PCM, TCM and NM, It is also shown that the PCM can result in a better gas control effect in coal mines with high outburst potential, The numerical results are expected to provide a basis for understanding of mining-induced gas seepage fields and provide a reference for high- efficiency coal mining,展开更多
On the basis of analyzing socio-economic structures, social classes and their relations in the late Qing Dynasty and the early Republic of China, this paper took residential gardens of three principal groups(officials...On the basis of analyzing socio-economic structures, social classes and their relations in the late Qing Dynasty and the early Republic of China, this paper took residential gardens of three principal groups(officials, merchants and literati) for example, analyzed functional features and layouts of the gardens, explored artistic characteristics and cultural connotations of the local residential gardens, so as to provide references for the conservation and construction of historic and cultural cities, design and expression of modern urban livable spaces.展开更多
It is very important to consider proper intelligent integration and locations of renewable energy sources into the built environment for developing smart cities. Wind speed distribution study in the built environment ...It is very important to consider proper intelligent integration and locations of renewable energy sources into the built environment for developing smart cities. Wind speed distribution study in the built environment is very essential for analyzing the wind turbine performance located in the built environment. In this work, the building layout like nozzle is proposed and the objective is to optimize the building layout for increasing electrical energy output of wind turbine, assumed to be installed in actual cities of Japan. The wind speed distribution across buildings is numerically simulated by using CFD-ACE+. Wind turbine power output is estimated using the power curve of a real commercial wind turbine and wind speed distribution is simulated using CFD software. The meteorological data of Fukushima city and Tsu city of Japan are utilized for evaluating the wind speed distribution profile across the building and for finding the electrical energy output from wind turbine. The proposed building models, which have the angle between two buildings like nozzle of 90°, 135° and 180°, can provide the wind acceleration at the back of buildings for the wind blowing from the main wind direction and the angle of 135°is optimum building layout. In the case of installing the proposed building model in Fukushima city and Tsu city, the wind energy output in winter season is higher while that in summer season is lower irrespective of the buildings’ angle. The interaction between the change in frequency distribution of wind speed and direction throughout the year and the location of open tip of building model decides the power generation characteristics of the proposed building model.展开更多
Taizhou is an economically-developed port city on the golden coastline of China, characterized by typical coastal and combined green cores, mountains and waters, and special plants. This paper analyzed natural conditi...Taizhou is an economically-developed port city on the golden coastline of China, characterized by typical coastal and combined green cores, mountains and waters, and special plants. This paper analyzed natural conditions and city features of Taizhou, assessed current construction of local urban forests, and proposed pertinent construction concepts in view of diversifi ed needs of urban development on forest construction. On the basis of the city development, principles of urban forest layout were put forward, and the overall structure of "one core, one belt, two rings, three corridors, four groups, fi ve windows, and multiple bases" was given for the construction of urban forest in coastal landscape cities, in addition, the effect and feasibility of the layout were analyzed.展开更多
A spillway aerator should guarantee favorable flow conditions in the coupled water-air system even if the aerator is unconventionally wide. Eight air-vent configurations are devised and incorporated into a 35-m wide c...A spillway aerator should guarantee favorable flow conditions in the coupled water-air system even if the aerator is unconventionally wide. Eight air-vent configurations are devised and incorporated into a 35-m wide chute aerator for a generalized study. Computational fluid dynamics(CFD) simulations are performed to explore their effects on water-jet and air-cavity features. The Re-normalisation group(RNG) k-ε turbulence model and the two-fluid model are combined to predict the two-phase flow field. The results demonstrate appreciable influences of the vent layouts on the water-air flow. The air vents stir the air motion and re-distribute the cavity air pressure. Once the vent layout is modified, reciprocal adjustments exist between the jet behavior and air-pressure field in the cavity, thus leading to considerable differences in air-flow rate, jet-trajectory length, vent air-flow distribution across the chute, etc. The large width plays a discernable role in affecting the aerated flow. Telling differences exist between the near-wall region and the central part of the chute. To improve the duct pressure propagation, a gradual augment of the vent area should be assigned towards the chute center. Relative to single-slot vents across the flow, the layouts with segregated vents gain by comparison. A designer should see to it that a vented aerator operates satisfactorily for a given range of flow discharges.展开更多
