A diagnostic study is performed in the paper on the process of typhoon Norris (1980) transforming into an ex-tratropical cyclone after its landing over Southeast China. The main findings are as follows:The changes of ...A diagnostic study is performed in the paper on the process of typhoon Norris (1980) transforming into an ex-tratropical cyclone after its landing over Southeast China. The main findings are as follows:The changes of kinetic energy are mainly attributed to the generation due to non-divergent wind. During the early stage of the typhoon landing, there exits only a small quantity of kinetic energy exchanging with the environment. And after it is transformed into an extratropical cyclone, a large amount of kinetic energy is exported from the system toward the environment.The horizontal and vertical flux-divergence terms of eddy available potenlial energy are the prominent sinks in the budgets of eddy kinetic energy. The generations of eddy kinetic energy due to both the barotropic and baroclinic processes are source terms. The former is remarkable during the initial stage. But after the depression is transformed into an extratropical cyclone, the roles of the generation by the barotropic and baroclinic processes are reversed, 1. e. , the latter has become more significant than the former.Diabatic heating is the most dominant heat source. The terms of vertical heat flux by cumulus and large-scale motion are the major sinks. And the latter is prominent after the system is transformed into an extratropical cycfone.展开更多
The paper is to study the qualification right in the homestead system of China,and to put forward the corresponding improvement scheme.By analyzing the definition and nature of homestead land,the paper explores the hi...The paper is to study the qualification right in the homestead system of China,and to put forward the corresponding improvement scheme.By analyzing the definition and nature of homestead land,the paper explores the historical background and development of the homestead land system and emphasizes the importance of the qualification right in ensuring housing rights for rural residents and social stability.Concerning the current status of the qualification right,the paper identifies existing problems and challenges,such as unclear rights to homestead land,difficulties in determining qualification,issues with the distribution of benefits between qualification rights and usage rights,and inheritance and transfer of qualification rights.These issues constrain the fairness and effectiveness of the homestead land system.To improve the qualification right,the paper puts forward measures such as revising legal regulations,adjusting homestead land policies,and enhancing the standardization of management of qualification rights.By optimizing the formulation and implementation of relevant laws and regulations,adjusting homestead policies,and strengthening the regulation of qualification right management,these issues can be addressed,improving the fairness and transparency of the homestead land system.Finally,the paper analyzes the impact of improving the qualification right on rural residents,land utilization,and social stability,offering related suggestions.Improving the qualification right can not only protect the housing rights of rural residents but also promote the rational use of rural land resources and the sustainable development of rural socio-economic conditions.In conclusion,this paper is expected to provide a theoretical support and practical guidance for the improvement of the homestead land system and to promote the sustainable development of rural society.展开更多
With the advancement of agricultural modernization, agricultural machinery service organizations, as an important part of the rural operating entities, show an increasing trend year by year, and need new facilities la...With the advancement of agricultural modernization, agricultural machinery service organizations, as an important part of the rural operating entities, show an increasing trend year by year, and need new facilities land in the process of development and growth. Based on the written survey of 597 agricultural machinery service organizations in Guizhou Province, the demand and demand gap of various facilities land use in agricultural machinery service organizations were analyzed and compared. In addition, based on the field survey and policy background, the main practices and experiences of agricultural machinery service organizations in Guizhou Province in the approval and use of facility land were sorted out, and the problems and causes of large gap in facility agricultural land, lack of standards and difficulty in policy implementation were analyzed. Finally, it recommended that the site selection of agricultural machinery service organization facilities needs to be standardized, the land demand needs to be coordinated, the land scale needs to be scientifically demonstrated, and financial support should be sought to promote Guizhou agricultural machinery service organization to become bigger, better and stronger.展开更多
Based on questionnaire survey data of daylily planting farmers in the paper,from the perspective of farmers own conditions(including age,gender,education level,and annual household income),climate perception ability,p...Based on questionnaire survey data of daylily planting farmers in the paper,from the perspective of farmers own conditions(including age,gender,education level,and annual household income),climate perception ability,policy perception ability,and land fragmentation situation,consistency analysis,variance analysis,regression analysis and other methods were used to analyze the impact of land use on farmers decision-making changes in planting daylily.The results showed that the age of the household head,annual household income,policy perception ability,and average cultivated land area per block had a significant impact on the planting area of daylily,and the degree of impact increased in order.This study can provide theoretical basis and practical guidance for farmers decision-making and land use methods in planting daylily.展开更多
Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and t...Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and temporal change characteristics of ecological network and analyzing the integrated relationship between LUCC and ecological security are crucial for ensuring regional ecological security.Gansu is one of the provinces with fragile ecological environment in China,and rapid changes in land use patterns in recent decades have threatened ecological security.Therefore,taking Gansu Province as the study area,this study simulated its land use pattern in 2050 using patch-generating land use simulation(PLUS)model based on the LUCC trend from 2000 to 2020 and integrated the LUCC into morphological spatial pattern analysis(MSPA)to identify ecological sources and extract the ecological corridors to construct ecological network using circuit theory.The results revealed that,according to the prediction results in 2050,the areas of cultivated land,forest land,grassland,water body,construction land,and unused land would be 63,447.52,39,510.80,148,115.18,4605.21,8368.89,and 161,752.40 km^(2),respectively.The number of ecological sources in Gansu Province would increase to 80,with a total area of 99,927.18 km^(2).The number of ecological corridors would increase to 191,with an estimated total length of 6120.66 km.Both ecological sources and ecological corridors showed a sparse distribution in the northwest and dense distribution in the southeast of the province at the spatial scale.The number of ecological pinch points would reach 312 and the total area would expect to increase to 842.84 km^(2),with the most pronounced increase in the Longdong region.Compared with 2020,the number and area of ecological barriers in 2050 would decrease significantly by 63 and 370.71 km^(2),respectively.In general,based on the prediction results,the connectivity of ecological network of Gansu Province would increase in 2050.To achieve the predicted ecological network in 2050,emphasis should be placed on the protection of cultivated land and ecological land,the establishment of ecological sources in desert areas,the reinforcement of the protection for existing ecological sources,and the construction of ecological corridors to enhance the stability of ecological network.This study provides valuable theoretical support and references for the future construction of ecological networks and regional land resource management decision-making.展开更多
