期刊文献+
共找到817篇文章
< 1 2 41 >
每页显示 20 50 100
基于MLMD的电能质量扰动检测方法
1
作者 黄永红 浦骁威 +1 位作者 张龙 李强 《电测与仪表》 北大核心 2024年第5期152-159,共8页
针对局部均值分解(Local Mean Decomposition,LMD)算法应用于电能质量扰动检测时存在“端点效应”与滑动平均收敛速度慢,严重影响测量精度的问题,提出一种改进局部均值分解方法(Modified LMD,MLMD)。通过分段三次Hermite插值取代滑动平... 针对局部均值分解(Local Mean Decomposition,LMD)算法应用于电能质量扰动检测时存在“端点效应”与滑动平均收敛速度慢,严重影响测量精度的问题,提出一种改进局部均值分解方法(Modified LMD,MLMD)。通过分段三次Hermite插值取代滑动平均法,有效改善LMD收敛慢、受平滑长度影响的弊端。为避免延拓长度不够而导致的“延拓失败”情形,在镜像延拓法的基础上结合“奇延拓”方法提出改进镜像延拓法。针对“直接法”求频率存在“毛刺现象”的弊端,文中改用希尔伯特变换(Hilbert Transform,HT)求取瞬时频率。最后,将MLMD分别应用于单一扰动信号与复合谐波信号的检测,相较传统的经验模态分解方法(Empirical Mode Decomposition,EMD),MLMD方法可有效抑制“端点效应”,同时能更准确的定位扰动信号的起止时刻,并且对高次谐波信号有更好的提取能力。 展开更多
关键词 lmd 端点效应 三次Hermite插值 改进镜像延拓
下载PDF
基于EOE_LMD和阶次跟踪分析的变转速轴承故障诊断
2
作者 张超 买买提热依木·阿布力孜 《振动与冲击》 EI CSCD 北大核心 2024年第7期308-316,共9页
振动信号分析是轴承故障诊断中的重要技术手段之一。变转速工况下的滚动轴承振动信号是典型的非平稳信号,并且在转频变化较小的工况中还存在噪声干扰的问题,使传统的时频分析技术难以应用。为解决该问题,提出了一种基于经验最优包络(emp... 振动信号分析是轴承故障诊断中的重要技术手段之一。变转速工况下的滚动轴承振动信号是典型的非平稳信号,并且在转频变化较小的工况中还存在噪声干扰的问题,使传统的时频分析技术难以应用。为解决该问题,提出了一种基于经验最优包络(empirical optimal envelope,EOE)的局部均值分解(local mean decomposition,LMD)和采用分段线性插值的计算阶次跟踪(computing order tracking,COT)算法相结合的故障诊断方法。首先,确定低通滤波器的截止频率和滤波阶数,对滚动轴承振动信号进行滤波,并对滤波后的包络信号进行COT,以获得角域平稳信号。然后,利用EOE_LMD对重采样后的平稳信号进行处理,得到若干乘积函数(product function,PF)分量。最后,通过计算各分量的信息熵和相关系数,选取合适的分量进行阶次分析,以判断变转速滚动轴承的故障类型。结果表明,该方法可以消除转速波动对故障特征提取的影响,在不同转速变化条件下对滚动轴承具有良好的故障诊断能力。 展开更多
关键词 滚动轴承 经验最优包络(EOE) 局部均值分解(lmd) 计算阶次跟踪(COT) 变转速工况
下载PDF
基于LMD边际谱能量熵的高压断路器机械故障诊断 被引量:1
3
作者 王国东 马莉 +1 位作者 李科云 万钧 《仪器仪表与分析监测》 CAS 2024年第1期17-22,共6页
