In conventional modeling of a cable-pulley system, the cable must be finely meshed with Lagrangian elements for valid contact detections with pulleys, leading to extremely low efficiency. The sliding joint method base...In conventional modeling of a cable-pulley system, the cable must be finely meshed with Lagrangian elements for valid contact detections with pulleys, leading to extremely low efficiency. The sliding joint method based on the arbitrary-Lagrangian- Eulerian (ALE) formulation still lacks an efficient cable element, and in particular, modeling of friction between a sliding joint and the cable has not been studied. This paper presents efficient multi-body modeling of a cable-pulley system with friction. A variable- length cable element with a node movable along the cable, which is described with ALE, is developed to mesh the cable. A transitional cable element is then proposed to model the contact part of the cable by fixing its two nodes to the two corresponding locations of the pulley. Friction of the cable-pulley is derived as a simple law of tension decay and embedded in the multi-body system modeling. It is simplified as a generalized friction force acting only on the arc-length coordinate. This approach can use a rough mesh on the cable, and is free of contact detections, thus significantly saving computation time. Several examples are presented to validate the proposed method, and show its effectiveness in real engineering applications.展开更多
A hybrid Lagrangian - Eulerian (HLE) method is developed for sea ice dynamics, which combines the high computational efficiency of finite difference method (FDM) with the high numerical accuracy of smoothed partic...A hybrid Lagrangian - Eulerian (HLE) method is developed for sea ice dynamics, which combines the high computational efficiency of finite difference method (FDM) with the high numerical accuracy of smoothed particle hydrodynamics (SPH). In this HLE model, the sea ice cover is represented by a group of Lagrangian ice particles with their own thicknesses and concentrations. These ice variables are interpolated to the Eularian gird nodes using the Gaussian interpolation function. The FDM is used to determine the ice velocities at Eulerian grid nodes, and the velocities of Lagrangian ice particles are interpolated from these grid velocities with the Gaussian function also. The thicknesses and concentrations of ice particles are determined based on their new locations. With the HLE numerical model, the ice ridging process in a rectangular basin is simulated, and the simulated results are validated with the analytical solution. This method is also applied to the simulation of sea ice dynamics in a vortex wind field. At last, this HLE model is applied to the Bohai Sea, and the simulated concentration, thickness and velocity match the satellite images and the field observed data well.展开更多
A difference scheme in curvilinear coordinates is put forward for calculation of salinity in estuaries and coastal waters, which is based on Eulerian-Lagrangian method. It combines first-order and second-order Lagrang...A difference scheme in curvilinear coordinates is put forward for calculation of salinity in estuaries and coastal waters, which is based on Eulerian-Lagrangian method. It combines first-order and second-order Lagrangian interpolation to reduce numerical dispersion and oscillation. And the length of the curvilinear grid is also considered in the interpolation. Then the scheme is used in estuary, coast and ocean model, and several numerical experiments for the Yangtze Estuary and the Hangzhou Bay are conducted to test it. These experiments show that it is suitable for simulations of salinity in estuaries and coastal waters with the models using curvilinear coordinates.展开更多
An Arbitrary Lagrangian-Eulerian(ALE) method was employed to simulate the sheet metal extrusion process,aiming at avoiding mesh distortion and improving the computational accuracy.The method was implemented based on M...An Arbitrary Lagrangian-Eulerian(ALE) method was employed to simulate the sheet metal extrusion process,aiming at avoiding mesh distortion and improving the computational accuracy.The method was implemented based on MSC/MARC by using a fractional step method,i.e.a Lagrangian step followed by an Euler step.The Lagrangian step was a pure updated Lagrangian calculation and the Euler step was performed using mesh smoothing and remapping scheme.Due to the extreme distortion of deformation domain,it was almost impossible to complete the whole simulation with only one mesh topology.Therefore,global remeshing combined with the ALE method was used in the simulation work.Based on the numerical model of the process,some deformation features of the sheet metal extrusion process,such as distribution of localized equivalent plastic strain,and shrinkage cavity,were revealed.Furthermore,the differences between conventional extrusion and sheet metal extrusion process were also analyzed.展开更多