In the morning of August 20,Heilongjiang Zijin Copper Project formally signed agreement at Fularji District in Qiqihar City.This also signals that the copper smelting project with a total investment of 4 billion yuan,...In the morning of August 20,Heilongjiang Zijin Copper Project formally signed agreement at Fularji District in Qiqihar City.This also signals that the copper smelting project with a total investment of 4 billion yuan,a project under planning since 2011,has formally landed in Qiqihar City.展开更多
On December 24,a new industrial partner entered the friend circle of new energy vehicle industrial cluster in Daye;a new material project with a total investment of 3 billion yuan held ground-breaking ceremony,signali...On December 24,a new industrial partner entered the friend circle of new energy vehicle industrial cluster in Daye;a new material project with a total investment of 3 billion yuan held ground-breaking ceremony,signaling its formal landing in Daye.This Project is invested and constructed by Hubei Zhongxing New Advanced Material Co.,Ltd,the Project involves total investment of展开更多
In order to study the carrier-based aircraft landing laws landed on the carrier, the dynamics model of carrier-based aircraft landing gears landed on dynamic deck is built. In this model, the interactions of the carri...In order to study the carrier-based aircraft landing laws landed on the carrier, the dynamics model of carrier-based aircraft landing gears landed on dynamic deck is built. In this model, the interactions of the carrier-based aircraft landing attitude and the damping force acting on landing gears are considered, and the influence of dynamic deck is introduced into the model through the deck normal vectors. The wheel-deck coordinate system is put forward to solve the complex simulation problem of force-onwheel which comes from the dynamic deck. At last, by simulation, it is demonstrated that the model can be applied to landing attitude when the carrier-based aircraft is landing on the dynamic deck, it is also proved that the model is comprehensive and suitable for any abnormal landing situation.展开更多
On April 10,North United Aluminum Company respectively signed investment cooperation agreements with Qijiang Industrial Park and Qineng Electricity&Aluminum Co.,Ltd,signifying the landing of North United Aluminum...On April 10,North United Aluminum Company respectively signed investment cooperation agreements with Qijiang Industrial Park and Qineng Electricity&Aluminum Co.,Ltd,signifying the landing of North United Aluminum’s aluminum deep processing project in Qijiang.展开更多
The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphi...The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphic features is considered as a digital terrain analysis method which reflects the macro-topographic features by using micro-topographic factors.However,pieces of studies have extended the concept of slope spectrum in the field of geoscience to construction land to explore its expansion law,while research on the slope trend of cropland from that perspective remains rare.To address the gap,in virtue of spatial analysis and geographically weighted regression(GWR)model,the cropland use change in the Yangtze River Basin(YRB)from 2000 to 2020 was analyzed and the driving factors were explored from the perspective of slope spectrum.Results showed that the slope spectrum curves of cropland area-frequency in the YRB showed a first upward then a downward trend.The change curve of the slope spectrum of cropland in each province(municipality)exhibited various distribution patterns.Quantitative analysis of morphological parameters of cropland slope spectrum revealed that the further down the YRB,the stronger the flattening characteristics,the more obvious the concentration.The province experienced the greatest downhill cropland climbing(CLC)was Shannxi,while province experienced the highest uphill CLC was Zhejiang.The most common cropland use change type in the YRB was horizontal expansion type.The factors affecting average cropland climbing index(ACCI)were quite stable in different periods,while population density(POP)changed from negative to positive during the study period.This research is of practical significance for the rational utilization of cropland at the watershed scale.展开更多
The Pearl River Delta(PRD),a tornado hotspot,forms a distinct trumpet-shaped coastline that concaves toward the South China Sea.During the summer monsoon season,low-level southwesterlies over the PRD’s sea surface te...The Pearl River Delta(PRD),a tornado hotspot,forms a distinct trumpet-shaped coastline that concaves toward the South China Sea.During the summer monsoon season,low-level southwesterlies over the PRD’s sea surface tend to be turned toward the west coast,constituting a convergent wind field along with the landward-side southwesterlies,which influences regional convective weather.This two-part study explores the roles of this unique land–sea contrast of the trumpet-shaped coastline in the formation of a tornadic mesovortex within monsoonal flows in this region.Part I primarily presents observational analyses of pre-storm environments and storm evolutions.The rotating storm developed in a lowshear environment(not ideal for a supercell)under the interactions of three air masses under the influence of the land–sea contrast,monsoon,and storm cold outflows.This intersection zone(or“triple point”)is typically characterized by local enhancements of ambient vertical vorticity and convergence.Based on a rapid-scan X-band phased-array radar,finger-like echoes were recognized shortly after the gust front intruded on the triple point.Developed over the triple point,they rapidly wrapped up with a well-defined low-level mesovortex.It is thus presumed that the triple point may have played roles in the mesovortex genesis,which will be demonstrated in Part II with multiple sensitivity numerical simulations.The findings also suggest that when storms pass over the boundary intersection zone in the PRD,the expected possibility of a rotating storm occurring is relatively high,even in a low-shear environment.Improved knowledge of such environments provides additional guidance to assess the regional tornado risk.展开更多
Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(ex...Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(excluding Hong Kong,Macao,Taiwan,and‘no data’areas in Qinhai-Tibet Plateau)as the fundamental units of analysis.By employing nighttime light(NTL)data to identify shrinking cities,the propensity score matching(PSM)model was used to quantitatively examine the impact of shrinking cities on land prices,and evaluate the magnitude of this influence.The findings demonstrate the following:1)there were 613 shrinking cities in China,with moderate shrinkage being the most prevalent and severe shrinkage being the least.2)Regional disparities are evident in the spatial distribution of shrinking cities,especially in areas with diverse terrain.3)The spatial pattern of land price exhibits a significant correlated to the economic and administrative levels.4)Shrinking cities significantly negatively impact on the overall land price(ATT=–0.1241,P<0.05).However,the extent of the effect varies significantly among different spatial regions.This study contributes novel insights into the investigation of land prices and shrinking cities,ultimately serving as a foundation for government efforts to promote the sustainable development of urban areas.展开更多
