期刊文献+
共找到1,313篇文章
< 1 2 66 >
每页显示 20 50 100
Prediction and Analysis of Elevator Traffic Flow under the LSTM Neural Network
1
作者 Mo Shi Entao Sun +1 位作者 Xiaoyan Xu Yeol Choi 《Intelligent Control and Automation》 2024年第2期63-82,共20页
Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion with... Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion within elevator systems. Many passengers experience dissatisfaction with prolonged wait times, leading to impatience and frustration among building occupants. The widespread adoption of neural networks and deep learning technologies across various fields and industries represents a significant paradigm shift, and unlocking new avenues for innovation and advancement. These cutting-edge technologies offer unprecedented opportunities to address complex challenges and optimize processes in diverse domains. In this study, LSTM (Long Short-Term Memory) network technology is leveraged to analyze elevator traffic flow within a typical office building. By harnessing the predictive capabilities of LSTM, the research aims to contribute to advancements in elevator group control design, ultimately enhancing the functionality and efficiency of vertical transportation systems in built environments. The findings of this research have the potential to reference the development of intelligent elevator management systems, capable of dynamically adapting to fluctuating passenger demand and optimizing elevator usage in real-time. By enhancing the efficiency and functionality of vertical transportation systems, the research contributes to creating more sustainable, accessible, and user-friendly living environments for individuals across diverse demographics. 展开更多
关键词 Elevator Traffic Flow neural network lstm Elevator Group Control
下载PDF
Massive Files Prefetching Model Based on LSTM Neural Network with Cache Transaction Strategy 被引量:3
2
作者 Dongjie Zhu Haiwen Du +6 位作者 Yundong Sun Xiaofang Li Rongning Qu Hao Hu Shuangshuang Dong Helen Min Zhou Ning Cao 《Computers, Materials & Continua》 SCIE EI 2020年第5期979-993,共15页
In distributed storage systems,file access efficiency has an important impact on the real-time nature of information forensics.As a popular approach to improve file accessing efficiency,prefetching model can fetches d... In distributed storage systems,file access efficiency has an important impact on the real-time nature of information forensics.As a popular approach to improve file accessing efficiency,prefetching model can fetches data before it is needed according to the file access pattern,which can reduce the I/O waiting time and increase the system concurrency.However,prefetching