During aircraft,ship,and automobile manufacturing,lap structures are frequently produced among Al alloy skins,wall panels,and stiffeners.The occurrence of welding defects severely decreases mechanical properties durin...During aircraft,ship,and automobile manufacturing,lap structures are frequently produced among Al alloy skins,wall panels,and stiffeners.The occurrence of welding defects severely decreases mechanical properties during friction stir lap welding(FSLW).This study focuses on investigating the effects of rotation rate,multipass welding,and cooling methods on lap defect formation,microstructural evolution,and mechanical properties.Hook defects were eliminated by decreasing welding speed,applying two-pass FLSW with a small welding tool,and introducing additional water cooling,thus leading to a remarkable increase in effective sheet thickness and lap width.This above strategy yielded defect-free joints with an ultrafine-grained microstructure and increased tensile shear force from 298 to 551 N/mm.The fracture behavior of FSLW joints was systematically studied,and a fracture factor of lap joints was proposed to predict their fracture mode.By reducing the rotation rate,using two-pass welding,and employing additional water cooling strategies,an enlarged,strengthened,and defect-free lap zone with refined ultrafine grains was achieved with a quality comparable to that of lap welds based on 7xxx Al alloys.Importantly,this study provides a valuable FSLW method for eliminating hook defects and improving joint performance.展开更多
Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded aust...Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded austenitic stainless steel parts is limited owing to the micro bulging distortion that occurs on the back surface of the partial penetration side.In this paper,non-penetration lap laser welding experiments,were conducted on galvanized and SUS304 austenitic stainless steel plates using a fiber laser,to investigate the mechanism of bulging distortion.A comparative experiment of DC01 galvanized steel-Q235 carbon steel lap laser welding was carried out,and the deflection and distortion profile of partially penetrated side of the sheets were measured using a noncontact laser interferometer.In addition,the cold-rolled SUS304 was subjected to heat holding at different temperatures and water quenching after bending to characterize its microstructure under tensile and compressive stress.The results show that,during the heating stage of the thermal cycle of laser lap welding,the partial penetration side of the SUS304 steel sheet generates compressive stress,which extrudes the material in the heat-affected zone to the outside of the back of the SUS304 steel sheet,thereby forming a bulge.The findings of these experiments can be of great value for controlling the distortion of the partial penetrated side of austenitic stainless steel sheet during laser non-penetration lap welding.展开更多
We synthesized photo-responsive carboxymethyl chitosan(CMC-MA)via free radical polymerization and utilized nanoclay laponite(LAP)as an inorganic crosslinking agent to develop an injectable and 3D-printable CMC-MA/LAP ...We synthesized photo-responsive carboxymethyl chitosan(CMC-MA)via free radical polymerization and utilized nanoclay laponite(LAP)as an inorganic crosslinking agent to develop an injectable and 3D-printable CMC-MA/LAP hydrogel.We determined the optimal ratio of 2.5 w/v%CMC-MA/7.5 w/v%LAP based on injection molding,compression modulus,swelling properties,rheological properties,and 3D printing properties of the hydrogel system.In-vitro cytocompatibility experiments showed that both CMC-MA and CMC-MA/LAP hydrogel had no inhibitory effect on cell proliferation and can promote cell growth when cultured on the surface of the hydrogel matrix.Moreover,the hydrogel containing LAP particles significantly facilitated cell adhesion(>60%)compared with the hydrogel without LAP(20%).Our findings demonstrate that the CMC-MA/LAP hydrogel has great potential for tissue repair in neural tissue engineering.展开更多
