Glacial lake mapping provides the most feasible way for investigating the water resources and monitoring the flood outburst hazards in High Mountain Region.However,various types of glacial lakes with different propert...Glacial lake mapping provides the most feasible way for investigating the water resources and monitoring the flood outburst hazards in High Mountain Region.However,various types of glacial lakes with different properties bring a constraint to the rapid and accurate glacial lake mapping over a large scale.Existing spectral features to map glacial lakes are diverse but some are generally limited to the specific glaciated regions or lake types,some have unclear applicability,which hamper their application for the large areas.To this end,this study provides a solution for evaluating the most effective spectral features in glacial lake mapping using Landsat-8 imagery.The 23 frequently-used lake mapping spectral features,including single band reflectance features,Water Index features and image transformation features were selected,then the insignificant features were filtered out based on scoring calculated from two classical feature selection methods-random forest and decision tree algorithm.The result shows that the three most prominent spectral features(SF)with high scores are NDWI1,EWI,and NDWI3(renamed as SF8,SF19 and SF12 respectively).Accuracy assessment of glacial lake mapping results in five different test sites demonstrate that the selected features performed well and robustly in classifying different types of glacial lakes without any influence from the mountain shadows.SF8 and SF19 are superior for the detection of large amount of small glacial lakes,while some lake areas extracted by SF12 are incomplete.Moreover,SF8 achieved better accuracy than the other two features in terms of both Kappa Coefficient(0.8812)and Prediction(0.9025),which further indicates that SF8 has great potential for large scale glacial lake mapping in high mountainous area.展开更多
The extraction of water bodies is essential for monitoring water resources,ecosystem services and the hydrological cycle,so analyzing water bodies from remote sensing images is necessary.The water index is designed to...The extraction of water bodies is essential for monitoring water resources,ecosystem services and the hydrological cycle,so analyzing water bodies from remote sensing images is necessary.The water index is designed to highlight water bodies in remote sensing images.We employ a new water index and digital image processing technology to extract water bodies automatically and accurately from Landsat 8 OLI images.Firstly,we preprocess Landsat 8 OLI images with radiometric calibration and atmospheric correction.Subsequently,we apply KT transformation,LBV transformation,AWEI nsh,and HIS transformation to the preprocessed image to calculate a new water index.Then,we perform linear feature enhancement and improve the local adaptive threshold segmentation method to extract small water bodies accurately.Meanwhile,we employ morphological enhancement and improve the local adaptive threshold segmentation method to extract large water bodies.Finally,we combine small and large water bodies to get complete water bodies.Compared with other traditional methods,our method has apparent advantages in water extraction,particularly in the extraction of small water bodies.展开更多
Water color is a crucial optical indicator of water quality,polluted water bodies often show water color anomalies.To comprehensively understand the occurrence of water color anomalies in inland lakes,an integrated me...Water color is a crucial optical indicator of water quality,polluted water bodies often show water color anomalies.To comprehensively understand the occurrence of water color anomalies in inland lakes,an integrated method was designed using the hue angle based on the Forel-Ule Index(FUI)model,and other remote sensing indices,including the Turbid Water Index(TWI),Floating Algae Index(FAI),and Cyanobacteria and Macrophytes Index(CMI).Based on all available Landsat-8 OLI images from 2013 to 2020,continuous monitoring was conducted in three different lakes in the middle of the Yangtze River,China.The results demonstrated that:(1)The proposed method can accurately identify algal blooms,high sediment loads,and eutrophication from the abnormal water color areas;(2)The calculated hue angles of sediment-dominated water were significantly higher than those of algal blooms and aquatic vegetation,providing a noticeable visual discoloration of water;(3)These water color anomalies exhibited significant correlations with the water quality and environmental conditions.This study serves as an example for accurate and spatially continuous assessment of water color anomaly and supports practical information to facilitate local water environment conservation.展开更多