断路器分合闸振动信号蕴含着丰富的机械特征信息,为准确提取其特征,提出一种基于LMD边际谱能量熵与GPSO算法相结合的高压断路器机械故障诊断方法。首先将原始振动信号进行小波软阈值去噪处理,然后将去噪后的信号利用LMD进行分解,获取若... 断路器分合闸振动信号蕴含着丰富的机械特征信息,为准确提取其特征,提出一种基于LMD边际谱能量熵与GPSO算法相结合的高压断路器机械故障诊断方法。首先将原始振动信号进行小波软阈值去噪处理,然后将去噪后的信号利用LMD进行分解,获取若干反映断路器操动过程中机械状态信息的PF分量;然后依据各PF分量与原始信号相关性确定包含主要状态信息的PF分量,并将前3阶分量进行希尔伯特变换(Hilbert变换),求取其边际谱能量熵作为特征向量;最后将特征向量输入到GPSO-SVM分类器,实现断路器机械故障诊断。实验结果表明:LMD边际谱能量熵能准确反映断路器机械故障特征,GPSO-SVM可有效辨识断路器机械故障。 展开更多
关键词 高压断路器 lmd HILBERT变换 边际谱能量熵 GPSO-SVM
下载PDF
基于BIC-PCA和LMD的朔黄铁路边坡变形预测方法
4
作者 胡方磊 《导航定位学报》 CSCD 北大核心 2024年第5期149-155,共7页
针对全球卫星导航系统(GNSS)监测数据处理中噪声抑制和变形信息提取精度不高等问题,提出一种联合使用贝叶斯信息准则(BIC)-主成分分析(PCA)和局部均值分解(LMD)的GNSS铁路边坡变形数据处理及信息提取方法:考虑PCA主分量个数确定,将贝叶... 针对全球卫星导航系统(GNSS)监测数据处理中噪声抑制和变形信息提取精度不高等问题,提出一种联合使用贝叶斯信息准则(BIC)-主成分分析(PCA)和局部均值分解(LMD)的GNSS铁路边坡变形数据处理及信息提取方法:考虑PCA主分量个数确定,将贝叶斯信息准则引入PCA建立BIC-PCA模型;进而利用BIC-PCA对变形监测数据进行分析,实现噪声抑制;然后利用LMD算法对噪声抑制后的监测数据进行分析,从中提取周期项、趋势项和波动项等隐含的变形信息;最后建立支持向量回归(SVR)模型,对未来变形趋势进行预测。实验结果表明,所提方法预测精度较高且噪声稳健性较强,预测结果的均方根(RMS)误差和平均预测误差(APRE)分别为6.30和7.26,远小于反向传播(BP)神经网络和灰色GM(1,1)模型。 展开更多
关键词 全球卫星导航系统(GNSS) 铁路边坡 变形预测 数据分析 噪声抑制 局部均值分解(lmd)
下载PDF
利用LMD-SVD方法进行GNSS坐标时间序列降噪
5
作者 龚旭峥 汪香梅 王凯时 《地理空间信息》 2024年第3期43-46,共4页
为降低噪声对GNSS坐标时间序列的影响、有效提取时间序列中的有用信息,在局部均值分解(LMD)降噪方法的基础上引入奇异值分解(SVD)方法,建立了LMD-SVD方法。首先通过LMD方法将时间序列分解为若干个乘积函数(PF)和余量,PF分量可反映时间... 为降低噪声对GNSS坐标时间序列的影响、有效提取时间序列中的有用信息,在局部均值分解(LMD)降噪方法的基础上引入奇异值分解(SVD)方法,建立了LMD-SVD方法。首先通过LMD方法将时间序列分解为若干个乘积函数(PF)和余量,PF分量可反映时间序列的时频分布特性;然后通过连续均方根误差方法确定高频分量与低频分量的分界点;最后对经SVD方法降噪后的高频分量、低频分量和余量进行重构,得到最终降噪结果。利用5个GNSS测站U方向坐标时间序列对该方法进行验证。结果表明,相较于单一LMD方法,LMD-SVD方法结果的信噪比与相关系数分别提高了34.28%与17.11%,均方根误差降低了51.31%,降噪效果更好。 展开更多
关键词 lmd SVD 时间序列 PF 降噪
下载PDF
基于SVD-ILMD的暂态电能质量扰动定位检测方法
6
作者 程江洲 张志强 +3 位作者 闫冉阳 李小来 谢卓然 胡哲豪 《浙江电力》 2024年第8期1-11,共11页