model needs to mine the degree of association between files to ensure the accuracy of prefetching.In the massive small file situation,the sheer volume of files poses a challenge to the efficiency and accuracy of relevance mining.In this paper,we propose a massive files prefetching model based on LSTM neural network with cache transaction strategy to improve file access efficiency.Firstly,we propose a file clustering algorithm based on temporal locality and spatial locality to reduce the computational complexity.Secondly,we propose a definition of cache transaction according to files occurrence in cache instead of time-offset distance based methods to extract file block feature accurately.Lastly,we innovatively propose a file access prediction algorithm based on LSTM neural network which predict the file that have high possibility to be accessed.Experiments show that compared with the traditional LRU and the plain grouping methods,the proposed model notably increase the cache hit rate and effectively reduces the I/O wait time. 展开更多
关键词 Massive files prefetching model cache transaction distributed storage systems lstm neural network
下载PDF
Sensitivity analysis of regional rainfall-induced landslide based on UAV photogrammetry and LSTM neural network 被引量:1
3
作者 ZHAO Lian-heng XU Xin +3 位作者 LYU Guo-shun HUANG Dong-liang LIU Min CHEN Qi-min 《Journal of Mountain Science》 SCIE CSCD 2023年第11期3312-3326,共15页
Rainfall stands out as a critical trigger for landslides,particularly given the intense summer rainfall experienced in Zheduotang,a transitional zone from the southwest edge of Sichuan Basin to Qinghai Tibet Plateau.T... Rainfall stands out as a critical trigger for landslides,particularly given the intense summer rainfall experienced in Zheduotang,a transitional zone from the southwest edge of Sichuan Basin to Qinghai Tibet Plateau.This area is characterized by adverse geological conditions such as rock piles,debris slopes and unstable slopes.Furthermore,due to the absence of historical rainfall records and landslide inventories,empirical methods are not applicable for the analysis of rainfall-induced landslides.Thus we employ a physically based landslide susceptibility analysis model by using highprecision unmanned aerial vehicle(UAV)photogrammetry,field boreholes and long short term memory(LSTM)neural network to obtain regional topography,soil properties,and rainfall parameters.We applied the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability(TRIGRS)model to simulate the distribution of shallow landslides and variations in porewater pressure across the region under different rainfall intensities and three