After landing in the Utopia Planitia,Tianwen-1 formed the deepest landing crater on Mars,approximately 40 cm deep,exposing precious information about the mechanical properties of Martian soil.We established numerical ...After landing in the Utopia Planitia,Tianwen-1 formed the deepest landing crater on Mars,approximately 40 cm deep,exposing precious information about the mechanical properties of Martian soil.We established numerical models for the plume-surface interaction(PSI)and the crater formation based on Computational Fluid Dynamics(CFD)methods and the erosion model modified from Roberts’Theory.Comparative studies of cases were conducted with different nozzle heights and soil mechanical properties.The increase in cohesion and internal friction angle leads to a decrease in erosion rate and maximum crater depth,with the cohesion having a greater impact.The influence of the nozzle height is not clear,as it interacts with the position of the Shock Diamond to jointly control the erosion process.Furthermore,we categorized the evolution of landing craters into the dispersive and the concentrated erosion modes based on the morphological characteristics.Finally,we estimated the upper limits of the Martian soil’s mechanical properties near Tianwen-1 landing site,with the cohesion ranging from 2612 to 2042 Pa and internal friction angle from 25°to 41°.展开更多
This study uses logistic and Poisson regression models to examine the factors influencing the adoption of sustain-able land management(SLM)practices in Mali using two rounds of the nationally representative survey Enq...This study uses logistic and Poisson regression models to examine the factors influencing the adoption of sustain-able land management(SLM)practices in Mali using two rounds of the nationally representative survey Enquête Agricole de Conjoncture Intégrée aux Conditions de Vie des Ménages.The SLMs considered include the applica-tion of organic fertilizers,the application of inorganic fertilizers,the use of improved seeds,and the practice of intercropping.On average the application of organic fertilizers(39.2%),and inorganic fertilizers(28.7%)are the most frequent SLM practices among Malian farmers,and between 2014 and 2017,we observe a decline in the practice of intercropping.The regression results show that farmers’adoption of different SLMs is significantly associated with biophysical factors(average temperature,climate type,plot size,plot shape,and location),de-mographic factors(age,gender,education,household size),and socioeconomic factors(number of cultivated plots,livelihood diversification,type of crop grown,market access,credit access,economic shocks,and social capital).Our findings suggest that policymakers and agricultural development agencies in Mali need to adopt a multidimensional policy framework to unlock the untapped potential of SLM practices in promoting sustainable agriculture and food security.展开更多
Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect o...Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect of temperature on land subsidence has received practically no attention in the past.This paper presents a thermo-hydro-mechanical(THM)coupled numerical study on an ATES system in Shanghai,China.Four water wells were installed for seasonal heating and cooling of an agriculture greenhouse.The target aquifer at a depth of 74e104.5 m consisted of alternating layers of sand and silty sand and was covered with clay.Groundwater level,temperature,and land subsidence data from 2015 to 2017 were collected using field monitoring instruments.Constrained by data,we constructed a field scale three-dimensional(3D)model using TOUGH(Transport of Unsaturated Groundwater and Heat)and FLAC3D(Fast Lagrangian Analysis of Continua)equipped with a thermo-elastoplastic constitutive model.The effectiveness of the numerical model was validated by field data.The model was used to reproduce groundwater flow,heat transfer,and mechanical responses in porous media over three years and capture the thermo-and pressure-induced land subsidence.The results show that the maximum thermoinduced land subsidence accounts for about 60%of the total subsidence.The thermo-induced subsidence is slightly greater in winter than that in summer,and more pronounced near the cold well area than the hot well area.This study provides some valuable guidelines for controlling land subsidence caused by ATES systems installed in soft soils.展开更多
The increasing concentration of atmospheric CO_(2) since the Industrial Revolution has affected surface air temperature.However,the impact of the spatial distribution of atmospheric CO_(2) concentration on surface air...The increasing concentration of atmospheric CO_(2) since the Industrial Revolution has affected surface air temperature.However,the impact of the spatial distribution of atmospheric CO_(2) concentration on surface air temperature biases remains highly unclear.By incorporating the spatial distribution of satellite-derived atmospheric CO_(2) concentration in the Beijing Normal University Earth System Model,this study investigated the increase in surface air temperature since the Industrial Revolution in the Northern Hemisphere(NH) under historical conditions from 1976-2005.In comparison with the increase in surface temperature simulated using a uniform distribution of CO_(2),simulation with a nonuniform distribution of CO_(2)produced better agreement with the Climatic Research Unit(CRU) data in the NH under the historical condition relative to the baseline over the period 1901-30.Hemispheric June-July-August(JJA) surface air temperature increased by 1.28℃ ±0.29℃ in simulations with a uniform distribution of CO_(2),by 1.00℃±0.24℃ in simulations with a non-uniform distribution of CO_(2),and by 0.24℃ in the CRU data.The decrease in downward shortwave radiation in the non-uniform CO_(2) simulation was primarily attributable to reduced warming in Eurasia,combined with feedbacks resulting from increased leaf area index(LAI) and latent heat fluxes.These effects were more pronounced in the non-uniform CO_(2)simulation compared to the uniform CO_(2) simulation.Results indicate that consideration of the spatial distribution of CO_(2)concentration can reduce the overestimated increase in surface air temperature simulated by Earth system models.展开更多
Understanding the response of vegetation variation to climate change and human activities is critical for addressing future conflicts between humans and the environment,and maintaining ecosystem stability.Here,we aime...Understanding the response of vegetation variation to climate change and human activities is critical for addressing future conflicts between humans and the environment,and maintaining ecosystem stability.Here,we aimed to identify the determining factors of vegetation variation and explore the sensitivity of vegetation to temperature(SVT)and the sensitivity of vegetation to precipitation(SVP)in the Shiyang River Basin(SYRB)of China during 2001-2022.The climate data from climatic research unit(CRU),vegetation index data from Moderate Resolution Imaging Spectroradiometer(MODIS),and land use data from Landsat images were used to analyze the spatial-temporal changes in vegetation indices,climate,and land use in the SYRB and its sub-basins(i.e.,upstream,midstream,and downstream basins)during 2001-2022.Linear regression analysis and correlation analysis were used to explore the SVT and SVP,revealing the driving factors of vegetation variation.Significant increasing trends(P<0.05)were detected for the enhanced vegetation index(EVI)and normalized difference vegetation index(NDVI)in the SYRB during 2001-2022,with most regions(84%)experiencing significant variation in vegetation,and land use change was determined as the dominant factor of vegetation variation.Non-significant decreasing trends were detected in the SVT and SVP of the SYRB during 2001-2022.There were spatial differences in vegetation variation,SVT,and SVP.Although NDVI and EVI exhibited increasing trends in the upstream,midstream,and downstream basins,the change slope in the downstream basin was lower than those in the upstream and midstream basins,the SVT in the upstream basin was higher than those in the midstream and downstream basins,and the SVP in the downstream basin was lower than those in the upstream and midstream basins.Temperature and precipitation changes controlled vegetation variation in the upstream and midstream basins while human activities(land use change)dominated vegetation variation in the downstream basin.We concluded that there is a spatial heterogeneity in the response of vegetation variation to climate change and human activities across different sub-basins of the SYRB.These findings can enhance our understanding of the relationship among vegetation variation,climate change,and human activities,and provide a reference for addressing future conflicts between humans and the environment in the arid inland river basins.展开更多