利用遥感技术快速准确地提取耕地信息是耕地保护的关键环节。以山东省商河县为例,提出了一种基于多季相分形特征的Landsat 8 OLI影像耕地信息提取方法。首先采用毯子覆盖法计算多季相遥感影像每个像元的上分形信号和下分形信号,对比分...利用遥感技术快速准确地提取耕地信息是耕地保护的关键环节。以山东省商河县为例,提出了一种基于多季相分形特征的Landsat 8 OLI影像耕地信息提取方法。首先采用毯子覆盖法计算多季相遥感影像每个像元的上分形信号和下分形信号,对比分析耕地和其他土地利用类型的分形特征,选取上分形信号的第3尺度作为特征尺度,提取商河县耕地空间分布特征;其次采用同时期的土地利用矢量数据、Esri land cover数据和统计数据进行耕地信息提取精度评价;最后分别设置多季相分形提取与单季相分形提取、现有土地利用数据产品的对比实验,并基于点位匹配度和面积匹配度进行评价。结果表明:多季相数据更能反映农作物生长的复杂性,有助于提高耕地信息的提取精度;不同土地利用类型在不同分形尺度的信号值各不相同,分形特征可以在不同尺度上清晰地刻画出不同土地利用类型的分异性;基于矢量数据和Esri land cover数据评价的多季相分形特征耕地提取点位匹配度为87.13%和89.83%,面积匹配度为99.73%和97.91%,均比单季相分形提取结果精度高;综合考虑点位匹配度、面积匹配度和空间分布特征,研发方法能有效区分耕地和其他土地利用类型,提取结果更优,且与统计数据有更高的一致性。该方法可准确提取耕地信息,为耕地的动态监测和损害评估提供技术支撑。展开更多
In recent years image fusion method has been used widely in different studies to improve spatial resolution of multispectral images. This study aims to fuse high resolution satellite imagery with low multispectral ima...In recent years image fusion method has been used widely in different studies to improve spatial resolution of multispectral images. This study aims to fuse high resolution satellite imagery with low multispectral imagery in order to assist policymakers in the effective planning and management of urban forest ecosystem in Baton Rouge. To accomplish these objectives, Landsat 8 and PlanetScope satellite images were acquired from United States Geological Survey (USGS) Earth Explorer and Planet websites with pixel resolution of 30m and 3m respectively. The reference images (observed Landsat 8 and PlanetScope imagery) were acquired on 06/08/2020 and 11/19/2020. The image processing was performed in ArcMap and used 6-5-4 band combination for Landsat 8 to visually inspect healthy vegetation and the green spaces. The near-infrared (NIR) panchromatic band for PlanetScope was merged with Landsat 8 image using the Create Pan-Sharpened raster tool in ArcMap and applied the Intensity-Hue-Saturation (IHS) method. In addition, location of urban forestry parks in the study area was picked using the handheld GPS and recorded in an excel sheet. This sheet was converted into Excel (.csv) file and imported into ESRI ArcMap to identify the spatial distribution of the green spaces in East Baton Rouge parish. Results show fused images have better contrast and improve visualization of spatial features than non-fused images. For example, roads, trees, buildings appear sharper, easily discernible, and less pixelated compared to the Landsat 8 image in the fused image. The paper concludes by outlining policy recommendations in the form of sequential measurement of urban forest over time to help track changes and allows for better informed policy and decision making with respect to urban forest management.展开更多
鉴于传统调制传递函数(modulation transfer function,MTF)空间域分析结果受实验目标选择影响很大,应用EROS提出的频率域线状地物法对Landsat-8卫星OLI成像仪MTF进行在轨评测,并通过对比实验验证方法。基于目标和传感器特性分析,分别建...鉴于传统调制传递函数(modulation transfer function,MTF)空间域分析结果受实验目标选择影响很大,应用EROS提出的频率域线状地物法对Landsat-8卫星OLI成像仪MTF进行在轨评测,并通过对比实验验证方法。基于目标和传感器特性分析,分别建立目标模型和系统传递函数模型,利用拟合数据求解模型参数,进而计算得到MTF值。并将EROS方法与传统T choi方法测得的MTF值进行对比。实验结果表明,EROS方法能有效应用于Landsat-8卫星OLI成像仪的MTF在轨测量,且明显减少了目标选择对于MTF评测结果的影响。展开更多
基金funded by the National Key R&D Program of China(Grant No.2017YFE0100800)the International Partnership Program of the Chinese Academy of Sciences(Grant No.131551KYSB20160002/131211KYSB20170046)the National Natural Science Foundation of China(41701481)。