Since Maglev vehicles will run in a closed vacuum tube,the layout of the terminal stations of evacuated tube transportation(ETT) will differ from the traditional railway stations.This paper deals with some possible ...Since Maglev vehicles will run in a closed vacuum tube,the layout of the terminal stations of evacuated tube transportation(ETT) will differ from the traditional railway stations.This paper deals with some possible station layouts of ETT,e.g.,a station with an airlock,a station without an airlock,above ground and underground stations,and stations with either level arrayed or rotation platforms.Then different station layouts are compared,and characteristics of each are analyzed.Finally,a more secure mode for ETT station layouts is suggested,which can be the basis for future ETT station layout and designs.展开更多
Subways,underground logistics systems and underground parking,as the primary facilities types of underground,contribute significantly to the achievement of carbon–neutral cities by moving surface transportation to un...Subways,underground logistics systems and underground parking,as the primary facilities types of underground,contribute significantly to the achievement of carbon–neutral cities by moving surface transportation to underground,thereby releasing surface space for the creation of more urban blue-green space for carbon sink.Therefore,in-depth studies on carbon neutrality strategies as well as reliable layout optimization solutions of these three types of underground facilities are required.This study proposes a spatial layout optimization strategy for carbon neutrality using underground hydrogen storage and geothermal energy for these three types of underground facilities employing a multi-agent system model.First,three spatial layout relationships,competition,coordination,and followership,between five underground facilities that contribute to emission reduction were investigated.Second,the implementation steps for optimizing the spatial layout of underground facilities were determined by defining the behavioral guidelines for spatial environment,underground facility,and synergistic agent.Finally,using the Tianfu New District in Chengdu City,China,as a case study,layouts of underground facilities under three different underground space development scenarios were simulated to verify the model.The findings of this study address the gap in the research on underground spatial facilities and their layout optimization in response to emission reduction.This study provided a significant reference for the study of underground space and underground resources at the planning level to aid in achieving carbon–neutral cities.展开更多
A 2%scale,cruising version of a 450-seat class Blended-Wing-Body(BWB)transport was tested in the China Aerodynamic Research and Development Center’s FL-262.4-by-2.4-meter subsonic wind tunnel.The focus of the wind tu...A 2%scale,cruising version of a 450-seat class Blended-Wing-Body(BWB)transport was tested in the China Aerodynamic Research and Development Center’s FL-262.4-by-2.4-meter subsonic wind tunnel.The focus of the wind tunnel test was to investigate the aerodynamic performance of the latest BWB transport design,which would also aid in choosing a final engine arrangement in the three most potential engine integration layouts.The wind tunnel model can be tested with and without the nacelle and has three sets of different nacelle/tail integration positions.Computational Fluid Dynamics(CFD)simulations were performed in engine-aircraft integration design to find appropriate nacelle installing parameters of each layout.The comparison of CFD with experimental results shows good agreement.Wind tunnel measurements indicate that the tail-mounted engine layout produces the minimum drag penalty,while the fuselage-mounted engine layout increases drag the most.Experimental pressure measurement illustrates the effect of nacelle integration on the wing-body surface pressure distribution.This experimental and numerical research provides a reference for future BWB Propulsion-Airframe Integration(PAI)design.展开更多
The application of machine learning(ML)modelling in daylight prediction has been a promising approach for reliable and effective visual comfort assessment.Although many advancements have been made,no standardized ML m...The application of machine learning(ML)modelling in daylight prediction has been a promising approach for reliable and effective visual comfort assessment.Although many advancements have been made,no standardized ML modelling framework exists in daylight assessment.In this study,625 different building layouts were generated to model useful daylight illuminance(UDI).Two state-of-the-art ML algorithms,eXtreme Gradient Boosting(XGBoost)and random forest(RF),were employed to analyze UDI in four categories:UDI-f(fell short),UDI-s(supplementary),UDI-a(autonomous),and UDI-e(exceeded).A feature(internal finish)was introduced to the framework to better reflect real-world representation.The results show that XGBoost models predict UDI with a maximum accuracy of R^(2)=0.992.Compared to RF,the XGBoost ML models can significantly reduce prediction errors.Future research directions have been specified to advance the proposed framework by introducing new features and exploring new ML architectures to standardize ML applications in daylight prediction.展开更多
High-speed locomotives are prone to carbody or bogie hunting when the wheel-rail contact conicity is excessively low or high.This can cause negative impacts on vehicle dynamics performance.This study presents four typ...High-speed locomotives are prone to carbody or bogie hunting when the wheel-rail contact conicity is excessively low or high.This can cause negative impacts on vehicle dynamics performance.This study presents four types of typical yaw damper layouts for a high-speed locomotive(Bo-Bo)and compares,by using the multi-objective optimization method,the influences of those layouts on the lateral dynamics performance of the locomotive;the linear stability indexes under lowconicity and high-conicity conditions are selected as optimization objectives.Furthermore,the radial basis function-based highdimensional model representation(RBF-HDMR)method is used to conduct a global sensitivity analysis(GSA)between key suspension parameters and the lateral dynamics performance of the locomotive,including the lateral ride comfort on straight tracks under the low-conicity condition,and also the operational safety on curved tracks.It is concluded that the layout of yaw dampers has a considerable impact on low-conicity stability and lateral ride comfort but has little influence on curving performance.There is also an important finding that only when the locomotive adopts the layout with opening outward,the difference in lateral ride comfort between the front and rear ends of the carbody can be eliminated by adjusting the lateral installation angle of the yaw dampers.Finally,force analysis and modal analysis methods are adopted to explain the influence mechanism of yaw damper layouts on the lateral stability and differences in lateral ride comfort between the front and rear ends of the carbody.展开更多
Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components direct...Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry.展开更多
Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas...Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.展开更多
This paper applies the meshfree Smoothed Particle Hydrodynamics (SPH) method with Graphical Processing Unit (GPU) parallel computing technique to investigate the highly complex 3-D dam-break flow in urban areas in...This paper applies the meshfree Smoothed Particle Hydrodynamics (SPH) method with Graphical Processing Unit (GPU) parallel computing technique to investigate the highly complex 3-D dam-break flow in urban areas including underground spaces. Taking the advantage of GPUs parallel computing techniques, simulations involving more than 107 particles can be achieved. We use a virtual geometric plane boundary to handle the outermost solid wall in order to save considerable video card memory for the GPU computing. To evaluate the accuracy of the new GPU-based SPH model, qualitative and quantitative comparison to a real flooding experiment is performed and the results of a numerical model based on Shallow Water Equations (SWEs) is given with good accuracy. With the new GPU-based SPH model, the effects of the building layouts and underground spaces on the propagation of dambreak flood through an intricate city layout are examined.展开更多
Debris flows pose serious risks to communities in mountainous areas,often resulting in large losses of human life and property.The impeding presence of urban buildings often affects the runout behavior and deposition ...Debris flows pose serious risks to communities in mountainous areas,often resulting in large losses of human life and property.The impeding presence of urban buildings often affects the runout behavior and deposition of debris flows.But the impact of different building densities and sizes on debris flow dynamics has yet to be quantified to guide urban planning in debris flow risk zones.This study focused on a debris flow that occurred in Zhouqu County,Gansu Province,China on August 7th,2010,which was catastrophic and destroyed many buildings.The FLO-2D software was used to simulate this debris flow in two scenarios,i.e.the presence and the absence of buildings,to obtain debris-flow intensity parameters.The developed model was then used to further analyze the influence of large buildings and narrow channels within the urban environment.The simulation results show that considering the presence of buildings in the simulation is essential for accurate assessment of debris flow intensity and deposition distribution.The layout of buildings in the upstream urban area,such as large buildings or parallel buildings which form narrow channels,can affect the flow velocity and depth of debris flow heading towards downstream buildings.To mitigate damage to downstream buildings,the relative spacing(d/a)between upstream and downstream buildings should not exceed a value of two and should ideally be even lower.These findings provide valuable insights for improving the resistance of mountainous cities to urban debris flows.展开更多
There are lots of researches on fixture layout optimization for large thin-walled parts.Current researches focus on the positioning problem,i.e.,optimizing the positions of a constant number of fixtures.However,how to...There are lots of researches on fixture layout optimization for large thin-walled parts.Current researches focus on the positioning problem,i.e.,optimizing the positions of a constant number of fixtures.However,how to determine the number of fixtures is ignored.In most cases,the number of fixtures located on large thin-walled parts is determined based on engineering experience,which leads to huge fixture number and extra waste.Therefore,this paper constructs an optimization model to minimize the number of fixtures.The constraints are set in the optimization model to ensure that the part deformation is within the surface profile tolerance.In addition,the assembly gap between two parts is also controlled.To conduct the optimization,this paper develops an improved particle swarm optimization(IPSO)algorithm by integrating the shrinkage factor and adaptive inertia weight.In the algorithm,particles are encoded according to the fixture position.Each dimension of the particle is assigned to a sub-region by constraining the optional position range of each fixture to improve the optimization efficiency.Finally,a case study on ship curved panel assembly is provided to prove that our method can optimize the number of fixtures while meeting the assembly quality requirements.This research proposes a method to optimize the number of fixtures,which can reduce the number of fixtures and achieve deformation control at the same time.展开更多