The study of cylindrically symmetric compressible fluid is interesting from both theoretical and numerical points of view. In this paper, the typical spherical sym- metry properties of the numerical schemes are discus...The study of cylindrically symmetric compressible fluid is interesting from both theoretical and numerical points of view. In this paper, the typical spherical sym- metry properties of the numerical schemes are discussed, and an area weighted scheme is extended from a Lagrangian method to an arbitrary Lagrangian and Eulerian (ALE) method. Numerical results are presented to compare three discrete configurations, i.e., the control volume scheme, the area weighted scheme, and the plane scheme with the addition of a geometrical source. The fact that the singularity arises from the geometri- cal source term in the plane scheme is illustrated. A suggestion for choosing the discrete formulation is given when the strong shock wave problems are simulated.展开更多
The Eulerian?Lagrangian method(ELM) has been used by many ocean models as the solution of the advection equation,but the numerical error caused by interpolation imposes restriction on its accuracy.In the present st...The Eulerian?Lagrangian method(ELM) has been used by many ocean models as the solution of the advection equation,but the numerical error caused by interpolation imposes restriction on its accuracy.In the present study,hybrid N-order Lagrangian interpolation ELM(Li ELM) is put forward in which the N-order Lagrangian interpolation is used at first,then the lower order Lagrangian interpolation is applied in the points where the interpolation results are abnormally higher or lower.The calculation results of a step-shaped salinity advection model are analyzed,which show that higher order(N=3?8) Li ELM can reduce the mean numerical error of salinity calculation,but the numerical oscillation error is still significant.Even number order Li ELM makes larger numerical oscillation error than its adjacent odd number order Li ELM.Hybrid N-order Li ELM can remove numerical oscillation,and it significantly reduces the mean numerical error when N is even and the current is in fixed direction,while it makes less effect on mean numerical error when N is odd or the current direction changes periodically.Hybrid odd number order Li ELM makes less mean numerical error than its adjacent even number order Li ELM when the current is in the fixed direction,while the mean numerical error decreases as N increases when the current direction changes periodically,so odd number of N may be better for application.Among various types of Hybrid N-order Li ELM,the scheme reducing N-order directly to 1st-order may be the optimal for synthetic selection of accuracy and computational efficiency.展开更多
A two-dimensional finite element (FE) model for the high speed turning operations when orthogonally machining AISI H13 tool steel at 49HRC using poly crystalline cubic boron nitride (PCBN) is described. An arbitra...A two-dimensional finite element (FE) model for the high speed turning operations when orthogonally machining AISI H13 tool steel at 49HRC using poly crystalline cubic boron nitride (PCBN) is described. An arbitrary Lagrangian Eulerian (ALE) method has been adopted which does not need any chip separation criteria as opposed to the traditional Lagrangian approach. Through FE simulations temperature and stresses distributions are presented that could be helpful in predicting tool life and improving process parameters. The results show that high temperatures are generated along the tool rake face as compared to the shear zone temperatures due to high thermal conductivity of PCBN tools.展开更多
A multifractal model is developed to connect the Lagrangian multifractal dimensions with their Eulerian counterparts. We propose that the characteristic time scale of a Lagrangian quantity should be the Lagrangian tim...A multifractal model is developed to connect the Lagrangian multifractal dimensions with their Eulerian counterparts. We propose that the characteristic time scale of a Lagrangian quantity should be the Lagrangian time scale, and it should not be the Eulerian time scale which was widely used in previous studies on Lagrangian statistics. Using the present model, we can obtain the scaling exponents of Lagrangian velocity structure functions from the existing data or models of scaling exponents of Eulerian velocity structure functions. This model is validated by comparing its prediction with the results of experiments, direct numerical simulations, and the previous theoretical models. The comparison shows that the proposed model can better predict the scaling exponents of Lagrangian velocity structure functions, especially for orders larger than 6.展开更多