rainfall patterns(advanced,uniform,and delayed).The landslides caused by advanced rainfall pattern mostly occurred in the first 12 hours,but the landslides caused by delayed rainfall pattern mostly occurred in the last 12 hours.However,all the three rainfall patterns yielded landslide susceptibility zones categorized as high(1.16%),medium(8.06%),and low(90.78%).Furthermore,total precipitation with a rainfall intensity of 35 mm/h for 1 hour was less than that with a rainfall intensity of 1.775 mm/h for 24hours,but the areas with high and medium susceptibility increased by 3.1%.This study combines UAV photogrammetry and LSTM neural networks to obtain more accurate input data for the TRIGRS model,offering an effective approach for predicting rainfall-induced shallow landslides in regions lacking historical rainfall records and landslide inventories. 展开更多
关键词 Regional landslide TRIGRS UAV photography Rainfall landslide lstm neural network
下载PDF
LSTM Based Neural Network Model for Anomaly Event Detection in Care-Independent Smart Homes
4
作者 Brij B.Gupta Akshat Gaurav +3 位作者 Razaz Waheeb Attar Varsha Arya Ahmed Alhomoud Kwok Tai Chui 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2689-2706,共18页
This study introduces a long-short-term memory(LSTM)-based neural network model developed for detecting anomaly events in care-independent smart homes,focusing on the critical application of elderly fall detection.It ... This study introduces a long-short-term memory(LSTM)-based neural network model developed for detecting anomaly events in care-independent smart homes,focusing on the critical application of elderly fall detection.It balances the dataset using the Synthetic Minority Over-sampling Technique(SMOTE),effectively neutralizing bias to address the challenge of unbalanced datasets prevalent in time-series classification tasks.The proposed LSTM model is trained on the enriched dataset,capturing the temporal dependencies essential for anomaly recognition.The model demonstrated a significant improvement in anomaly detection,with an accuracy of 84%.The results,detailed in the comprehensive classification and confusion matrices,showed the model’s proficiency in distinguishing between normal activities and falls.This study contributes to the advancement of smart home safety,presenting a robust framework for real-time anomaly monitoring. 展开更多
关键词 lstm neural networks anomaly detection smart home health-care elderly fall prevention
下载PDF
基于SAE和LSTM神经网络的深部未钻地层可钻性预测方法
5
作者 朱亮 李晓明 +1 位作者 纪慧 楼一珊 《西安石油大学学报(自然科学版)》 北大核心 2025年第1期39-46,64,共9页