为实现对电网非平稳扰动信号的快速、准确分析,提出了融合SVD(奇异值分解)与ILMD(优化局部均值分解)的暂态电能质量扰动定位检测方法。首先,通过ILMD与模糊隶属度函数阈值处理噪声信息,削弱噪声干扰;然后,构造差值信号并利用滑窗SVD增... 为实现对电网非平稳扰动信号的快速、准确分析,提出了融合SVD(奇异值分解)与ILMD(优化局部均值分解)的暂态电能质量扰动定位检测方法。首先,通过ILMD与模糊隶属度函数阈值处理噪声信息,削弱噪声干扰;然后,构造差值信号并利用滑窗SVD增强扰动特征,进一步抑制噪声干扰;最后,基于特征增强信号提出一种自适应阈值截断的暂态电能质量扰动定位检测方法。经仿真分析与算法对比,验证了所提方法定位准确、抗噪性强、计算量小,对过零与微弱扰动也有较好的定位效果。 展开更多
关键词 暂态电能质量 扰动定位检测 差值信号 奇异值分解 局部均值分解
下载PDF
Short-term prediction of photovoltaic power generation based on LMD-EE-ESN with error correction
7
作者 YU Xiangqian LI Zheng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期360-368,共9页
Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorolog... Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction. 展开更多
关键词 photovoltaic(PV)power generation system short-term forecast local mean decomposition(lmd) energy entropy(EE) echo state network(ESN)
下载PDF
基于CRS-LMD和SVD的MMC-HVDC线路故障测距方法 被引量:2
8
作者 贺宇阳 马千里 +1 位作者 于飞 刘喜梅 《电力系统保护与控制》 EI CSCD 北大核心 2024年第1期121-132,共12页
直流输电线路故障行波波速不确定、波头提取困难以及噪声干扰等因素制约了直流电网中故障测距技术的应用。为了降低上述因素对定位准确性的影响,提出一种基于局部特征有理样条插值均值分解(LMD based on characteristic rational spline... 直流输电线路故障行波波速不确定、波头提取困难以及噪声干扰等因素制约了直流电网中故障测距技术的应用。为了降低上述因素对定位准确性的影响,提出一种基于局部特征有理样条插值均值分解(LMD based on characteristic rational spline,CRS-LMD)和奇异值分解(singular value decomposition,SVD)的故障测距方法。首先,利用特征尺度选取最优极点系数,结合有理样条插值调节拟合曲线的松紧程度,实现对故障电压行波的局部均值分解。其次,采用奇异值分解对故障行波波头进行准确提取。最后,在PSCAD/EMTDC中搭建了张北±500 kV柔性直流电网的仿真模型,模拟各种故障情况并输出故障数据,利用Matlab对故障数据进行处理并验证定位算法。最后,仿真结果表明,所提故障测距算法在不同故障距离和故障类型下均能实现故障测距,且在叠加噪声和过渡电阻的情况下也能保障较高的精确性。 展开更多
关键词 串柔性直流电网 有理样条插值 局部均值分解 奇异值分解 行波提取 故障测距
下载PDF
基于MOMEDA与LMD的往复压缩机活塞杆沉降信号故障特征提取方法研究
9
作者 何明 方燚 +5 位作者 孙瑞亮 李豪 刘世成 范文俊 闫慧敏 舒悦 《流体机械》 CSCD 北大核心 2024年第11期72-78,共7页