Under the influence of anthropogenic and climate change,the problems caused by urban heat island(UHI)has become increasingly prominent.In order to promote urban sustainable development and improve the quality of human...Under the influence of anthropogenic and climate change,the problems caused by urban heat island(UHI)has become increasingly prominent.In order to promote urban sustainable development and improve the quality of human settlements,it is significant for exploring the evolution characteristics of urban thermal environment and analyzing its driving forces.Taking the Landsat series images as the basic data sources,the winter land surface temperature(LST)of the rapid urbanization area of Fuzhou City in China was quantitatively retrieved from 2001 to 2021.Combing comprehensively the standard deviation ellipse model,profile analysis and GeoDetector model,the spatio-temporal evolution characteristics and influencing factors of the winter urban thermal environment were systematically analyzed.The results showed that the winter LST presented an increasing trend in the study area during 2001–2021,and the winter LST of the central urban regions was significantly higher than the suburbs.There was a strong UHI effect from 2001 to 2021with an expansion trend from the central urban regions to the suburbs and coastal areas in space scale.The LST of green lands and wetlands are significantly lower than croplands,artificial surface and unvegetated lands.Vegetation and water bodies had a significant mitigation effect on UHI,especially in the micro-scale.The winter UHI had been jointly driven by the underlying surface and socio-economic factors in a nonlinear or two-factor interactive enhancement mode,and socio-economic factors had played a leading role.This research could provide data support and decision-making references for rationally planning urban layout and promoting sustainable urban development.展开更多
Improving cultivated land use eco-efficiency(CLUE)can effectively promote agricultural sustainability,particularly in developing countries where CLUE is generally low.This study used provincial-level data from China t...Improving cultivated land use eco-efficiency(CLUE)can effectively promote agricultural sustainability,particularly in developing countries where CLUE is generally low.This study used provincial-level data from China to evaluate the spatiotemporal evolution of CLUE from 2000 to 2020 and identified the influencing factors of CLUE by using a panel Tobit model.In addition,given the undesirable outputs of agricultural production,we incorporated carbon emissions and nonpoint source pollution into the global benchmark-undesirable output-super efficiency-slacks-based measure(GB-US-SBM)model,which combines global benchmark technology,undesirable output,super efficiency,and slacks-based measure.The results indicated that there was an upward trend in CLUE in China from 2000 to 2020,with an increase rate of 2.62%.The temporal evolution of CLUE in China could be classified into three distinct stages:a period of fluctuating decrease(2000-2007),a phase of gradual increase(2008-2014),and a period of rapid growth(2015-2020).The major grain-producing areas(MPAs)had a lower CLUE than their counterparts,namely,non-major grain-production areas(non-MPAs).The spatial agglomeration effect followed a northeast-southwest strip distribution;and the movement path of barycentre revealed a"P"shape,with Luoyang City,Henan Province,as the centre.In terms of influencing factors of CLUE,investment in science and technology played the most vital role in improving CLUE,while irrigation index had the most negative effect.It should be noted that these two influencing factors had different impacts on MPAs and non-MPAs.Therefore,relevant departments should formulate policies to enhance the level of science and technology,improve irrigation condition,and promote sustainable utilization of cultivated land.展开更多
Purpose:The metropolitan cities of Johannesburg,Ekurhuleni and Tshwane play an important role in the economy of the Gauteng province in South Africa.The region constitutes to 22.4 percent of the total population of So...Purpose:The metropolitan cities of Johannesburg,Ekurhuleni and Tshwane play an important role in the economy of the Gauteng province in South Africa.The region constitutes to 22.4 percent of the total population of South Africa and has a strong presence and contributes in areas of manufacturing sector,financial and business services,retail and wholesale trade,etc.The rapid urban population,increase in the informal settlements and socio-economic opportunities has resulted in considerable urban sprawl in and around the urban fringe areas of these metropolitan cities.The urban fringe areas of these metros often come under the influence of rapid urbanization process and pressures.Coupled with the economical and potential land dynamics and lack of priority of spatial development guidelines,these areas attract rapid and haphazard development from communities and developers.Research Design/Methodology:This research is based on a qualitative approach through a comprehensive literature review that included content analysis of key documents on housing sector such as IDPs(Integrated Development Plans),Municipal Annual Reports,Growth Development Strategies,and among other sectoral documents on housing sector.Some of the key priority issues considered in the housing sector included:eradication of housing backlogs,spatial restructuring of housing,provision of choice in terms of location,tenure and housing typology.Findings:The current paper discusses the approaches of metropolitan housing development processes in three metropolitan cities of South Africa from Gauteng region,namely:Johannesburg,Ekurhuleni and Tshwane.The paper discusses the existing housing sectoral scenario along with the fringe areas in three cities with focus on:formal and informal settlements,housing segregation and the backlogs,current institutional arrangements,role of public private participation,and scope for alternate mechanisms.The paper concludes in discussion on sustainable development options for housing development in urban fringe areas.展开更多
文摘A diagnostic study is performed in the paper on the process of typhoon Norris (1980) transforming into an ex-tratropical cyclone after its landing over Southeast China. The main findings are as follows:The changes of kinetic energy are mainly attributed to the generation due to non-divergent wind. During the early stage of the typhoon landing, there exits only a small quantity of kinetic energy exchanging with the environment. And after it is transformed into an extratropical cyclone, a large amount of kinetic energy is exported from the system toward the environment.The horizontal and vertical flux-divergence terms of eddy available potenlial energy are the prominent sinks in the budgets of eddy kinetic energy. The generations of eddy kinetic energy due to both the barotropic and baroclinic processes are source terms. The former is remarkable during the initial stage. But after the depression is transformed into an extratropical cyclone, the roles of the generation by the barotropic and baroclinic processes are reversed, 1. e. , the latter has become more significant than the former.Diabatic heating is the most dominant heat source. The terms of vertical heat flux by cumulus and large-scale motion are the major sinks. And the latter is prominent after the system is transformed into an extratropical cycfone.