在制定深部地层钻进提速方案时,对地层可钻性进行钻前预测是十分必要的,现有的岩石可钻性预测方法精度低,难以满足钻井设计的要求。为此,提出一种基于SAE和LSTM神经网络相结合的组合模型对深部未钻地层的可钻性进行预测。并将SAE-LSTM... 在制定深部地层钻进提速方案时,对地层可钻性进行钻前预测是十分必要的,现有的岩石可钻性预测方法精度低,难以满足钻井设计的要求。为此,提出一种基于SAE和LSTM神经网络相结合的组合模型对深部未钻地层的可钻性进行预测。并将SAE-LSTM组合模型的训练时间和预测结果与BP神经网络、支持向量机、随机森林和单一的LSTM模型进行了对比分析。结果表明:所构建的SAE-LSTM组合模型预测地层可钻性训练用时最短,预测值与实际测量值误差最小,拟合结果的均方根误差RMSE仅为0.081,平均绝对百分比误差MAPE为1.189,决定系数R^(2)为0.966,其RMSE和MAPE最小,R 2最大,较其他模型预测精度更高。该方法为地层参数预测提供了新的途径,能改善以往预测方法在处理复杂地层问题时预测效率低、预测精度不高等问题。 展开更多
关键词 深部地层钻探 岩石可钻性 预测模型 栈式自动编码器 lstm神经网络 深度学习
下载PDF
Time-varying parameters estimation with adaptive neural network EKF for missile-dual control system
6
作者 YUAN Yuqi ZHOU Di +1 位作者 LI Junlong LOU Chaofei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期451-462,共12页
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST... In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model. 展开更多
关键词 long-short-term memory(lstm)neural network extended Kalman filter(EKF) rolling training time-varying parameters estimation missile dual control system
下载PDF
基于EMD-E-LSTM模型的气体浓度预测模型设计
7
作者 龙玉江 姜超颖 +1 位作者 甘润东 吴建蓉 《电子设计工程》 2025年第2期12-17,共6页
为了完成检测、维修等重要工作,针对变压器油中溶解气体浓度变化趋势预测的问题,文中将经验模态分解(Empirical Mode Decomposition,EMD)方法、编码器(Encoder)模块和长短时记忆(Long Short-Term Memory,LSTM)神经网络相结合,提出一种... 为了完成检测、维修等重要工作,针对变压器油中溶解气体浓度变化趋势预测的问题,文中将经验模态分解(Empirical Mode Decomposition,EMD)方法、编码器(Encoder)模块和长短时记忆(Long Short-Term Memory,LSTM)神经网络相结合,提出一种新颖的EMD-E-LSTM网络预测模型来实现油中溶解气体浓度的预测。对110 kV变压器油中溶解C2H6气体浓度预测算例结果表明,相较于E-LSTM预测方法、EMD-LSTM预测方法,所提EMD-E-LSTM网络预测结果的平均绝对百分比误差分别降低了22.23%和5.50%、均方根误差分别下降了18.18%和44.02%,而最大相对误差介于两者之间。所提方法对于其他溶解气体的预测精度也有不同程度的提高,展现出良好的应用前景。 展开更多
关键词 变压器 经验模态分解 注意力机制 循环神经网络 长短时记忆神经网络
下载PDF
Sensory Data Prediction Using Spatiotemporal Correlation and LSTM Recurrent Neural Network 被引量:4
8
作者 Tongxin SHU 《Instrumentation》 2019年第3期10-17,共8页
The Wireless Sensor Networks(WSNs)are widely utilized in various industrial and environmental monitoring applications.The process of data gathering within the WSN is significant in terms of reporting the environmental... The Wireless Sensor Networks(WSNs)are widely utilized in various industrial and environmental monitoring applications.The process of data gathering within the WSN is significant in terms of reporting the environmental data.However,it might occur that certain sensor node malfunctions due to the energy draining out or unexpected damage.Therefore,the collected data may become inaccurate or incomplete.Focusing on the spatiotemporal correlation among sensor nodes,this paper proposes a novel algorithm to predict the value of the missing or inaccurate data and predict the future data in replacement of certain nonfunctional sensor nodes.The Long-Short-Term-Memory Recurrent Neural Network(LSTM RNN)helps to more accurately derive the time-series data corresponding to the sets of past collected data,making the prediction results more reliable.It is observed from the simulation results that the proposed algorithm provides an outstanding data gathering efficiency while ensuring the data accuracy. 展开更多