Tidal residual is very important to the transport of water particles, nutrients, plankton, etc. in the coastal sea. Eulerian scheme and Lagrangian scheme are two different ways to get the time averaged residual. Solut...Tidal residual is very important to the transport of water particles, nutrients, plankton, etc. in the coastal sea. Eulerian scheme and Lagrangian scheme are two different ways to get the time averaged residual. Solution of the Bohai Sea’s hydrodynamic system using a semi implicit layer averaged numerical model yielded different direction Eulerian and Lagrangian tidal residuals. The latter were stronger than the former in most sea areas. Their different directions produced different circulation pattern in some areas. Compared with the Eulerian residual, the Lagrangian residual seemed to be more in accord with the observation.展开更多
A new flux-based hybrid subcell-remapping algorithm for staggered multimaterial arbitrary Lagrangian-Eulerian (MMALE) methods is presented. This new method is an effective generalization of the original subcell-remapp...A new flux-based hybrid subcell-remapping algorithm for staggered multimaterial arbitrary Lagrangian-Eulerian (MMALE) methods is presented. This new method is an effective generalization of the original subcell-remapping method to the multi-material regime (LOUBERE, R. and SHASHKOV,M. A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods. Journal of Computational Physics, 209, 105–138 (2005)). A complete remapping procedure of all fluid quantities is described detailedly in this paper. In the pure material regions, remapping of mass and internal energy is performed by using the original subcell-remapping method. In the regions near the material interfaces, remapping of mass and internal energy is performed with the intersection-based fluxes where intersections are performed between the swept regions and pure material polygons in the Lagrangian mesh, and an approximate approach is then introduced for constructing the subcell mass fluxes. In remapping of the subcell momentum, the mass fluxes are used to construct the momentum fluxes by multiplying a reconstructed velocity in the swept region. The nodal velocity is then conservatively recovered. Some numerical examples simulated in the full MMALE regime and several purely cyclic remapping examples are presented to prove the properties of the remapping method.展开更多
The Lagrangian DDM (discrete droplet model) is state-of-the-art for CFD (computational fluid dynamics) simulations of mixture formation and combustion in industrial engines. A commonly known drawback of the DDM ap...The Lagrangian DDM (discrete droplet model) is state-of-the-art for CFD (computational fluid dynamics) simulations of mixture formation and combustion in industrial engines. A commonly known drawback of the DDM approach is the attenuated validity in the dense spray, where the bulk liquid disintegrates into droplets. There the assumption of single droplets surrounded by a homogenous gas field is not reasonable. In this region, the Eulerian-Eulerian multi-phase approach performs better because instead of parcels the spray is represented by the volume fractions of one bulk liquid and several droplet size class phases. A further drawback of the DDM approach is that increasing the spatial resolution of the computational grid leads to a reduced statistical convergence, since the number of spray parcels per computational cell becomes smaller. It is desirable to combine the benefits of both spray approaches in coupled CFD simulations. Therefore, the dense spray region is simulated separately with the Eulerian spray approach on a highly resolved mesh covering only the region close to the nozzle orifice. The entire engine domain with combustion and emission models is simulated with the Eulerian-Lagrangian spray approach for the dilute spray region. The two simulations are coupled through exchange of boundary conditions and model source terms. An on-line coupling interface manages the data transfer between the two simulation clients, i.e., Eulerian spray and engine client. The aim of this work is to extend the coupled spray approach in terms of exchanging combustion related heat and species sources, and consequently creating the link between Eulerian spray and combustion models. The results show mixture formation and combustion in real-case engine simulations, and demonstrate the feasibility of spray model combination in engineering applications.展开更多