针对传统经验模态分解(EMD)等方法在当前往复压缩机活塞杆故障诊断中故障特征提取能力不足的问题,本文通过电涡流传感器获得往复压缩机活塞杆的沉降信号,利用多点最优最小熵解卷积算法(MOMEDA)对信号周期进行自适应调整去干扰处理,再对... 针对传统经验模态分解(EMD)等方法在当前往复压缩机活塞杆故障诊断中故障特征提取能力不足的问题,本文通过电涡流传感器获得往复压缩机活塞杆的沉降信号,利用多点最优最小熵解卷积算法(MOMEDA)对信号周期进行自适应调整去干扰处理,再对其进行局部均值分解(LMD),得到信号所对应的多个乘积函数(PF)分量的特征参数因子,包括偏度系数gi、峭度系数qi和总能量比Ei/E。对比活塞杆正常和故障状态(支撑环磨损、紧固元件松动和早期裂纹)下的特征参数变化,结果显示:在活塞杆支撑环磨损情况下,g1和q3的值将分别达到-0.02和1.60,与正常值相差3~5倍;活塞杆紧固原件松动情况下,g1,g3,q1,q3均会出现大幅度偏差,甚至呈现出超过正常值10倍以上的差距;活塞杆早期裂纹情况下,低阶分量g4和q4会出现一些变化,分别达到-1.30和1.60;MOMEDA与LMD相结合的方法,能够准确、有效地对往复压缩机活塞杆沉降信号进行判断,相比于传统的EMD信号分析方法,该方法在活塞杆故障诊断领域展现出更高的实用性。 展开更多
关键词 多点最优最小熵解卷积算法 局部均值分解 经验模态分解 故障诊断 往复压缩机 活塞杆
下载PDF
基于LMD-MFE-SVD的松动爆破降噪分析 被引量:1
10
作者 周红敏 赵事成 +3 位作者 王慧珍 余辉 李文豪 张宪堂 《爆破》 CSCD 北大核心 2023年第4期174-182,共9页
为提高松动爆破振动信号分析精度,在局部均值分解(LMD)的基础上,建立一种基于局部均值分解(LMD)-多尺度模糊熵(MFE)-奇异值滤波(SVD)的混合去噪方法。使用LMD方法对松动爆破振动信号进行分解,获得一系列乘积分量(PF);通过计算MFE和相关... 为提高松动爆破振动信号分析精度,在局部均值分解(LMD)的基础上,建立一种基于局部均值分解(LMD)-多尺度模糊熵(MFE)-奇异值滤波(SVD)的混合去噪方法。使用LMD方法对松动爆破振动信号进行分解,获得一系列乘积分量(PF);通过计算MFE和相关系数,对爆破振动信号进行初步降噪;针对主要PF分量的残留噪声,使用SVD滤波进行降噪处理,提取真实信号成分。通过上述处理,最终实现松动爆破信号降噪。结果表明:提出的LMD-MFE-SVD降噪方法具有可行性和应用价值,能够对含噪的PF分量进行有效处理;对于含多信号成分、多噪声的仿真信号,LMD类算法相较EMD类改进算法降噪效率更高,信噪比(SNR)、均根方误差(RMSE)和失真百分比(PRD)指标表现显著提升,而相较LMD算法,提出的LMD-MFE-SVD算法降噪效率进一步提高,依次提升11.73%、22.07%和9.25%,降噪效率显著;根据实测松动爆破振动信号去噪后的波形和频谱对比,提出的LMD-MFE-SVD降噪后的信号波形更为集中,能保留多数信号信息,信号频谱图更为清晰,有效显示信号频率波峰,更利于松动爆破振动信号的特征分析。 展开更多
关键词 松动爆破 振动降噪 局部均值分解 多尺度模糊熵 奇异值滤波
下载PDF
基于LMD和SSA-SVM的电机故障诊断 被引量:5
11
作者 王涛 杨尚骏 《重庆工商大学学报(自然科学版)》 2023年第1期64-70,共7页