文摘The paper is to study the qualification right in the homestead system of China,and to put forward the corresponding improvement scheme.By analyzing the definition and nature of homestead land,the paper explores the historical background and development of the homestead land system and emphasizes the importance of the qualification right in ensuring housing rights for rural residents and social stability.Concerning the current status of the qualification right,the paper identifies existing problems and challenges,such as unclear rights to homestead land,difficulties in determining qualification,issues with the distribution of benefits between qualification rights and usage rights,and inheritance and transfer of qualification rights.These issues constrain the fairness and effectiveness of the homestead land system.To improve the qualification right,the paper puts forward measures such as revising legal regulations,adjusting homestead land policies,and enhancing the standardization of management of qualification rights.By optimizing the formulation and implementation of relevant laws and regulations,adjusting homestead policies,and strengthening the regulation of qualification right management,these issues can be addressed,improving the fairness and transparency of the homestead land system.Finally,the paper analyzes the impact of improving the qualification right on rural residents,land utilization,and social stability,offering related suggestions.Improving the qualification right can not only protect the housing rights of rural residents but also promote the rational use of rural land resources and the sustainable development of rural socio-economic conditions.In conclusion,this paper is expected to provide a theoretical support and practical guidance for the improvement of the homestead land system and to promote the sustainable development of rural society.
文摘With the advancement of agricultural modernization, agricultural machinery service organizations, as an important part of the rural operating entities, show an increasing trend year by year, and need new facilities land in the process of development and growth. Based on the written survey of 597 agricultural machinery service organizations in Guizhou Province, the demand and demand gap of various facilities land use in agricultural machinery service organizations were analyzed and compared. In addition, based on the field survey and policy background, the main practices and experiences of agricultural machinery service organizations in Guizhou Province in the approval and use of facility land were sorted out, and the problems and causes of large gap in facility agricultural land, lack of standards and difficulty in policy implementation were analyzed. Finally, it recommended that the site selection of agricultural machinery service organization facilities needs to be standardized, the land demand needs to be coordinated, the land scale needs to be scientifically demonstrated, and financial support should be sought to promote Guizhou agricultural machinery service organization to become bigger, better and stronger.
基金Supported by Natural Science Foundation of Shanxi Province (202203021211299).
文摘Based on questionnaire survey data of daylily planting farmers in the paper,from the perspective of farmers own conditions(including age,gender,education level,and annual household income),climate perception ability,policy perception ability,and land fragmentation situation,consistency analysis,variance analysis,regression analysis and other methods were used to analyze the impact of land use on farmers decision-making changes in planting daylily.The results showed that the age of the household head,annual household income,policy perception ability,and average cultivated land area per block had a significant impact on the planting area of daylily,and the degree of impact increased in order.This study can provide theoretical basis and practical guidance for farmers decision-making and land use methods in planting daylily.
基金supported by the Science Fund for the Gansu Provincial Natural Science Foundation Project(22JR5RA339).
文摘Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and temporal change characteristics of ecological network and analyzing the integrated relationship between LUCC and ecological security are crucial for ensuring regional ecological security.Gansu is one of the provinces with fragile ecological environment in China,and rapid changes in land use patterns in recent decades have threatened ecological security.Therefore,taking Gansu Province as the study area,this study simulated its land use pattern in 2050 using patch-generating land use simulation(PLUS)model based on the LUCC trend from 2000 to 2020 and integrated the LUCC into morphological spatial pattern analysis(MSPA)to identify ecological sources and extract the ecological corridors to construct ecological network using circuit theory.The results revealed that,according to the prediction results in 2050,the areas of cultivated land,forest land,grassland,water body,construction land,and unused land would be 63,447.52,39,510.80,148,115.18,4605.21,8368.89,and 161,752.40 km^(2),respectively.The number of ecological sources in Gansu Province would increase to 80,with a total area of 99,927.18 km^(2).The number of ecological corridors would increase to 191,with an estimated total length of 6120.66 km.Both ecological sources and ecological corridors showed a sparse distribution in the northwest and dense distribution in the southeast of the province at the spatial scale.The number of ecological pinch points would reach 312 and the total area would expect to increase to 842.84 km^(2),with the most pronounced increase in the Longdong region.Compared with 2020,the number and area of ecological barriers in 2050 would decrease significantly by 63 and 370.71 km^(2),respectively.In general,based on the prediction results,the connectivity of ecological network of Gansu Province would increase in 2050.To achieve the predicted ecological network in 2050,emphasis should be placed on the protection of cultivated land and ecological land,the establishment of ecological sources in desert areas,the reinforcement of the protection for existing ecological sources,and the construction of ecological corridors to enhance the stability of ecological network.This study provides valuable theoretical support and references for the future construction of ecological networks and regional land resource management decision-making.