文摘Glacial lake mapping provides the most feasible way for investigating the water resources and monitoring the flood outburst hazards in High Mountain Region.However,various types of glacial lakes with different properties bring a constraint to the rapid and accurate glacial lake mapping over a large scale.Existing spectral features to map glacial lakes are diverse but some are generally limited to the specific glaciated regions or lake types,some have unclear applicability,which hamper their application for the large areas.To this end,this study provides a solution for evaluating the most effective spectral features in glacial lake mapping using Landsat-8 imagery.The 23 frequently-used lake mapping spectral features,including single band reflectance features,Water Index features and image transformation features were selected,then the insignificant features were filtered out based on scoring calculated from two classical feature selection methods-random forest and decision tree algorithm.The result shows that the three most prominent spectral features(SF)with high scores are NDWI1,EWI,and NDWI3(renamed as SF8,SF19 and SF12 respectively).Accuracy assessment of glacial lake mapping results in five different test sites demonstrate that the selected features performed well and robustly in classifying different types of glacial lakes without any influence from the mountain shadows.SF8 and SF19 are superior for the detection of large amount of small glacial lakes,while some lake areas extracted by SF12 are incomplete.Moreover,SF8 achieved better accuracy than the other two features in terms of both Kappa Coefficient(0.8812)and Prediction(0.9025),which further indicates that SF8 has great potential for large scale glacial lake mapping in high mountainous area.
基金Auhui Provincial Key Research and Development Project(No.202004a07020050)National Natural Science Foundation of China Youth Program(No.61901006)。
文摘The extraction of water bodies is essential for monitoring water resources,ecosystem services and the hydrological cycle,so analyzing water bodies from remote sensing images is necessary.The water index is designed to highlight water bodies in remote sensing images.We employ a new water index and digital image processing technology to extract water bodies automatically and accurately from Landsat 8 OLI images.Firstly,we preprocess Landsat 8 OLI images with radiometric calibration and atmospheric correction.Subsequently,we apply KT transformation,LBV transformation,AWEI nsh,and HIS transformation to the preprocessed image to calculate a new water index.Then,we perform linear feature enhancement and improve the local adaptive threshold segmentation method to extract small water bodies accurately.Meanwhile,we employ morphological enhancement and improve the local adaptive threshold segmentation method to extract large water bodies.Finally,we combine small and large water bodies to get complete water bodies.Compared with other traditional methods,our method has apparent advantages in water extraction,particularly in the extraction of small water bodies.
基金jointly supported by the National Key Research and Development Program of China[grant numbers 2018YFB0504900 and 2018YFB0504904]the National Natural Science Foundation of China[grant numbers 42071325,42171346,and 42176183]LIESMARS Special Research Funding,the‘985 Project’of Wuhan University,and Special funds of State Key Laboratory for equipment.
文摘Water color is a crucial optical indicator of water quality,polluted water bodies often show water color anomalies.To comprehensively understand the occurrence of water color anomalies in inland lakes,an integrated method was designed using the hue angle based on the Forel-Ule Index(FUI)model,and other remote sensing indices,including the Turbid Water Index(TWI),Floating Algae Index(FAI),and Cyanobacteria and Macrophytes Index(CMI).Based on all available Landsat-8 OLI images from 2013 to 2020,continuous monitoring was conducted in three different lakes in the middle of the Yangtze River,China.The results demonstrated that:(1)The proposed method can accurately identify algal blooms,high sediment loads,and eutrophication from the abnormal water color areas;(2)The calculated hue angles of sediment-dominated water were significantly higher than those of algal blooms and aquatic vegetation,providing a noticeable visual discoloration of water;(3)These water color anomalies exhibited significant correlations with the water quality and environmental conditions.This study serves as an example for accurate and spatially continuous assessment of water color anomaly and supports practical information to facilitate local water environment conservation.