An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing lit...An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing literature,this paper summarizes the process of fixture layout optimization and the methods applied.The process of optimization is made up of optimization objective setting,assembly variation/deformation modeling,and fixture layout optimization.This paper makes a review of the fixture layout for thin-walled parts according to these three steps.First,two different kinds of optimization objectives are introduced.Researchers usually consider in-plane variations or out-of-plane deformations when designing objectives.Then,modeling methods for assembly variation and deformation are divided into two categories:Mechanism-based and data-based methods.Several common methods are discussed respectively.After that,optimization algorithms are reviewed systematically.There are two kinds of optimization algorithms:Traditional nonlinear programming and heuristic algorithms.Finally,discussions on the current situation are provided.The research direction of fixture layout optimization in the future is discussed from three aspects:Objective setting,improving modeling accuracy and optimization algorithms.Also,a new research point for fixture layout optimization is discussed.This paper systematically reviews the research on fixture layout optimization for thin-walled parts,and provides a reference for future research in this field.展开更多
Perforation is a pivotal technique employed to establish main flow channels within the reservoir formation at the outset of hydraulic fracturing operations.Optimizing perforation designs is critical for augmenting the...Perforation is a pivotal technique employed to establish main flow channels within the reservoir formation at the outset of hydraulic fracturing operations.Optimizing perforation designs is critical for augmenting the efficacy of hydraulic fracturing and boosting oil or gas production.In this study,we employ a hybrid finite-discrete element method,known as the continuous–discontinuous element method(CDEM),to simulate the initiation of post-perforation hydraulic fractures and to derive enhanced design parameters.The model incorporates the four most prevalent perforation geometries,as delineated in an engineering technical report.Real-world perforations deviate from the ideal cylindrical shape,exhibiting variable cross-sectional profiles that typically manifest as an initial constriction followed by an expansion,a feature consistent across all four perforation types.Our simulations take into account variations in perforation hole geometries,cross-sectional diameters,and perforation lengths.The findings show that perforations generated by the 39g DP3 HMX perforating bullet yield the lowest breakdown pressure,which inversely correlates with increases in sectional diameter and perforation length.Moreover,this study reveals the relationship between breakdown pressure and fracture degree,providing valuable insights for engineers and designers to refine perforation strategies.展开更多
Reducing the process variation is a significant concern for resistive random access memory(RRAM).Due to its ultrahigh integration density,RRAM arrays are prone to lithographic variation during the lithography process,...Reducing the process variation is a significant concern for resistive random access memory(RRAM).Due to its ultrahigh integration density,RRAM arrays are prone to lithographic variation during the lithography process,introducing electrical variation among different RRAM devices.In this work,an optical physical verification methodology for the RRAM array is developed,and the effects of different layout parameters on important electrical characteristics are systematically investigated.The results indicate that the RRAM devices can be categorized into three clusters according to their locations and lithography environments.The read resistance is more sensitive to the locations in the array(~30%)than SET/RESET voltage(<10%).The increase in the RRAM device length and the application of the optical proximity correction technique can help to reduce the variation to less than 10%,whereas it reduces RRAM read resistance by 4×,resulting in a higher power and area consumption.As such,we provide design guidelines to minimize the electrical variation of RRAM arrays due to the lithography process.展开更多
基金funded by the State Key Basic Research Program of China(No.2011CB201201)the National Key TechnologyR&D Program(No.2008BAB36B07)the National Natural Science Foundation of China(Nos.51134018 and 50674092)
文摘Non-pillar mining,top-coal caving and protected coal seam mining are the most popular mining methods in coal exploitation,and the different mining layouts will change the stress state and failure mechanism of coal in front of the working face.In this paper,mining-induced mechanical behaviors under three mining layouts have been simulated in the laboratory to investigate the effects of mining layouts on the deformation and strength of coal.Furthermore,the coal failure mechanism under different mining layouts is analyzed microscopically.The experimental results indicate that the stage characteristics of the coal deformation are obvious.Under the serial action of non-pillar mining,top-coal caving and protected coal seam mining layouts,the values of radial deformation,volume strain and Poisson's ratio increase,while the peak strength and deformation modulus decrease at the same buried depth,and the peak strength under non-pillar mining,top-coal caving and protected coal seam mining is about 3.0,2.5 and 2.0 times of the initial confining pressure,respectively.The results also indicate that the trend of the coal deformation decreases with the increase of the buried depth under the same mining layout,while the strength and deformation modulus increase,and the failure mechanism under three mining layouts is dominated with shear/tensile failure.
文摘Both nMOS and pMOS transistors with two-edged and multi-finger layouts are fabricated in a standard commercial 0.6μm CMOS/bulk process to study their total ionizing dose (TID) radiation effects. The leakage current, threshold voltage shift, and transconductance of the devices are monitored before and after T-ray irradiation. Different device bias conditions are used during irradiation. The experiment results show that TID radiation effects on nMOS devices are very sensitive to their layout structures. The impact of the layout on TID effects on pMOS devices is slight and can be neglected.