Lagrangian and Eulerian time scales were obtained from the direct numerical simulation of turbulent channel flow at two Reynolds numbers based on the friction velocity and channel half-height, Rer= 80, 100. The Lagran...Lagrangian and Eulerian time scales were obtained from the direct numerical simulation of turbulent channel flow at two Reynolds numbers based on the friction velocity and channel half-height, Rer= 80, 100. The Lagrangian integral time scales and time microscales were compared to their Eulerian equivalents. It is found that the ratio of Lagrangian to TL Eulerian integral time scales is given by TE/TiE= 1 + 0.1y+ for y+ ≤ 10, and that the ratios between the Lagrangian to theEulerian time microscales are almost the same irrespective of the components. Those increase with y+ are approximated by ≈ 2.75 - 1.75 exp (-v+/a) . These results also show that these expressions are independent of the Reynolds number.展开更多
The targeted drug delivery and targeted drug therapy transport a drug directly to the center of the disease under various conditions and thereby treat it deliber- ately without effects on the body. This paper studies ...The targeted drug delivery and targeted drug therapy transport a drug directly to the center of the disease under various conditions and thereby treat it deliber- ately without effects on the body. This paper studies the magnetic drug targeting (MDT) technique by particle tracking in the presence of magnetic field in bifurcation vessels of a healthy person and a diabetes patient. The Lagrangian particle tracking is performed to estimate particle behavior under effects of imposed magnetic field gradients along the bifurcation. The results show that the magnetic field increases the volume fraction of particle in the target region, and the efficiency of MDT on a patient with the diabetes disease is better than a healthy person. Also, for the higher magnetic numbers, the flow in the upper branch is strongly affected by the magnetic field.展开更多
Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the...Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the Acetes chinensis in the Lianyungang nearshore licensed fishing area.The Lagrangian frame approaches including the Lagrangian coherent structures theory,Lagrangian residual current,and Lagrangian particle-tracking model were applied to find the transport pathways and aggregation characteristics of Acetes chinensis.There exist some material transport pathways for Acetes chinensis passing through the licensed fishing area,and Acetes chinensis is easy to accumulate in the licensed fishing area.The main mechanism forming this distribution pattern is the local circulation induced by the nonlinear interaction of topography and tidal flow.Both the Lagrangian coherent structure analysis and the particle trajectory tracking indicate that Acetes chinensis in the licensed fishing area come from the nearshore estuary.This work contributed to the adjustment of licensed fishing area and the efficient utilization of fishery resources.展开更多
基金Project supported by the National Natural Science Foundation of China(No.11302114)the Major State Basic Research Development Program(No.2012CB821203)the Guangdong Provincial Key Laboratory Construction Project of China(No.2011A060901026)
文摘In conventional modeling of a cable-pulley system, the cable must be finely meshed with Lagrangian elements for valid contact detections with pulleys, leading to extremely low efficiency. The sliding joint method based on the arbitrary-Lagrangian- Eulerian (ALE) formulation still lacks an efficient cable element, and in particular, modeling of friction between a sliding joint and the cable has not been studied. This paper presents efficient multi-body modeling of a cable-pulley system with friction. A variable- length cable element with a node movable along the cable, which is described with ALE, is developed to mesh the cable. A transitional cable element is then proposed to model the contact part of the cable by fixing its two nodes to the two corresponding locations of the pulley. Friction of the cable-pulley is derived as a simple law of tension decay and embedded in the multi-body system modeling. It is simplified as a generalized friction force acting only on the arc-length coordinate. This approach can use a rough mesh on the cable, and is free of contact detections, thus significantly saving computation time. Several examples are presented to validate the proposed method, and show its effectiveness in real engineering applications.
基金The study was supported by the National Natural Science Foundation of China under contract No.10772041the State 0ceamic Administration Key Laboratory for Ploar Science of China under contract No.KP 2007004.