文摘In the morning of August 20,Heilongjiang Zijin Copper Project formally signed agreement at Fularji District in Qiqihar City.This also signals that the copper smelting project with a total investment of 4 billion yuan,a project under planning since 2011,has formally landed in Qiqihar City.
文摘On December 24,a new industrial partner entered the friend circle of new energy vehicle industrial cluster in Daye;a new material project with a total investment of 3 billion yuan held ground-breaking ceremony,signaling its formal landing in Daye.This Project is invested and constructed by Hubei Zhongxing New Advanced Material Co.,Ltd,the Project involves total investment of
文摘In order to study the carrier-based aircraft landing laws landed on the carrier, the dynamics model of carrier-based aircraft landing gears landed on dynamic deck is built. In this model, the interactions of the carrier-based aircraft landing attitude and the damping force acting on landing gears are considered, and the influence of dynamic deck is introduced into the model through the deck normal vectors. The wheel-deck coordinate system is put forward to solve the complex simulation problem of force-onwheel which comes from the dynamic deck. At last, by simulation, it is demonstrated that the model can be applied to landing attitude when the carrier-based aircraft is landing on the dynamic deck, it is also proved that the model is comprehensive and suitable for any abnormal landing situation.
文摘On April 10,North United Aluminum Company respectively signed investment cooperation agreements with Qijiang Industrial Park and Qineng Electricity&Aluminum Co.,Ltd,signifying the landing of North United Aluminum’s aluminum deep processing project in Qijiang.
基金supported in part by the Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region,Ministry of Natural Resources(NRMSSHR2023Y02)Yunnan Key Laboratory of Plateau Geographic Processes and Environmental Changes(PGPEC2304)+1 种基金Yunnan Normal University,China.This study was also sponsored by the Scientific Research Project of Education Department of Hubei Province(Grant No.B2022262)the Philosophy and Social Sciences Research Project of Education Department of Hubei Province(Grant No.22G024).
文摘The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphic features is considered as a digital terrain analysis method which reflects the macro-topographic features by using micro-topographic factors.However,pieces of studies have extended the concept of slope spectrum in the field of geoscience to construction land to explore its expansion law,while research on the slope trend of cropland from that perspective remains rare.To address the gap,in virtue of spatial analysis and geographically weighted regression(GWR)model,the cropland use change in the Yangtze River Basin(YRB)from 2000 to 2020 was analyzed and the driving factors were explored from the perspective of slope spectrum.Results showed that the slope spectrum curves of cropland area-frequency in the YRB showed a first upward then a downward trend.The change curve of the slope spectrum of cropland in each province(municipality)exhibited various distribution patterns.Quantitative analysis of morphological parameters of cropland slope spectrum revealed that the further down the YRB,the stronger the flattening characteristics,the more obvious the concentration.The province experienced the greatest downhill cropland climbing(CLC)was Shannxi,while province experienced the highest uphill CLC was Zhejiang.The most common cropland use change type in the YRB was horizontal expansion type.The factors affecting average cropland climbing index(ACCI)were quite stable in different periods,while population density(POP)changed from negative to positive during the study period.This research is of practical significance for the rational utilization of cropland at the watershed scale.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030004)the National Natural Science Foundation of China(Grant Nos.42275006 and 42030604)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515011705)the Science and Technology Research Project for Society of Foshan(Grant No.2120001008761).
文摘The Pearl River Delta(PRD),a tornado hotspot,forms a distinct trumpet-shaped coastline that concaves toward the South China Sea.During the summer monsoon season,low-level southwesterlies over the PRD’s sea surface tend to be turned toward the west coast,constituting a convergent wind field along with the landward-side southwesterlies,which influences regional convective weather.This two-part study explores the roles of this unique land–sea contrast of the trumpet-shaped coastline in the formation of a tornadic mesovortex within monsoonal flows in this region.Part I primarily presents observational analyses of pre-storm environments and storm evolutions.The rotating storm developed in a lowshear environment(not ideal for a supercell)under the interactions of three air masses under the influence of the land–sea contrast,monsoon,and storm cold outflows.This intersection zone(or“triple point”)is typically characterized by local enhancements of ambient vertical vorticity and convergence.Based on a rapid-scan X-band phased-array radar,finger-like echoes were recognized shortly after the gust front intruded on the triple point.Developed over the triple point,they rapidly wrapped up with a well-defined low-level mesovortex.It is thus presumed that the triple point may have played roles in the mesovortex genesis,which will be demonstrated in Part II with multiple sensitivity numerical simulations.The findings also suggest that when storms pass over the boundary intersection zone in the PRD,the expected possibility of a rotating storm occurring is relatively high,even in a low-shear environment.Improved knowledge of such environments provides additional guidance to assess the regional tornado risk.
基金Under the auspices of National Natural Science Foundation of China(No.42071222,41771194)。
文摘Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(excluding Hong Kong,Macao,Taiwan,and‘no data’areas in Qinhai-Tibet Plateau)as the fundamental units of analysis.By employing nighttime light(NTL)data to identify shrinking cities,the propensity score matching(PSM)model was used to quantitatively examine the impact of shrinking cities on land prices,and evaluate the magnitude of this influence.The findings demonstrate the following:1)there were 613 shrinking cities in China,with moderate shrinkage being the most prevalent and severe shrinkage being the least.2)Regional disparities are evident in the spatial distribution of shrinking cities,especially in areas with diverse terrain.3)The spatial pattern of land price exhibits a significant correlated to the economic and administrative levels.4)Shrinking cities significantly negatively impact on the overall land price(ATT=–0.1241,P<0.05).However,the extent of the effect varies significantly among different spatial regions.This study contributes novel insights into the investigation of land prices and shrinking cities,ultimately serving as a foundation for government efforts to promote the sustainable development of urban areas.