基金financially supported by the State Key Research Development Program of China(Grant No.2016YFC0600701)the National Natural Science Foundation of China(Grant No.51674170)
文摘In this study, the spatial distributions of stress and fracture fields for three typical underground coal mining layouts, Le, non-pillar mining (NM), top-coal caving mining (TCM) and protective coal-seam mining (PCM), are modeled using discrete element software UDEC, The numerical results show that different mining layouts can lead to different mining-induced stress fields, resulting in diverse fracture fields, For the PCM, the mining influenced area in front of the mining faces is the largest, and the stress concentration factor in front of the mining faces is the lowest, The spatial shapes of the mining-induced fracture fields under NM, TCM and PCM differ, and they are characterized by trapezoidal, triangular and tower shapes, respectively, The fractal dimensions of mining-induced fractures of the three mining layouts decrease in the order of PCM, TCM and NM, It is also shown that the PCM can result in a better gas control effect in coal mines with high outburst potential, The numerical results are expected to provide a basis for understanding of mining-induced gas seepage fields and provide a reference for high- efficiency coal mining,
基金Sponsored by"Project Blue"Academic Leader Fund of Yangzhou Polytechnic Institute
文摘On the basis of analyzing socio-economic structures, social classes and their relations in the late Qing Dynasty and the early Republic of China, this paper took residential gardens of three principal groups(officials, merchants and literati) for example, analyzed functional features and layouts of the gardens, explored artistic characteristics and cultural connotations of the local residential gardens, so as to provide references for the conservation and construction of historic and cultural cities, design and expression of modern urban livable spaces.
文摘It is very important to consider proper intelligent integration and locations of renewable energy sources into the built environment for developing smart cities. Wind speed distribution study in the built environment is very essential for analyzing the wind turbine performance located in the built environment. In this work, the building layout like nozzle is proposed and the objective is to optimize the building layout for increasing electrical energy output of wind turbine, assumed to be installed in actual cities of Japan. The wind speed distribution across buildings is numerically simulated by using CFD-ACE+. Wind turbine power output is estimated using the power curve of a real commercial wind turbine and wind speed distribution is simulated using CFD software. The meteorological data of Fukushima city and Tsu city of Japan are utilized for evaluating the wind speed distribution profile across the building and for finding the electrical energy output from wind turbine. The proposed building models, which have the angle between two buildings like nozzle of 90°, 135° and 180°, can provide the wind acceleration at the back of buildings for the wind blowing from the main wind direction and the angle of 135°is optimum building layout. In the case of installing the proposed building model in Fukushima city and Tsu city, the wind energy output in winter season is higher while that in summer season is lower irrespective of the buildings’ angle. The interaction between the change in frequency distribution of wind speed and direction throughout the year and the location of open tip of building model decides the power generation characteristics of the proposed building model.
文摘Taizhou is an economically-developed port city on the golden coastline of China, characterized by typical coastal and combined green cores, mountains and waters, and special plants. This paper analyzed natural conditions and city features of Taizhou, assessed current construction of local urban forests, and proposed pertinent construction concepts in view of diversifi ed needs of urban development on forest construction. On the basis of the city development, principles of urban forest layout were put forward, and the overall structure of "one core, one belt, two rings, three corridors, four groups, fi ve windows, and multiple bases" was given for the construction of urban forest in coastal landscape cities, in addition, the effect and feasibility of the layout were analyzed.
基金part of research project "Hydraulic design of spillway aerators"funded in part by Swedish Hydropower Centre(SVC)+2 种基金Vattenfall R&DFortum GenerationUniper/Sweco have indirectly facilitated the study
文摘A spillway aerator should guarantee favorable flow conditions in the coupled water-air system even if the aerator is unconventionally wide. Eight air-vent configurations are devised and incorporated into a 35-m wide chute aerator for a generalized study. Computational fluid dynamics(CFD) simulations are performed to explore their effects on water-jet and air-cavity features. The Re-normalisation group(RNG) k-ε turbulence model and the two-fluid model are combined to predict the two-phase flow field. The results demonstrate appreciable influences of the vent layouts on the water-air flow. The air vents stir the air motion and re-distribute the cavity air pressure. Once the vent layout is modified, reciprocal adjustments exist between the jet behavior and air-pressure field in the cavity, thus leading to considerable differences in air-flow rate, jet-trajectory length, vent air-flow distribution across the chute, etc. The large width plays a discernable role in affecting the aerated flow. Telling differences exist between the near-wall region and the central part of the chute. To improve the duct pressure propagation, a gradual augment of the vent area should be assigned towards the chute center. Relative to single-slot vents across the flow, the layouts with segregated vents gain by comparison. A designer should see to it that a vented aerator operates satisfactorily for a given range of flow discharges.