文摘A hybrid Lagrangian - Eulerian (HLE) method is developed for sea ice dynamics, which combines the high computational efficiency of finite difference method (FDM) with the high numerical accuracy of smoothed particle hydrodynamics (SPH). In this HLE model, the sea ice cover is represented by a group of Lagrangian ice particles with their own thicknesses and concentrations. These ice variables are interpolated to the Eularian gird nodes using the Gaussian interpolation function. The FDM is used to determine the ice velocities at Eulerian grid nodes, and the velocities of Lagrangian ice particles are interpolated from these grid velocities with the Gaussian function also. The thicknesses and concentrations of ice particles are determined based on their new locations. With the HLE numerical model, the ice ridging process in a rectangular basin is simulated, and the simulated results are validated with the analytical solution. This method is also applied to the simulation of sea ice dynamics in a vortex wind field. At last, this HLE model is applied to the Bohai Sea, and the simulated concentration, thickness and velocity match the satellite images and the field observed data well.
基金This project was supported by the Major State Basic Research Program under Contract Grant No. G1999043803the University Fund for Mainstay Teachers of State Ministry of Education and the Opening Fund of Open Laboratory of Marine Dynamic Process and Sa
文摘A difference scheme in curvilinear coordinates is put forward for calculation of salinity in estuaries and coastal waters, which is based on Eulerian-Lagrangian method. It combines first-order and second-order Lagrangian interpolation to reduce numerical dispersion and oscillation. And the length of the curvilinear grid is also considered in the interpolation. Then the scheme is used in estuary, coast and ocean model, and several numerical experiments for the Yangtze Estuary and the Hangzhou Bay are conducted to test it. These experiments show that it is suitable for simulations of salinity in estuaries and coastal waters with the models using curvilinear coordinates.
基金Project(50505027) supported by the National Natural Science Foundation of ChinaProject(20070248056) supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘An Arbitrary Lagrangian-Eulerian(ALE) method was employed to simulate the sheet metal extrusion process,aiming at avoiding mesh distortion and improving the computational accuracy.The method was implemented based on MSC/MARC by using a fractional step method,i.e.a Lagrangian step followed by an Euler step.The Lagrangian step was a pure updated Lagrangian calculation and the Euler step was performed using mesh smoothing and remapping scheme.Due to the extreme distortion of deformation domain,it was almost impossible to complete the whole simulation with only one mesh topology.Therefore,global remeshing combined with the ALE method was used in the simulation work.Based on the numerical model of the process,some deformation features of the sheet metal extrusion process,such as distribution of localized equivalent plastic strain,and shrinkage cavity,were revealed.Furthermore,the differences between conventional extrusion and sheet metal extrusion process were also analyzed.
基金Project supported by the National Natural Science Foundation of China(Nos.11471048 and U1630249)the Foundation of Chinese Academy of Engineering Physics(No.2014A0202010)the Foundation of Laboratory of Computational Physics(No.9140C690202140C69293)
文摘The study of cylindrically symmetric compressible fluid is interesting from both theoretical and numerical points of view. In this paper, the typical spherical sym- metry properties of the numerical schemes are discussed, and an area weighted scheme is extended from a Lagrangian method to an arbitrary Lagrangian and Eulerian (ALE) method. Numerical results are presented to compare three discrete configurations, i.e., the control volume scheme, the area weighted scheme, and the plane scheme with the addition of a geometrical source. The fact that the singularity arises from the geometri- cal source term in the plane scheme is illustrated. A suggestion for choosing the discrete formulation is given when the strong shock wave problems are simulated.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.40906044 and 41076048)the Fundamental Research Funds for the Central Universities Project(Grant No.2011B05714)
文摘The Eulerian?Lagrangian method(ELM) has been used by many ocean models as the solution of the advection equation,but the numerical error caused by interpolation imposes restriction on its accuracy.In the present study,hybrid N-order Lagrangian interpolation ELM(Li ELM) is put forward in which the N-order Lagrangian interpolation is used at first,then the lower order Lagrangian interpolation is applied in the points where the interpolation results are abnormally higher or lower.The calculation results of a step-shaped salinity advection model are analyzed,which show that higher order(N=3?8) Li ELM can reduce the mean numerical error of salinity calculation,but the numerical oscillation error is still significant.Even number order Li ELM makes larger numerical oscillation error than its adjacent odd number order Li ELM.Hybrid N-order Li ELM can remove numerical oscillation,and it significantly reduces the mean numerical error when N is even and the current is in fixed direction,while it makes less effect on mean numerical error when N is odd or the current direction changes periodically.Hybrid odd number order Li ELM makes less mean numerical error than its adjacent even number order Li ELM when the current is in the fixed direction,while the mean numerical error decreases as N increases when the current direction changes periodically,so odd number of N may be better for application.Among various types of Hybrid N-order Li ELM,the scheme reducing N-order directly to 1st-order may be the optimal for synthetic selection of accuracy and computational efficiency.