针对电机故障诊断问题,尤其电机轴承方面的诊断,提出了LMD分解和麻雀搜索优化算法(SSA)优化支持向量机(SVM)的故障诊断方法。第一步采取小波降噪和LMD算法相结合去处理原始信号,经过小波降噪后的原始故障信号会去掉一部分的干扰,再分解... 针对电机故障诊断问题,尤其电机轴承方面的诊断,提出了LMD分解和麻雀搜索优化算法(SSA)优化支持向量机(SVM)的故障诊断方法。第一步采取小波降噪和LMD算法相结合去处理原始信号,经过小波降噪后的原始故障信号会去掉一部分的干扰,再分解得到原始信号的一系列PF分量,接着使用相关性分析法选择出有效的PF分量进行信号重构,重构后的故障信号再次经过LMD分解得到的PF分量求出各自的能量熵,直接用能量图展现出来。接着将各个PF分量的能量熵组成一组组特征向量输入到支持向量机的故障诊断模型里。利用麻雀搜索算法在支持向量机(SVM)对于电机故障的分类的模型上进行惩罚参数和核参数的挑选和模拟,选择最合适的参数组合建立SSA-SVM故障诊断模型进行仿真实验,通过仿真实验验证该方法的故障诊断准确率高达99.2%,与PSO-SVM和SVM故障诊断模型进行比较分析,实验证明提出来的方案有着更适合的故障识别能力,对电机故障诊断有着很好的适应性和发展性。 展开更多
关键词 lmd分解 SSA-SVM 电机 故障诊断
下载PDF
基于LMD降噪和互相关的声波飞行时间测量法
12
作者 明靖川 颜华 魏元焜 《自动化与仪表》 2023年第11期78-83,共6页
针对声学法测温中的环境噪音问题,该文提出一种基于局部均值分解(LMD)和互相关(CC)的声波飞行时间测量法。首先依据噪音水平决定是否短截信号降低模态混叠的概率;而后对信号进行LMD法分解,基于该文提出的有用分量筛选法重构降噪信号;最... 针对声学法测温中的环境噪音问题,该文提出一种基于局部均值分解(LMD)和互相关(CC)的声波飞行时间测量法。首先依据噪音水平决定是否短截信号降低模态混叠的概率;而后对信号进行LMD法分解,基于该文提出的有用分量筛选法重构降噪信号;最后通过对降噪信号的互相关运算获得声波飞行时间估值。用模拟粮仓中的实测数据,验证了所提方法的有效性。测试结果表明,环境噪音较小时,LMD-CC法与CC法、EMD-CC法、VMD-CC法表现相当;当环境噪音较大时,LMD-CC法的稳定性和准确性明显优于其他3种方法;与EMD-CC法、VMD-CC法相比,LMD-CC法在运行速度上有明显优势。 展开更多
关键词 飞行时间测量 lmd降噪 互相关 相关噪声 声学法测温
下载PDF
基于WPD-LMD和MSE的滚动轴承故障诊断方法研究
13
作者 王琳琳 《韶关学院学报》 2023年第6期24-29,共6页
研究了基于小波包分解-局部均值分解算法(WPD-LMD)和多尺度熵(MSE)的滚动轴承故障诊断方法.通过传感器获取滚动轴承故障信号,建立多维信号关联矩阵区分噪声信号与故障信号,以扩展动模式分解(EDMD)方法升维观察信号,预估滚动轴承故障源... 研究了基于小波包分解-局部均值分解算法(WPD-LMD)和多尺度熵(MSE)的滚动轴承故障诊断方法.通过传感器获取滚动轴承故障信号,建立多维信号关联矩阵区分噪声信号与故障信号,以扩展动模式分解(EDMD)方法升维观察信号,预估滚动轴承故障源信号数量.设定源信号筛选的相关程度指标,以奇异值分解定理表征滚动轴承故障信号,基于WPD-LMD分解信号频段,获取临界阈值优选故障信号特征.采用结构化理论处理高维信号,设定相类似信号共享权值,以非线性规则函数增强信号特征,划分滚动轴承故障源信号类型.基于MSE对应故障信号模态分量,围绕频率中心构建约束分量模型,对应信号频谱空间诊断滚动轴承故障类型.结果表明:该方法可以完成99.5%的去噪效果,对不同类型故障问题的诊断识别率最高为99.4%,具有较好的应用效果. 展开更多
关键词 机械设备 WPD-lmd MSE 滚动轴承 故障诊断方法
下载PDF
凯迪拉克展示V-LMDH赛车——全新电动赛车原型的最终设计呈现大胆的V系列颜色和图形设计
14
作者 赫炎 《世界汽车》 2023年第2期96-101,共6页