基金supported by the National Natural Science Foundation of China (No.50678152)the Scientific Plan Fund of Shaanxi Province (No.2009K09-24)
文摘Since Maglev vehicles will run in a closed vacuum tube,the layout of the terminal stations of evacuated tube transportation(ETT) will differ from the traditional railway stations.This paper deals with some possible station layouts of ETT,e.g.,a station with an airlock,a station without an airlock,above ground and underground stations,and stations with either level arrayed or rotation platforms.Then different station layouts are compared,and characteristics of each are analyzed.Finally,a more secure mode for ETT station layouts is suggested,which can be the basis for future ETT station layout and designs.
基金supported by the National Natural Science Foundation of China(Grant Nos.52378083 and 52078481)the Natural Science Foundation of Jiangsu Province(Grant No.BK20231488).
文摘Subways,underground logistics systems and underground parking,as the primary facilities types of underground,contribute significantly to the achievement of carbon–neutral cities by moving surface transportation to underground,thereby releasing surface space for the creation of more urban blue-green space for carbon sink.Therefore,in-depth studies on carbon neutrality strategies as well as reliable layout optimization solutions of these three types of underground facilities are required.This study proposes a spatial layout optimization strategy for carbon neutrality using underground hydrogen storage and geothermal energy for these three types of underground facilities employing a multi-agent system model.First,three spatial layout relationships,competition,coordination,and followership,between five underground facilities that contribute to emission reduction were investigated.Second,the implementation steps for optimizing the spatial layout of underground facilities were determined by defining the behavioral guidelines for spatial environment,underground facility,and synergistic agent.Finally,using the Tianfu New District in Chengdu City,China,as a case study,layouts of underground facilities under three different underground space development scenarios were simulated to verify the model.The findings of this study address the gap in the research on underground spatial facilities and their layout optimization in response to emission reduction.This study provided a significant reference for the study of underground space and underground resources at the planning level to aid in achieving carbon–neutral cities.
基金This study was co-supported by the Beijing Key Laboratory of Simulation Technology for Civil Aircraft Design,China(No.11WX08)Innovation Foundation of COMAC Beijing Aircraft Technology Research Institute,China(No.Y16QT01).
文摘A 2%scale,cruising version of a 450-seat class Blended-Wing-Body(BWB)transport was tested in the China Aerodynamic Research and Development Center’s FL-262.4-by-2.4-meter subsonic wind tunnel.The focus of the wind tunnel test was to investigate the aerodynamic performance of the latest BWB transport design,which would also aid in choosing a final engine arrangement in the three most potential engine integration layouts.The wind tunnel model can be tested with and without the nacelle and has three sets of different nacelle/tail integration positions.Computational Fluid Dynamics(CFD)simulations were performed in engine-aircraft integration design to find appropriate nacelle installing parameters of each layout.The comparison of CFD with experimental results shows good agreement.Wind tunnel measurements indicate that the tail-mounted engine layout produces the minimum drag penalty,while the fuselage-mounted engine layout increases drag the most.Experimental pressure measurement illustrates the effect of nacelle integration on the wing-body surface pressure distribution.This experimental and numerical research provides a reference for future BWB Propulsion-Airframe Integration(PAI)design.
基金The authors are grateful for support from the Australian Research Council(ARC)through the Linkage Infrastructure,Equipment and Facilities(LE210100019).The assistance of the ASCII Lab members at Monash University is greatly appreciated.
文摘The application of machine learning(ML)modelling in daylight prediction has been a promising approach for reliable and effective visual comfort assessment.Although many advancements have been made,no standardized ML modelling framework exists in daylight assessment.In this study,625 different building layouts were generated to model useful daylight illuminance(UDI).Two state-of-the-art ML algorithms,eXtreme Gradient Boosting(XGBoost)and random forest(RF),were employed to analyze UDI in four categories:UDI-f(fell short),UDI-s(supplementary),UDI-a(autonomous),and UDI-e(exceeded).A feature(internal finish)was introduced to the framework to better reflect real-world representation.The results show that XGBoost models predict UDI with a maximum accuracy of R^(2)=0.992.Compared to RF,the XGBoost ML models can significantly reduce prediction errors.Future research directions have been specified to advance the proposed framework by introducing new features and exploring new ML architectures to standardize ML applications in daylight prediction.