基金supported by the Key Research Program of the Institute of Geology and Geophysics,CAS(Nos.IGGCAS-202102 and IGGCAS-201904)the National Natural Science Foundation of China(No.42230111)the CAS Key Technology Talent Program。
文摘After landing in the Utopia Planitia,Tianwen-1 formed the deepest landing crater on Mars,approximately 40 cm deep,exposing precious information about the mechanical properties of Martian soil.We established numerical models for the plume-surface interaction(PSI)and the crater formation based on Computational Fluid Dynamics(CFD)methods and the erosion model modified from Roberts’Theory.Comparative studies of cases were conducted with different nozzle heights and soil mechanical properties.The increase in cohesion and internal friction angle leads to a decrease in erosion rate and maximum crater depth,with the cohesion having a greater impact.The influence of the nozzle height is not clear,as it interacts with the position of the Shock Diamond to jointly control the erosion process.Furthermore,we categorized the evolution of landing craters into the dispersive and the concentrated erosion modes based on the morphological characteristics.Finally,we estimated the upper limits of the Martian soil’s mechanical properties near Tianwen-1 landing site,with the cohesion ranging from 2612 to 2042 Pa and internal friction angle from 25°to 41°.
文摘This study uses logistic and Poisson regression models to examine the factors influencing the adoption of sustain-able land management(SLM)practices in Mali using two rounds of the nationally representative survey Enquête Agricole de Conjoncture Intégrée aux Conditions de Vie des Ménages.The SLMs considered include the applica-tion of organic fertilizers,the application of inorganic fertilizers,the use of improved seeds,and the practice of intercropping.On average the application of organic fertilizers(39.2%),and inorganic fertilizers(28.7%)are the most frequent SLM practices among Malian farmers,and between 2014 and 2017,we observe a decline in the practice of intercropping.The regression results show that farmers’adoption of different SLMs is significantly associated with biophysical factors(average temperature,climate type,plot size,plot shape,and location),de-mographic factors(age,gender,education,household size),and socioeconomic factors(number of cultivated plots,livelihood diversification,type of crop grown,market access,credit access,economic shocks,and social capital).Our findings suggest that policymakers and agricultural development agencies in Mali need to adopt a multidimensional policy framework to unlock the untapped potential of SLM practices in promoting sustainable agriculture and food security.
基金sponsored by the National Key Research and Development Program of China(Grant No.2020YFC1808102).
文摘Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect of temperature on land subsidence has received practically no attention in the past.This paper presents a thermo-hydro-mechanical(THM)coupled numerical study on an ATES system in Shanghai,China.Four water wells were installed for seasonal heating and cooling of an agriculture greenhouse.The target aquifer at a depth of 74e104.5 m consisted of alternating layers of sand and silty sand and was covered with clay.Groundwater level,temperature,and land subsidence data from 2015 to 2017 were collected using field monitoring instruments.Constrained by data,we constructed a field scale three-dimensional(3D)model using TOUGH(Transport of Unsaturated Groundwater and Heat)and FLAC3D(Fast Lagrangian Analysis of Continua)equipped with a thermo-elastoplastic constitutive model.The effectiveness of the numerical model was validated by field data.The model was used to reproduce groundwater flow,heat transfer,and mechanical responses in porous media over three years and capture the thermo-and pressure-induced land subsidence.The results show that the maximum thermoinduced land subsidence accounts for about 60%of the total subsidence.The thermo-induced subsidence is slightly greater in winter than that in summer,and more pronounced near the cold well area than the hot well area.This study provides some valuable guidelines for controlling land subsidence caused by ATES systems installed in soft soils.
基金the National Natural Science Foundation of China (Grant Nos.42175142,42141017 and 41975112) for supporting our study。
文摘The increasing concentration of atmospheric CO_(2) since the Industrial Revolution has affected surface air temperature.However,the impact of the spatial distribution of atmospheric CO_(2) concentration on surface air temperature biases remains highly unclear.By incorporating the spatial distribution of satellite-derived atmospheric CO_(2) concentration in the Beijing Normal University Earth System Model,this study investigated the increase in surface air temperature since the Industrial Revolution in the Northern Hemisphere(NH) under historical conditions from 1976-2005.In comparison with the increase in surface temperature simulated using a uniform distribution of CO_(2),simulation with a nonuniform distribution of CO_(2)produced better agreement with the Climatic Research Unit(CRU) data in the NH under the historical condition relative to the baseline over the period 1901-30.Hemispheric June-July-August(JJA) surface air temperature increased by 1.28℃ ±0.29℃ in simulations with a uniform distribution of CO_(2),by 1.00℃±0.24℃ in simulations with a non-uniform distribution of CO_(2),and by 0.24℃ in the CRU data.The decrease in downward shortwave radiation in the non-uniform CO_(2) simulation was primarily attributable to reduced warming in Eurasia,combined with feedbacks resulting from increased leaf area index(LAI) and latent heat fluxes.These effects were more pronounced in the non-uniform CO_(2)simulation compared to the uniform CO_(2) simulation.Results indicate that consideration of the spatial distribution of CO_(2)concentration can reduce the overestimated increase in surface air temperature simulated by Earth system models.
基金National Natural Science Foundation of China(42230720).
文摘Understanding the response of vegetation variation to climate change and human activities is critical for addressing future conflicts between humans and the environment,and maintaining ecosystem stability.Here,we aimed to identify the determining factors of vegetation variation and explore the sensitivity of vegetation to temperature(SVT)and the sensitivity of vegetation to precipitation(SVP)in the Shiyang River Basin(SYRB)of China during 2001-2022.The climate data from climatic research unit(CRU),vegetation index data from Moderate Resolution Imaging Spectroradiometer(MODIS),and land use data from Landsat images were used to analyze the spatial-temporal changes in vegetation indices,climate,and land use in the SYRB and its sub-basins(i.e.,upstream,midstream,and downstream basins)during 2001-2022.Linear regression analysis and correlation analysis were used to explore the SVT and SVP,revealing the driving factors of vegetation variation.Significant increasing trends(P<0.05)were detected for the enhanced vegetation index(EVI)and normalized difference vegetation index(NDVI)in the SYRB during 2001-2022,with most regions(84%)experiencing significant variation in vegetation,and land use change was determined as the dominant factor of vegetation variation.Non-significant decreasing trends were detected in the SVT and SVP of the SYRB during 2001-2022.There were spatial differences in vegetation variation,SVT,and SVP.Although NDVI and EVI exhibited increasing trends in the upstream,midstream,and downstream basins,the change slope in the downstream basin was lower than those in the upstream and midstream basins,the SVT in the upstream basin was higher than those in the midstream and downstream basins,and the SVP in the downstream basin was lower than those in the upstream and midstream basins.Temperature and precipitation changes controlled vegetation variation in the upstream and midstream basins while human activities(land use change)dominated vegetation variation in the downstream basin.We concluded that there is a spatial heterogeneity in the response of vegetation variation to climate change and human activities across different sub-basins of the SYRB.These findings can enhance our understanding of the relationship among vegetation variation,climate change,and human activities,and provide a reference for addressing future conflicts between humans and the environment in the arid inland river basins.