1月12日,凯迪拉克公布了3款全新电动V-LMDh赛车的外观,在1月在戴托纳举行的劳力士24小时耐力赛上首次亮相。3种独特设计代表了全新凯迪拉克V-LMDh参赛团队,每个都拥有与凯迪拉克V系列徽标不同的醒目颜色。“凯迪拉克已经准备好与北美及... 1月12日,凯迪拉克公布了3款全新电动V-LMDh赛车的外观,在1月在戴托纳举行的劳力士24小时耐力赛上首次亮相。3种独特设计代表了全新凯迪拉克V-LMDh参赛团队,每个都拥有与凯迪拉克V系列徽标不同的醒目颜色。“凯迪拉克已经准备好与北美及国际上最优秀的赛车比赛—包括世界上最难比赛之一的勒芒24小时耐力赛。”凯迪拉克全球副总裁罗里·哈维表示,“随着凯迪拉克迈向全电动未来,全新V-LMDh车型进一步推动了我们探索全新先进性能技术的决心。” 展开更多
关键词 勒芒 赛车 凯迪拉克 图形设计 先进性能 全电动 lmd 劳力士
下载PDF
基于LMD-LSTM的大坝变形预测研究
15
作者 徐笑笑 李冰 邹聪聪 《测绘与空间地理信息》 2023年第5期173-176,共4页
针对大坝变形监测数据呈现无规律特性和传统分解方法的不足,本文基于混合模型的思想提出了基于LMD-LSTM的大坝变形混合预测模型。首先利用局域均值分解(LMD)方法将原始数据进行分解,提取出不同频率的分量,再用长短期记忆人工神经网络(LS... 针对大坝变形监测数据呈现无规律特性和传统分解方法的不足,本文基于混合模型的思想提出了基于LMD-LSTM的大坝变形混合预测模型。首先利用局域均值分解(LMD)方法将原始数据进行分解,提取出不同频率的分量,再用长短期记忆人工神经网络(LSTM)预测模型对各个分量分别进行建模,最终将各个分量的预测值叠加重构以获得大坝变形预测值。工程实例表明,LMD-LSTM模型预测结果与实际观测值拟合较好,其精度指标MAE、MAPE和RMSE分别是1.2 mm、4.12×10^(-5)%和2 mm。相较于LSTM和EMD-LSTM模型的精度指标,该文提出的混合模型预测精度更高,为大坝变形预测提供了一种新方法。 展开更多
关键词 大坝变形 局域均值分解 长短期记忆人工神经网络 预测精度
下载PDF
LMD-GM(1,1)模型及其在变形监测中的应用 被引量:4
16
作者 池其才 周世健 王奉伟 《大地测量与地球动力学》 CSCD 北大核心 2016年第7期613-616,共4页
将局部均值分解(LMD)方法应用在监测数据中。实验结果表明,LMD-GM(1,1)模型的拟合效果和预测效果比EMD-GM(1,1)模型和GM(1,1)模型好,具有更高的应用价值。
关键词 局部均值分解(lmd) GM(1 1)模型 经验模态分解(EMD) lmd-GM(1 1)模型
下载PDF
小波包降噪与LMD相结合的滚动轴承故障诊断方法 被引量:92
17
作者 孙伟 熊邦书 +1 位作者 黄建萍 莫燕 《振动与冲击》 EI CSCD 北大核心 2012年第18期153-156,共4页
局部均值分解(Local Mean Decomposition,简称LMD)方法是一种新的自适应时频分析方法,并成功运用于滚动轴承故障诊断中,但对噪声比较敏感。为消除噪声对诊断结果的影响,提出了一种小波包降噪与LMD相结合的滚动轴承故障诊断方法。该方法... 局部均值分解(Local Mean Decomposition,简称LMD)方法是一种新的自适应时频分析方法,并成功运用于滚动轴承故障诊断中,但对噪声比较敏感。为消除噪声对诊断结果的影响,提出了一种小波包降噪与LMD相结合的滚动轴承故障诊断方法。该方法首先利用小波包去除信号中的噪声,然后,进行LMD分解,并将分解后PF分量与分解前信号的相关系数作为判断标准,剔除多余低频PF分量,最后,选取有效PF集进行功率谱分析,提取故障特征。通过仿真数据和真实滚动轴承数据的故障诊断实验,其结果验证了该方法的有效性。 展开更多
关键词 滚动轴承 故障诊断 lmd 小波包降噪
下载PDF
基于LMD与神经网络的滚动轴承故障诊断方法 被引量:64
18
作者 程军圣 史美丽 杨宇 《振动与冲击》 EI CSCD 北大核心 2010年第8期141-144,共4页