关键词 Spatiotemporal correlation lstm Recurrent neural network time-series prediction
下载PDF
基于LSTM模型的股票价格预测
9
作者 姜淑瑜 《江苏商论》 2025年第1期83-86,共4页
股票市场的价格波动被视为经济发展的晴雨表。对股票价格的精准预测一直是众多研究学者努力的方向。随着人工智能技术与大数据技术的不断应用与发展以及疫情防控期间国内经济变化和国际形势变换给股价带来的巨大波动,如何对股价进行精... 股票市场的价格波动被视为经济发展的晴雨表。对股票价格的精准预测一直是众多研究学者努力的方向。随着人工智能技术与大数据技术的不断应用与发展以及疫情防控期间国内经济变化和国际形势变换给股价带来的巨大波动,如何对股价进行精准预测变得越来越重要。本文根据股票市场的特点和LSTM(Long Short-Term Memory)递归神经网络的特性,对浦发银行(600000)股价进行预测。实验结果表明,LSTM模型预测股价,结果误差小,精准度高,具有良好的预测效果。 展开更多
关键词 股票价格预测 lstm 机器学习 神经网络
下载PDF
基于LSTM神经网络的锂离子电池健康状态估计
10
作者 张小帆 陈逸龙 +3 位作者 李盛前 曾祥坤 连欣 黄成 《汽车实用技术》 2025年第1期1-6,共6页
电池健康状态(SOH)是表征电池性能的重要参数,准确的SOH估计对电池管理和维护具有重要意义。文章旨在采用长短时记忆模型(LSTM)神经网络搭建电池SOH估计模型,在不同迭代次数条件下得到最佳模型精度。文章首先收集电池实时运行数据并进... 电池健康状态(SOH)是表征电池性能的重要参数,准确的SOH估计对电池管理和维护具有重要意义。文章旨在采用长短时记忆模型(LSTM)神经网络搭建电池SOH估计模型,在不同迭代次数条件下得到最佳模型精度。文章首先收集电池实时运行数据并进行清洗和过滤。然后,选择恒流充电时间、恒压充电时间和平均放电电压等作为特征指标,以预测电池健康状态。通过对比分析三个电池的真实值与预测值,及平均绝对百分比误差(MAPE)、均方根差(RMSE)、平均绝对误差(MAE)和相对误差(RE)评价指标的数值,得到三个电池模型精度均在98%以上。实验结果表明,基于LSTM的SOH估计算法具备准确性和可行性。 展开更多
关键词 锂离子电池 Spearman秩相关系数 电池健康状态 lstm神经网络
下载PDF
基于LSTM的充电桩异常运行数据自动跟踪方法
11
作者 吴俊菁 陈吉 夏学智 《信息技术》 2025年第1期191-196,共6页
为了提高对充电桩异常数据的跟踪效率,提出基于LSTM的充电桩异常运行数据自动跟踪方法。根据充电桩充电功率与电池荷电状态变化,对异常数据进行挖掘和处理。引入叠加函数计算异常数据局部可达密度,结合单层循环矩阵求取异常数据轨迹分布... 为了提高对充电桩异常数据的跟踪效率,提出基于LSTM的充电桩异常运行数据自动跟踪方法。根据充电桩充电功率与电池荷电状态变化,对异常数据进行挖掘和处理。引入叠加函数计算异常数据局部可达密度,结合单层循环矩阵求取异常数据轨迹分布,确定异常数据跟踪范围。基于此,采用长短时记忆神经网络算法(LSTM)输出跟踪算子,并依据空间映射原理,生成跟踪路径,由此实现充电桩异常运行数据自动跟踪。对比实验结果显示,所提方法能够高效跟踪充电桩异常运行数据,跟踪效率较高。 展开更多
关键词 长短时记忆神经网络 充电桩 异常运行数据 自动跟踪
下载PDF
Forecasting method of monthly wind power generation based on climate model and long short-term memory neural network 被引量:5
12
作者 Rui Yin Dengxuan Li +1 位作者 Yifeng Wang Weidong Chen 《Global Energy Interconnection》 CAS 2020年第6期571-576,共6页
Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wi... Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wind power gen eration forecast!ng method based on a climate model and long short-term memory(LSTM)n eural n etwork.A non linear mappi ng model is established between the meteorological elements and wind power monthly utilization hours.After considering the meteorological data(as predicted for the future)and new installed capacity planning,the monthly wind power gen eration forecast results are output.A case study shows the effectiveness of the prediction method. 展开更多