基金Under the auspices of the Social Science and Humanity on Young Fund of the Ministry of Education of China(No.21YJCZH100)the Scientific Research Project on Outstanding Young of the Fujian Agriculture and Forestry University(No.XJQ201920)+1 种基金the Science and Technology Innovation Special Fund Project of Fujian Agriculture and Forestry University(No.CXZX2021032)the Forestry Peak Discipline Construction Project of Fujian Agriculture and Forestry University(No.72202200205)。
文摘Under the influence of anthropogenic and climate change,the problems caused by urban heat island(UHI)has become increasingly prominent.In order to promote urban sustainable development and improve the quality of human settlements,it is significant for exploring the evolution characteristics of urban thermal environment and analyzing its driving forces.Taking the Landsat series images as the basic data sources,the winter land surface temperature(LST)of the rapid urbanization area of Fuzhou City in China was quantitatively retrieved from 2001 to 2021.Combing comprehensively the standard deviation ellipse model,profile analysis and GeoDetector model,the spatio-temporal evolution characteristics and influencing factors of the winter urban thermal environment were systematically analyzed.The results showed that the winter LST presented an increasing trend in the study area during 2001–2021,and the winter LST of the central urban regions was significantly higher than the suburbs.There was a strong UHI effect from 2001 to 2021with an expansion trend from the central urban regions to the suburbs and coastal areas in space scale.The LST of green lands and wetlands are significantly lower than croplands,artificial surface and unvegetated lands.Vegetation and water bodies had a significant mitigation effect on UHI,especially in the micro-scale.The winter UHI had been jointly driven by the underlying surface and socio-economic factors in a nonlinear or two-factor interactive enhancement mode,and socio-economic factors had played a leading role.This research could provide data support and decision-making references for rationally planning urban layout and promoting sustainable urban development.
基金supported by the National Natural Science Foundation of China(72373117)the Chinese Universities Scientific Fund(Z1010422003)+1 种基金the Major Project of the Key Research Base of Humanities and Social Sciences of the Ministry of Education(22JJD790052)the Qinchuangyuan Project of Shaanxi Province(QCYRCXM-2022-145).
文摘Improving cultivated land use eco-efficiency(CLUE)can effectively promote agricultural sustainability,particularly in developing countries where CLUE is generally low.This study used provincial-level data from China to evaluate the spatiotemporal evolution of CLUE from 2000 to 2020 and identified the influencing factors of CLUE by using a panel Tobit model.In addition,given the undesirable outputs of agricultural production,we incorporated carbon emissions and nonpoint source pollution into the global benchmark-undesirable output-super efficiency-slacks-based measure(GB-US-SBM)model,which combines global benchmark technology,undesirable output,super efficiency,and slacks-based measure.The results indicated that there was an upward trend in CLUE in China from 2000 to 2020,with an increase rate of 2.62%.The temporal evolution of CLUE in China could be classified into three distinct stages:a period of fluctuating decrease(2000-2007),a phase of gradual increase(2008-2014),and a period of rapid growth(2015-2020).The major grain-producing areas(MPAs)had a lower CLUE than their counterparts,namely,non-major grain-production areas(non-MPAs).The spatial agglomeration effect followed a northeast-southwest strip distribution;and the movement path of barycentre revealed a"P"shape,with Luoyang City,Henan Province,as the centre.In terms of influencing factors of CLUE,investment in science and technology played the most vital role in improving CLUE,while irrigation index had the most negative effect.It should be noted that these two influencing factors had different impacts on MPAs and non-MPAs.Therefore,relevant departments should formulate policies to enhance the level of science and technology,improve irrigation condition,and promote sustainable utilization of cultivated land.
文摘Purpose:The metropolitan cities of Johannesburg,Ekurhuleni and Tshwane play an important role in the economy of the Gauteng province in South Africa.The region constitutes to 22.4 percent of the total population of South Africa and has a strong presence and contributes in areas of manufacturing sector,financial and business services,retail and wholesale trade,etc.The rapid urban population,increase in the informal settlements and socio-economic opportunities has resulted in considerable urban sprawl in and around the urban fringe areas of these metropolitan cities.The urban fringe areas of these metros often come under the influence of rapid urbanization process and pressures.Coupled with the economical and potential land dynamics and lack of priority of spatial development guidelines,these areas attract rapid and haphazard development from communities and developers.Research Design/Methodology:This research is based on a qualitative approach through a comprehensive literature review that included content analysis of key documents on housing sector such as IDPs(Integrated Development Plans),Municipal Annual Reports,Growth Development Strategies,and among other sectoral documents on housing sector.Some of the key priority issues considered in the housing sector included:eradication of housing backlogs,spatial restructuring of housing,provision of choice in terms of location,tenure and housing typology.Findings:The current paper discusses the approaches of metropolitan housing development processes in three metropolitan cities of South Africa from Gauteng region,namely:Johannesburg,Ekurhuleni and Tshwane.The paper discusses the existing housing sectoral scenario along with the fringe areas in three cities with focus on:formal and informal settlements,housing segregation and the backlogs,current institutional arrangements,role of public private participation,and scope for alternate mechanisms.The paper concludes in discussion on sustainable development options for housing development in urban fringe areas.