文摘利用遥感技术快速准确地提取耕地信息是耕地保护的关键环节。以山东省商河县为例,提出了一种基于多季相分形特征的Landsat 8 OLI影像耕地信息提取方法。首先采用毯子覆盖法计算多季相遥感影像每个像元的上分形信号和下分形信号,对比分析耕地和其他土地利用类型的分形特征,选取上分形信号的第3尺度作为特征尺度,提取商河县耕地空间分布特征;其次采用同时期的土地利用矢量数据、Esri land cover数据和统计数据进行耕地信息提取精度评价;最后分别设置多季相分形提取与单季相分形提取、现有土地利用数据产品的对比实验,并基于点位匹配度和面积匹配度进行评价。结果表明:多季相数据更能反映农作物生长的复杂性,有助于提高耕地信息的提取精度;不同土地利用类型在不同分形尺度的信号值各不相同,分形特征可以在不同尺度上清晰地刻画出不同土地利用类型的分异性;基于矢量数据和Esri land cover数据评价的多季相分形特征耕地提取点位匹配度为87.13%和89.83%,面积匹配度为99.73%和97.91%,均比单季相分形提取结果精度高;综合考虑点位匹配度、面积匹配度和空间分布特征,研发方法能有效区分耕地和其他土地利用类型,提取结果更优,且与统计数据有更高的一致性。该方法可准确提取耕地信息,为耕地的动态监测和损害评估提供技术支撑。
文摘In recent years image fusion method has been used widely in different studies to improve spatial resolution of multispectral images. This study aims to fuse high resolution satellite imagery with low multispectral imagery in order to assist policymakers in the effective planning and management of urban forest ecosystem in Baton Rouge. To accomplish these objectives, Landsat 8 and PlanetScope satellite images were acquired from United States Geological Survey (USGS) Earth Explorer and Planet websites with pixel resolution of 30m and 3m respectively. The reference images (observed Landsat 8 and PlanetScope imagery) were acquired on 06/08/2020 and 11/19/2020. The image processing was performed in ArcMap and used 6-5-4 band combination for Landsat 8 to visually inspect healthy vegetation and the green spaces. The near-infrared (NIR) panchromatic band for PlanetScope was merged with Landsat 8 image using the Create Pan-Sharpened raster tool in ArcMap and applied the Intensity-Hue-Saturation (IHS) method. In addition, location of urban forestry parks in the study area was picked using the handheld GPS and recorded in an excel sheet. This sheet was converted into Excel (.csv) file and imported into ESRI ArcMap to identify the spatial distribution of the green spaces in East Baton Rouge parish. Results show fused images have better contrast and improve visualization of spatial features than non-fused images. For example, roads, trees, buildings appear sharper, easily discernible, and less pixelated compared to the Landsat 8 image in the fused image. The paper concludes by outlining policy recommendations in the form of sequential measurement of urban forest over time to help track changes and allows for better informed policy and decision making with respect to urban forest management.
文摘鉴于传统调制传递函数(modulation transfer function,MTF)空间域分析结果受实验目标选择影响很大,应用EROS提出的频率域线状地物法对Landsat-8卫星OLI成像仪MTF进行在轨评测,并通过对比实验验证方法。基于目标和传感器特性分析,分别建立目标模型和系统传递函数模型,利用拟合数据求解模型参数,进而计算得到MTF值。并将EROS方法与传统T choi方法测得的MTF值进行对比。实验结果表明,EROS方法能有效应用于Landsat-8卫星OLI成像仪的MTF在轨测量,且明显减少了目标选择对于MTF评测结果的影响。