关键词 Wind power Monthly generation forecast Climate model lstm neural network
下载PDF
基于CNN-LSTM-Attention的气井井筒积液诊断
13
作者 徐子鸿 王仪 《成都工业学院学报》 2025年第1期14-20,共7页
为了解决传统积液诊断模型存在的诸多问题,如选择缺乏定性标准、计算结果差异大以及无法满足实际工程需求等,提出一种基于神经网络的气井井筒积液诊断方法,该模型将卷积神经网络(CNN)和长短期记忆网络(LSTM)的结合,使其能够有效捕捉气... 为了解决传统积液诊断模型存在的诸多问题,如选择缺乏定性标准、计算结果差异大以及无法满足实际工程需求等,提出一种基于神经网络的气井井筒积液诊断方法,该模型将卷积神经网络(CNN)和长短期记忆网络(LSTM)的结合,使其能够有效捕捉气井在不同工况下的动态特征,增强模型对复杂数据的处理能力,并在此基础上引入注意力机制自动聚焦于输入数据中最相关的信息,从而提升特征的权重。在实验中,使用真实气井生产相关数据集,对比分析多个模型与所提出的CNN-LSTM-Attention模型的相关性能指标。实验结果显示,所提模型的准确率高达97.6%,多次试验结果方差值明显优于其他深度学习模型和传统方法。这一显著的性能提升,验证了模型的有效性,并对气田生产具有一定的指导作用。 展开更多
关键词 卷积神经网络 长短期记忆网络 注意力机制 气井积液诊断
下载PDF
基于LSTM网络的单台仪器地震烈度预测模型 被引量:2
14
作者 李山有 王博睿 +4 位作者 卢建旗 王傲 张海峰 谢志南 陶冬旺 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第2期587-599,共13页
烈度是地震预警系统的关键产出.如何实现快速预测目标场址的地震烈度是地震预警方法技术研究中的核心问题.本文提出了一种基于长短时记忆神经网络(Long Short-Term Memory,LSTM)的单台仪器地震烈度的预测模型(LSTM-Ⅰ).该模型以一个台... 烈度是地震预警系统的关键产出.如何实现快速预测目标场址的地震烈度是地震预警方法技术研究中的核心问题.本文提出了一种基于长短时记忆神经网络(Long Short-Term Memory,LSTM)的单台仪器地震烈度的预测模型(LSTM-Ⅰ).该模型以一个台站观测到地震动参数的时间序列特征为输入,实现动态预测该台站可能遭受的最大烈度.选取了日本K-NET台网记录的102次地震的5103条强震加速度记录训练了神经网络,利用89次地震的3781条数据检验了模型的泛化能力.利用准确率、漏报率以及误报率三个评价指标评价了LSTM-Ⅰ模型的性能.结果表明,当采用P波触发后3 s的序列进行预测时,模型出现漏报的概率为46.78%,出现误报的概率为1.25%;当采用P波触发后10 s的序列进行预测时,模型出现漏报的概率大幅降低到17.6%,出现误报的概率降低到1.14%.结果表明LSTM-Ⅰ模型很好把握住了时间序列中蕴含的特征.进一步基于LSTM-Ⅰ模型评估了Ⅵ度下台站所能提供的预警时间.本文模型能够提供的预警时间与P-S波到时差接近,说明LSTM-Ⅰ模型具有较高的时效性. 展开更多
关键词 地震预警 时间序列特征 lstm神经网络 仪器地震烈度 预测
下载PDF
Prediction of surface subsidence in Changchun City based on LSTM network 被引量:1
15
作者 WANG He WU Qiong 《Global Geology》 2022年第2期109-115,共7页
Monitoring and predicting of urban surface subsidence are important for urban disaster prevention and mitigation.In this paper,the Long Short-Term Memory(LSTM)network was used to predict the surface subsidence process... Monitoring and predicting of urban surface subsidence are important for urban disaster prevention and mitigation.In this paper,the Long Short-Term Memory(LSTM)network was used to predict the surface subsidence process of Changchun City from 2018 to 2020 based on PS-InSAR monitoring data.The results show that the prediction error of 57.89% of PS points in the LSTM network was less than 1mm with the average error of 1.8 mm and the standard deviation of 2.8 mm.The accuracy and reliability of the prediction were better than regression analysis,time series analysis and grey model. 展开更多
关键词 lstm neural network surface subsidence PS-INSAR
下载PDF
基于CNN-LSTM的大坝变形组合预测模型研究 被引量:2
16
作者 王润英 林思雨 +1 位作者 方卫华 赵凯文 《水力发电》 CAS 2024年第1期37-41,52,共6页