基金This project is supported by National Natural Science Foundation of China (No.50505003).
文摘A two-dimensional finite element (FE) model for the high speed turning operations when orthogonally machining AISI H13 tool steel at 49HRC using poly crystalline cubic boron nitride (PCBN) is described. An arbitrary Lagrangian Eulerian (ALE) method has been adopted which does not need any chip separation criteria as opposed to the traditional Lagrangian approach. Through FE simulations temperature and stresses distributions are presented that could be helpful in predicting tool life and improving process parameters. The results show that high temperatures are generated along the tool rake face as compared to the shear zone temperatures due to high thermal conductivity of PCBN tools.
基金supported by the National Natural Science Foundation of China(11072247,11021262,and 11232011)National Natural Science Associate Foundation of China(NSAF)(U1230126)973 program of China(2013CB834100)
文摘A multifractal model is developed to connect the Lagrangian multifractal dimensions with their Eulerian counterparts. We propose that the characteristic time scale of a Lagrangian quantity should be the Lagrangian time scale, and it should not be the Eulerian time scale which was widely used in previous studies on Lagrangian statistics. Using the present model, we can obtain the scaling exponents of Lagrangian velocity structure functions from the existing data or models of scaling exponents of Eulerian velocity structure functions. This model is validated by comparing its prediction with the results of experiments, direct numerical simulations, and the previous theoretical models. The comparison shows that the proposed model can better predict the scaling exponents of Lagrangian velocity structure functions, especially for orders larger than 6.
文摘Tidal residual is very important to the transport of water particles, nutrients, plankton, etc. in the coastal sea. Eulerian scheme and Lagrangian scheme are two different ways to get the time averaged residual. Solution of the Bohai Sea’s hydrodynamic system using a semi implicit layer averaged numerical model yielded different direction Eulerian and Lagrangian tidal residuals. The latter were stronger than the former in most sea areas. Their different directions produced different circulation pattern in some areas. Compared with the Eulerian residual, the Lagrangian residual seemed to be more in accord with the observation.
基金Project supported by the China Postdoctoral Science Foundation(No.2017M610823)
文摘A new flux-based hybrid subcell-remapping algorithm for staggered multimaterial arbitrary Lagrangian-Eulerian (MMALE) methods is presented. This new method is an effective generalization of the original subcell-remapping method to the multi-material regime (LOUBERE, R. and SHASHKOV,M. A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods. Journal of Computational Physics, 209, 105–138 (2005)). A complete remapping procedure of all fluid quantities is described detailedly in this paper. In the pure material regions, remapping of mass and internal energy is performed by using the original subcell-remapping method. In the regions near the material interfaces, remapping of mass and internal energy is performed with the intersection-based fluxes where intersections are performed between the swept regions and pure material polygons in the Lagrangian mesh, and an approximate approach is then introduced for constructing the subcell mass fluxes. In remapping of the subcell momentum, the mass fluxes are used to construct the momentum fluxes by multiplying a reconstructed velocity in the swept region. The nodal velocity is then conservatively recovered. Some numerical examples simulated in the full MMALE regime and several purely cyclic remapping examples are presented to prove the properties of the remapping method.