基金supported by the National Railway Group Science and Technology Program(Nos.N2020J026 and N2021J028)the Independent Research and Development Project of State Key Laboratory of Traction Power,China(No.2022TPL_Q02)。
文摘High-speed locomotives are prone to carbody or bogie hunting when the wheel-rail contact conicity is excessively low or high.This can cause negative impacts on vehicle dynamics performance.This study presents four types of typical yaw damper layouts for a high-speed locomotive(Bo-Bo)and compares,by using the multi-objective optimization method,the influences of those layouts on the lateral dynamics performance of the locomotive;the linear stability indexes under lowconicity and high-conicity conditions are selected as optimization objectives.Furthermore,the radial basis function-based highdimensional model representation(RBF-HDMR)method is used to conduct a global sensitivity analysis(GSA)between key suspension parameters and the lateral dynamics performance of the locomotive,including the lateral ride comfort on straight tracks under the low-conicity condition,and also the operational safety on curved tracks.It is concluded that the layout of yaw dampers has a considerable impact on low-conicity stability and lateral ride comfort but has little influence on curving performance.There is also an important finding that only when the locomotive adopts the layout with opening outward,the difference in lateral ride comfort between the front and rear ends of the carbody can be eliminated by adjusting the lateral installation angle of the yaw dampers.Finally,force analysis and modal analysis methods are adopted to explain the influence mechanism of yaw damper layouts on the lateral stability and differences in lateral ride comfort between the front and rear ends of the carbody.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52001088,52271269,U1906233)the Natural Science Foundation of Heilongjiang Province(Grant No.LH2021E050)+2 种基金the State Key Laboratory of Ocean Engineering(Grant No.GKZD010084)Liaoning Province’s Xing Liao Talents Program(Grant No.XLYC2002108)Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents(Grant No.2021RD16)。
文摘Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry.
基金the National Natural Science Foundation of China and the Natural Science Foundation of Jiangsu Province.It was also supported in part by Young Elite Scientists Sponsorship Program by CAST.
文摘Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.
基金Project supported by the National Basic Research Development Program of China(973 Program,No.2012CB719705)the National Natural Science Foundation of China(Grant Nos.91024032,70833003)
文摘This paper applies the meshfree Smoothed Particle Hydrodynamics (SPH) method with Graphical Processing Unit (GPU) parallel computing technique to investigate the highly complex 3-D dam-break flow in urban areas including underground spaces. Taking the advantage of GPUs parallel computing techniques, simulations involving more than 107 particles can be achieved. We use a virtual geometric plane boundary to handle the outermost solid wall in order to save considerable video card memory for the GPU computing. To evaluate the accuracy of the new GPU-based SPH model, qualitative and quantitative comparison to a real flooding experiment is performed and the results of a numerical model based on Shallow Water Equations (SWEs) is given with good accuracy. With the new GPU-based SPH model, the effects of the building layouts and underground spaces on the propagation of dambreak flood through an intricate city layout are examined.
基金This study was funded by the National Key Research and Development Program of China(Grant No.2019YFC1806001)the National Natural Science Foundation of China(Grant No.51988101,Grant No.52278376,Grant No.42007245)the Science and Technology Development Fund,Macao SAR(File nos.0083/2020/A2 and 001/2024/SKL).
文摘Debris flows pose serious risks to communities in mountainous areas,often resulting in large losses of human life and property.The impeding presence of urban buildings often affects the runout behavior and deposition of debris flows.But the impact of different building densities and sizes on debris flow dynamics has yet to be quantified to guide urban planning in debris flow risk zones.This study focused on a debris flow that occurred in Zhouqu County,Gansu Province,China on August 7th,2010,which was catastrophic and destroyed many buildings.The FLO-2D software was used to simulate this debris flow in two scenarios,i.e.the presence and the absence of buildings,to obtain debris-flow intensity parameters.The developed model was then used to further analyze the influence of large buildings and narrow channels within the urban environment.The simulation results show that considering the presence of buildings in the simulation is essential for accurate assessment of debris flow intensity and deposition distribution.The layout of buildings in the upstream urban area,such as large buildings or parallel buildings which form narrow channels,can affect the flow velocity and depth of debris flow heading towards downstream buildings.To mitigate damage to downstream buildings,the relative spacing(d/a)between upstream and downstream buildings should not exceed a value of two and should ideally be even lower.These findings provide valuable insights for improving the resistance of mountainous cities to urban debris flows.
基金Supported by National Natural Science Foundation of China(Grant No.52005371)Shanghai Pujiang Program of China(Grant No.2020PJD071)+1 种基金Shanghai Municipal Natural Science Foundation of China(Grant No.22ZR1463900)Fundamental Research Funds for the Central Universities of China.