针对滚动轴承的故障振动信号的非平稳特性,提出了一种基于局部均值分解(Local mean decomposition,简称LMD)和神经网络的滚动轴承诊断方法。该方法首先对信号进行局部均值分解,将其分解为若干个PF分量(Product function,简称PF)之和,再... 针对滚动轴承的故障振动信号的非平稳特性,提出了一种基于局部均值分解(Local mean decomposition,简称LMD)和神经网络的滚动轴承诊断方法。该方法首先对信号进行局部均值分解,将其分解为若干个PF分量(Product function,简称PF)之和,再选取包含主要故障信息的PF分量进行进一步分析,从这些分量中提取时域统计量和能量等特征参数作为神经网络的输入参数来识别滚动轴承的故障类别。通过对滚动轴承正常状态,内圈故障和外圈故障的分析,表明了基于LMD与神经网络的诊断方法比基于小波包分析与神经网络的诊断方法有更高的故障识别率,同时也证明了该方法可以准确、有效地对滚动轴承的工作状态和故障类型进行分类。 展开更多
关键词 滚动轴承 lmd 神经网络 故障诊断 特征参数
下载PDF
基于LMD自适应多尺度形态学和Teager能量算子方法在轴承故障诊断中的应用 被引量:21
19
作者 武哲 杨绍普 张建超 《振动与冲击》 EI CSCD 北大核心 2016年第3期7-13,共7页
为了从故障轴承信号中提取包含故障信号的特征频率,提出了基于LMD(Local Mean Decomposition,LMD)自适应多尺度形态学和Teager能量算子解调的方法。首先,采用LMD将目标信号分解成有限个PF(Product Function,PF)分量,分别对其进行多尺度... 为了从故障轴承信号中提取包含故障信号的特征频率,提出了基于LMD(Local Mean Decomposition,LMD)自适应多尺度形态学和Teager能量算子解调的方法。首先,采用LMD将目标信号分解成有限个PF(Product Function,PF)分量,分别对其进行多尺度形态学滤波,利用峭度准则优化形态学结构元素尺度,自适应寻求最优解,最后用Teager能量算子计算各PF分量的瞬时幅值,通过瞬时Teager能量的Fourier频谱识别轴承的故障特征频率。为了验证理论的正确性,进行了数字仿真实验和轴承故障模拟实验,并与EMD形态学和包络解调方法进行了比较,结果表明该算法明显优于其他两种方法,对滚动轴承外圈、内圈和滚子故障的检测精度更高,能够清晰地提取出故障信号的频率特征。 展开更多
关键词 滚动轴承 lmd 多尺度形态学 故障诊断 TEAGER能量算子
下载PDF
基于自相关分析和LMD的滚动轴承振动信号故障特征提取 被引量:39
20
作者 王建国 吴林峰 秦绪华 《中国机械工程》 EI CAS CSCD 北大核心 2014年第2期186-191,共6页
滚动轴承的故障信号是非平稳的、多分量的调制信号,特别是故障早期,由于调制源弱,早期故障信号微弱且受周围设备的噪声干扰,导致故障特征难以识别。采用自相关分析和局域均值分解(LMD)方法提取故障特征。首先采用自相关分析提取信号中... 滚动轴承的故障信号是非平稳的、多分量的调制信号,特别是故障早期,由于调制源弱,早期故障信号微弱且受周围设备的噪声干扰,导致故障特征难以识别。采用自相关分析和局域均值分解(LMD)方法提取故障特征。首先采用自相关分析提取信号中的周期成分,消除噪声的干扰,然后利用局域均值分解方法将多分量的调制信号分解为若干个PF分量之和,再结合共振解调技术对PF分量进行包络分析以提取故障特征频率。实验证明了方法的有效性。 展开更多
关键词 滚动轴承 自相关分析 局域均值分解(lmd) 故障诊断
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部