为了提高大坝变形预测模型精度和泛化能力,建立了一种基于卷积神经网络(Convolutional neural networks,CNN)与深度学习长短期记忆(Long short-term memory,LSTM)神经网络的组合预测模型CNN-LSTM。该模型先利用CNN提取大坝变形监测时间... 为了提高大坝变形预测模型精度和泛化能力,建立了一种基于卷积神经网络(Convolutional neural networks,CNN)与深度学习长短期记忆(Long short-term memory,LSTM)神经网络的组合预测模型CNN-LSTM。该模型先利用CNN提取大坝变形监测时间序列的特征,再利用LSTM生成特征描述,该模型精度高、泛化能力强。以柏叶口水库混凝土面板堆石坝为例,经过CNN-LSTM模型计算,将模型变形预测值与原型监测资料进行对比,再与LSTM模型及CNN模型的预测结果进行对比。结果表明,CNN-LSTM模型预测值最接近监测资料实测结果。 展开更多
关键词 大坝变形 卷积神经网络 lstm神经网络 变形预测 预测精度 柏叶口水库
下载PDF
基于SO-LSTM的立柱液压系统故障诊断方法研究 被引量:1
17
作者 郗涛 董蒙蒙 +1 位作者 王莉静 张建业 《机床与液压》 北大核心 2024年第8期196-201,共6页
针对目前无法快速、准确地诊断矿用立柱液压系统故障等问题,在建立仿真模型分析单一故障机制的基础上,基于优化算法提出多种故障诊断方法。将立柱物理模块与立柱液压系统模块相结合,建立立柱液压系统仿真模型;基于Simulink分析单一故障... 针对目前无法快速、准确地诊断矿用立柱液压系统故障等问题,在建立仿真模型分析单一故障机制的基础上,基于优化算法提出多种故障诊断方法。将立柱物理模块与立柱液压系统模块相结合,建立立柱液压系统仿真模型;基于Simulink分析单一故障的影响,基于蛇优化LSTM神经网络建立诊断模型;最后,根据实际数据进行模型的实例验证。结果表明:蛇优化LSTM模型对液压立柱故障仿真数据识别率达到99.5%,对液压立柱故障真实数据识别率达到97%,与模型仿真数据的预测精度仅相差2.5%,预测精度较高,达到了预期目标。 展开更多
关键词 立柱液压系统 故障诊断 蛇优化lstm神经网络
下载PDF
基于改进INFO-Bi-LSTM模型的SO_(2)排放质量浓度预测 被引量:1
18
作者 王琦 柴宇唤 +2 位作者 王鹏程 刘百川 刘祥 《动力工程学报》 CAS CSCD 北大核心 2024年第4期641-649,共9页
针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进IN... 针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进INFO-Bi-LSTM模型)。采用Circle混沌映射和反向学习产生高质量初始化种群,引入自适应t分布提升INFO算法跳出局部最优解和全局搜索的能力。选取改进INFO-Bi-LSTM模型和多种预测模型对炉内外联合脱硫过程中4种典型工况下的SO_(2)排放质量浓度进行预测,将预测结果进行验证对比。结果表明:改进INFO算法的寻优能力得到提升,并且改进INFO-Bi-LSTM模型精度更高,更加适用于SO_(2)排放质量浓度的预测,可为变工况下的脱硫控制提供控制理论支撑。 展开更多
关键词 炉内外联合脱硫 烟气SO_(2)质量浓度 INFO算法 Bi-lstm神经网络 Circle混沌映射 自适应t分布
下载PDF
基于CNN‑LSTM‑SE的心电图分类算法研究 被引量:3
19
作者 王建荣 邓黎明 +1 位作者 程伟 李国翚 《测试技术学报》 2024年第3期264-273,共10页
心血管疾病是我国死亡率较高的疾病之一,通过观察心电图来判断心电信号是否出现异常能够对心血管疾病进行预防和筛查。由于心电图数据规模大且繁杂,临床医护人员在心电图筛查时,工作负担大且容易出现误诊或漏诊的情况。为了提高心电图... 心血管疾病是我国死亡率较高的疾病之一,通过观察心电图来判断心电信号是否出现异常能够对心血管疾病进行预防和筛查。由于心电图数据规模大且繁杂,临床医护人员在心电图筛查时,工作负担大且容易出现误诊或漏诊的情况。为了提高心电图的筛查效率、减少医护人员的压力,提出了一种基于卷积神经网络、长短期记忆神经网络和SE网络的心电图分类算法模型(CNN-LSTM-SE),该模型将心电图分成5种不同的类别。主要研究内容包括:选用MIT-BIH心律失常数据集作为心电信号的数据来源,使用巴特沃斯带通滤波器对心电信号进行去噪处理,通过Z-score方法对心电信号进行标准化处理,利用独热编码方法对心电信号标签进行编码,最后使用处理后的心电数据对所提算法模型进行训练和测试。实验结果表明:所提模型相较于其它模型,能够有效提高心电图分类的准确性,在实验数据集上的分类准确率达到99.1%。 展开更多
关键词 心律失常 心电图 卷积神经网络 SE网络 长短期记忆神经网络
下载PDF
基于CNN-LSTM的水泥熟料f-CaO预测模型
20
作者 郑涛 刘辉 +3 位作者 陈薇 杨恺 张建飞 褚彪 《控制工程》 CSCD 北大核心 2024年第7期1263-1271,共9页
水泥熟料中游离氧化钙(f-CaO)含量的传统人工离线检测缺乏时效性,不利于生产指导。针对离线检测的滞后问题和软测量模型中f-CaO含量与辅助变量的时序匹配问题,提出了一种基于卷积神经网络(convolutional neural network,CNN)和长短时记... 水泥熟料中游离氧化钙(f-CaO)含量的传统人工离线检测缺乏时效性,不利于生产指导。针对离线检测的滞后问题和软测量模型中f-CaO含量与辅助变量的时序匹配问题,提出了一种基于卷积神经网络(convolutional neural network,CNN)和长短时记忆(long short-term memory,LSTM)神经网络的f-CaO含量预测模型。首先,利用滑动窗口截取辅助变量的区间数据;然后,采用CNN提取区间数据的时序特征;之后,构建LSTM神经网络模型;最后,控制截取辅助变量的延迟时间和间隔时间,根据模型预测拟合度提取辅助变量的最优时序特征。仿真结果表明,所提模型提高了水泥熟料中f-CaO含量的预测精度。 展开更多
关键词 时序特征 滑动窗口 CNN lstm神经网络 最优时序特征 预测精度
下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部