文摘There are lots of researches on fixture layout optimization for large thin-walled parts.Current researches focus on the positioning problem,i.e.,optimizing the positions of a constant number of fixtures.However,how to determine the number of fixtures is ignored.In most cases,the number of fixtures located on large thin-walled parts is determined based on engineering experience,which leads to huge fixture number and extra waste.Therefore,this paper constructs an optimization model to minimize the number of fixtures.The constraints are set in the optimization model to ensure that the part deformation is within the surface profile tolerance.In addition,the assembly gap between two parts is also controlled.To conduct the optimization,this paper develops an improved particle swarm optimization(IPSO)algorithm by integrating the shrinkage factor and adaptive inertia weight.In the algorithm,particles are encoded according to the fixture position.Each dimension of the particle is assigned to a sub-region by constraining the optional position range of each fixture to improve the optimization efficiency.Finally,a case study on ship curved panel assembly is provided to prove that our method can optimize the number of fixtures while meeting the assembly quality requirements.This research proposes a method to optimize the number of fixtures,which can reduce the number of fixtures and achieve deformation control at the same time.
基金Supported by National Natural Science Foundation of China(Grant No.52005371)Shanghai Municipal Natural Science Foundation of China(Grant No.22ZR1463900)+1 种基金Fundamental Research Funds for the Central Universities of China(Grant No.22120220649)State Key Laboratory of Mechanical System and Vibration of China(Grant No.MSV202318).
文摘An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing literature,this paper summarizes the process of fixture layout optimization and the methods applied.The process of optimization is made up of optimization objective setting,assembly variation/deformation modeling,and fixture layout optimization.This paper makes a review of the fixture layout for thin-walled parts according to these three steps.First,two different kinds of optimization objectives are introduced.Researchers usually consider in-plane variations or out-of-plane deformations when designing objectives.Then,modeling methods for assembly variation and deformation are divided into two categories:Mechanism-based and data-based methods.Several common methods are discussed respectively.After that,optimization algorithms are reviewed systematically.There are two kinds of optimization algorithms:Traditional nonlinear programming and heuristic algorithms.Finally,discussions on the current situation are provided.The research direction of fixture layout optimization in the future is discussed from three aspects:Objective setting,improving modeling accuracy and optimization algorithms.Also,a new research point for fixture layout optimization is discussed.This paper systematically reviews the research on fixture layout optimization for thin-walled parts,and provides a reference for future research in this field.
基金support from the National Natural Science Foundation of China(Grant Nos.52178324,12102059)the China Postdoctoral Science Foundation(Grant No.2023M743604)+1 种基金the Beijing Natural Science Foundation(Grant No.3212027),the National Key R&D Program of China(Grant No.2023YFC3007203)the 2019 Foreign Experts Plan of Hebei Province.
文摘Perforation is a pivotal technique employed to establish main flow channels within the reservoir formation at the outset of hydraulic fracturing operations.Optimizing perforation designs is critical for augmenting the efficacy of hydraulic fracturing and boosting oil or gas production.In this study,we employ a hybrid finite-discrete element method,known as the continuous–discontinuous element method(CDEM),to simulate the initiation of post-perforation hydraulic fractures and to derive enhanced design parameters.The model incorporates the four most prevalent perforation geometries,as delineated in an engineering technical report.Real-world perforations deviate from the ideal cylindrical shape,exhibiting variable cross-sectional profiles that typically manifest as an initial constriction followed by an expansion,a feature consistent across all four perforation types.Our simulations take into account variations in perforation hole geometries,cross-sectional diameters,and perforation lengths.The findings show that perforations generated by the 39g DP3 HMX perforating bullet yield the lowest breakdown pressure,which inversely correlates with increases in sectional diameter and perforation length.Moreover,this study reveals the relationship between breakdown pressure and fracture degree,providing valuable insights for engineers and designers to refine perforation strategies.
基金supported in part by the Open Fund of State Key Laboratory of Integrated Chips and Systems,Fudan Universityin part by the National Science Foundation of China under Grant No.62304133 and No.62350610271.
文摘Reducing the process variation is a significant concern for resistive random access memory(RRAM).Due to its ultrahigh integration density,RRAM arrays are prone to lithographic variation during the lithography process,introducing electrical variation among different RRAM devices.In this work,an optical physical verification methodology for the RRAM array is developed,and the effects of different layout parameters on important electrical characteristics are systematically investigated.The results indicate that the RRAM devices can be categorized into three clusters according to their locations and lithography environments.The read resistance is more sensitive to the locations in the array(~30%)than SET/RESET voltage(<10%).The increase in the RRAM device length and the application of the optical proximity correction technique can help to reduce the variation to less than 10%,whereas it reduces RRAM read resistance by 4×,resulting in a higher power and area consumption.As such,we provide design guidelines to minimize the electrical variation of RRAM arrays due to the lithography process.