Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl...Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.展开更多
Accurate ultra-short-term prediction of the Earth rotation parameters(ERP)holds paramount impor-tance for real-time applications,particularly in reference frame conversion.Among them,diurnal rota-tion(UT1-UTC)which ca...Accurate ultra-short-term prediction of the Earth rotation parameters(ERP)holds paramount impor-tance for real-time applications,particularly in reference frame conversion.Among them,diurnal rota-tion(UT1-UTC)which cannot be directly estimated through Global Navigation Satellite System(GNSS)techniques,significantly affects the rapid and ultra-rapid orbit determination of GNsS satellites.Pres-ently,the traditional LS(least squares)+AR(autoregressive)and LS+MAR(multivariate autoregressive)hybrid methods stand as primary approaches for UT1-UTC ultra-short-term predictions(1-10 days).The LS+MAR hybrid method relies on the UT1-UTC and LOD(length of day)series.However,the correlation between LOD and first-order-difference UT1-UTC is stronger than that between LOD and UT1-UTC.In light of this,and with the aid of the first-order-difference UT1-UTC,we propose an enhanced LS+MAR hybrid method to UT1-UTC ultra-short-term prediction.By using the UT1-UTC and LOD data series of the IERS(International Earth Rotation and Reference Systems Service)EOP 14 C04 product,we conducted a thorough analysis and evaluation of the improved method's prediction performance compared to the traditional LS+AR and LS+MAR hybrid methods.According to the numerical results over more than 210 days,they demonstrate that,when considering the correlation information between the LoD and the first-order-difference UT1-UTC,the mean absolute errors(MAEs)of the improved LS+MAR hybrid method range from 21 to 934μs in 1-10 days predictions.In comparison to the traditional LS+AR hybrid method,the MAEs show a reduction of 7-53μs in 1-10 days predictions,with corresponding improvement percentages ranging from 1 to 28%.Similarly,when compared to the traditional LS+MAR hybrid method,the MAEs have a reduction of 5-42μs in 1-10 days predictions,with corresponding improvement percentages ranging from 4-20%.Additionally,when aided by GNSS-derived LOD data series,the MAEs of improved LS+MAR hybrid method experience further reduction.展开更多
基金supported by National Natural Science Foundation of China,China(No.42004016)HuBei Natural Science Fund,China(No.2020CFB329)+1 种基金HuNan Natural Science Fund,China(No.2023JJ60559,2023JJ60560)the State Key Laboratory of Geodesy and Earth’s Dynamics self-deployment project,China(No.S21L6101)。
文摘Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.
基金supported by China Natural Science Fund,China(No.42004016)the science and technology innovation Program of Hunan Province,China(No.2023RC3217)+1 种基金Research Foundation of the Department of Natural Resources of Hunan Province(Grant No:20240105CH)HuBei Natural Science Fund,China(No.2020CFB329).
文摘Accurate ultra-short-term prediction of the Earth rotation parameters(ERP)holds paramount impor-tance for real-time applications,particularly in reference frame conversion.Among them,diurnal rota-tion(UT1-UTC)which cannot be directly estimated through Global Navigation Satellite System(GNSS)techniques,significantly affects the rapid and ultra-rapid orbit determination of GNsS satellites.Pres-ently,the traditional LS(least squares)+AR(autoregressive)and LS+MAR(multivariate autoregressive)hybrid methods stand as primary approaches for UT1-UTC ultra-short-term predictions(1-10 days).The LS+MAR hybrid method relies on the UT1-UTC and LOD(length of day)series.However,the correlation between LOD and first-order-difference UT1-UTC is stronger than that between LOD and UT1-UTC.In light of this,and with the aid of the first-order-difference UT1-UTC,we propose an enhanced LS+MAR hybrid method to UT1-UTC ultra-short-term prediction.By using the UT1-UTC and LOD data series of the IERS(International Earth Rotation and Reference Systems Service)EOP 14 C04 product,we conducted a thorough analysis and evaluation of the improved method's prediction performance compared to the traditional LS+AR and LS+MAR hybrid methods.According to the numerical results over more than 210 days,they demonstrate that,when considering the correlation information between the LoD and the first-order-difference UT1-UTC,the mean absolute errors(MAEs)of the improved LS+MAR hybrid method range from 21 to 934μs in 1-10 days predictions.In comparison to the traditional LS+AR hybrid method,the MAEs show a reduction of 7-53μs in 1-10 days predictions,with corresponding improvement percentages ranging from 1 to 28%.Similarly,when compared to the traditional LS+MAR hybrid method,the MAEs have a reduction of 5-42μs in 1-10 days predictions,with corresponding improvement percentages ranging from 4-20%.Additionally,when aided by GNSS-derived LOD data series,the MAEs of improved LS+MAR hybrid method experience further reduction.