文摘The Lagrangian DDM (discrete droplet model) is state-of-the-art for CFD (computational fluid dynamics) simulations of mixture formation and combustion in industrial engines. A commonly known drawback of the DDM approach is the attenuated validity in the dense spray, where the bulk liquid disintegrates into droplets. There the assumption of single droplets surrounded by a homogenous gas field is not reasonable. In this region, the Eulerian-Eulerian multi-phase approach performs better because instead of parcels the spray is represented by the volume fractions of one bulk liquid and several droplet size class phases. A further drawback of the DDM approach is that increasing the spatial resolution of the computational grid leads to a reduced statistical convergence, since the number of spray parcels per computational cell becomes smaller. It is desirable to combine the benefits of both spray approaches in coupled CFD simulations. Therefore, the dense spray region is simulated separately with the Eulerian spray approach on a highly resolved mesh covering only the region close to the nozzle orifice. The entire engine domain with combustion and emission models is simulated with the Eulerian-Lagrangian spray approach for the dilute spray region. The two simulations are coupled through exchange of boundary conditions and model source terms. An on-line coupling interface manages the data transfer between the two simulation clients, i.e., Eulerian spray and engine client. The aim of this work is to extend the coupled spray approach in terms of exchanging combustion related heat and species sources, and consequently creating the link between Eulerian spray and combustion models. The results show mixture formation and combustion in real-case engine simulations, and demonstrate the feasibility of spray model combination in engineering applications.
基金supported by the National Natural Science Foundation of China (Grant No.10742005)the Science Fundation for Young Teachers of Shanghai Institute of Technology (Grant No.YJ2007-26)the Shanghai Pujiang Program (Grant Nos.08PJ1409100,06PJ14041)
文摘Lagrangian and Eulerian time scales were obtained from the direct numerical simulation of turbulent channel flow at two Reynolds numbers based on the friction velocity and channel half-height, Rer= 80, 100. The Lagrangian integral time scales and time microscales were compared to their Eulerian equivalents. It is found that the ratio of Lagrangian to TL Eulerian integral time scales is given by TE/TiE= 1 + 0.1y+ for y+ ≤ 10, and that the ratios between the Lagrangian to theEulerian time microscales are almost the same irrespective of the components. Those increase with y+ are approximated by ≈ 2.75 - 1.75 exp (-v+/a) . These results also show that these expressions are independent of the Reynolds number.
文摘The targeted drug delivery and targeted drug therapy transport a drug directly to the center of the disease under various conditions and thereby treat it deliber- ately without effects on the body. This paper studies the magnetic drug targeting (MDT) technique by particle tracking in the presence of magnetic field in bifurcation vessels of a healthy person and a diabetes patient. The Lagrangian particle tracking is performed to estimate particle behavior under effects of imposed magnetic field gradients along the bifurcation. The results show that the magnetic field increases the volume fraction of particle in the target region, and the efficiency of MDT on a patient with the diabetes disease is better than a healthy person. Also, for the higher magnetic numbers, the flow in the upper branch is strongly affected by the magnetic field.
基金the National Natural Science Foundation of China(No.31802297)。
文摘Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the Acetes chinensis in the Lianyungang nearshore licensed fishing area.The Lagrangian frame approaches including the Lagrangian coherent structures theory,Lagrangian residual current,and Lagrangian particle-tracking model were applied to find the transport pathways and aggregation characteristics of Acetes chinensis.There exist some material transport pathways for Acetes chinensis passing through the licensed fishing area,and Acetes chinensis is easy to accumulate in the licensed fishing area.The main mechanism forming this distribution pattern is the local circulation induced by the nonlinear interaction of topography and tidal flow.Both the Lagrangian coherent structure analysis and the particle trajectory tracking indicate that Acetes chinensis in the licensed fishing area come from the nearshore estuary.This work contributed to the adjustment of licensed fishing area and the efficient utilization of fishery resources.