Double-sided lapping is an precision machining method capable of obtaining high-precision surface.However,during the lapping process of thin pure copper substrate,the workpiece will be warped due to the influence of r...Double-sided lapping is an precision machining method capable of obtaining high-precision surface.However,during the lapping process of thin pure copper substrate,the workpiece will be warped due to the influence of residual stress,including the machining stress and initial residual stress,which will deteriorate the flatness of the workpiece and ultimately affect the performance of components.In this study,finite element method(FEM)was adopted to study the effect of residual stress-related on the deformation of pure copper substrate during double-sided lapping.Considering the initial residual stress of the workpiece,the stress caused by the lapping and their distribution characteristics,a prediction model was proposed for simulating workpiece machining deformation in lapping process by measuring the material removal rate of the upper and lower surfaces of the workpiece under the corresponding parameters.The results showed that the primary cause of the warping deformation of the workpiece in the doublesided lapping is the redistribution of initial residual stress caused by uneven material removal on the both surfaces.The finite element simulation results were in good agreement with the experimental results.展开更多
The welding of aluminum(Al)and steel has attracted more and more interest due to the weight reduction trend in vehicle and aerospace manufacturing industries.5182-O/HC260YD+Z lap joint was produced by friction stir we...The welding of aluminum(Al)and steel has attracted more and more interest due to the weight reduction trend in vehicle and aerospace manufacturing industries.5182-O/HC260YD+Z lap joint was produced by friction stir welding(FSW),and the microstructure and mechanical property of the joint were systemically characterized.The microstructure in horizontal direction of the Al and steel near interface was similar to their corresponding conventional friction stir welded joint.The joint was divided into stir zone of Al(ST-Al),stir zone of interface(ST-I),thermal-mechanically affected zone of steel(TMAZ-Fe)and base material of steel(BM-Fe)according to their distinct microstructure vertically.Three kinds of intermetallic compounds(IMCs)of FeAl_(3),FeAl and Fe_(3)Al were formed at the interface.The horizontal micro hardness distribution exhibited a hat shape and“M”shape in Al and steel,respectively.The hardest region of the joint was located at the ST-I,with a hardness of 175 HV−210 HV.The joint was fractured along the hook structure,with an average shear strength of 73.9 MPa.Fractural morphology of Al and steel indicted a cleavage fracture mode.展开更多
太阳能光伏发电已成为仅次于水电和风能的第三大可再生能源,光伏发电受云量时空变化的影响较大,因此准确模拟云天太阳辐射的时空变化对电网安全运行至关重要。围绕如何减小中尺度气象模式的云初始场误差,进而改进云天的太阳辐射模拟这...太阳能光伏发电已成为仅次于水电和风能的第三大可再生能源,光伏发电受云量时空变化的影响较大,因此准确模拟云天太阳辐射的时空变化对电网安全运行至关重要。围绕如何减小中尺度气象模式的云初始场误差,进而改进云天的太阳辐射模拟这一关键科学问题,本文通过研究基于卫星资料同化的LAPS(Local Analysis Prediction System)多时间层三维云分析同化方法,改进三维云结构,并将LAPS模式输出结果作为WRF(Weather Research and Forecasting)模式的初始场,模拟了2008年1月及夏季(6~8月)北京地区的总云量和总辐射的时空分布,重点分析了多云和有降水天气过程总辐射的模拟改进效果及其原因。结果表明,同化前后的总云量模拟值与观测值的时间变化趋势基本一致,但大部分时次总云量的模拟值低于观测值;大部分多云及降水时段同化后总云量模拟值较接近于实测值。1月晴天、多云天以及夏季晴天同化前后总辐射模拟值与实测值的时间变化趋势较一致,但同化前后两者的相关性差异不明显;晴天条件下同化前后总辐射模拟值均低于实测值,1月多云条件下多数时段同化后总辐射模拟误差减小不明显,与总云量的改进效果不显著有关。夏季多云、有降水及6月典型降水三种天气条件下同化前后总辐射模拟值与观测值的相关性稍差,同化后两者的相关性较同化前有所改进,尤其是6月典型降水过程改进效果较明显;同化前总辐射模拟误差较大,而同化后误差显著减小,尤其是6月典型降水过程同化后均方根误差和平均相对误差较同化前分别减小了102.6 W m^(-2)和355.9%,最大相对误差减小更显著;同化后总辐射模拟误差小于同化前的比例高达75%,即大部分时刻同化后模拟误差小于同化前。多云和有降水天气过程总辐射模拟效果的显著改进与总云量的改进密切相关,即同化后总云量模拟值增加,云的反射和散射作用增强,导致模拟总辐射减小,即更接近于实测总辐射值。研究结果对于多云和降水天气条件下太阳辐射的模拟效果改进、太阳能资源客观评估以及光伏电站的发电量预测具有一定的科学和实际应用价值。展开更多
利用LAPS(Local Analysis and Prediction System)系统同化GPS(Global Positioning System)/PWV(Precipitable Water Vapor)资料,分析GPS/PWV资料对LAPS输出场的影响,并结合WRF模式,将LAPS输出场作为其初始场进行降水预报,进一步考察GPS...利用LAPS(Local Analysis and Prediction System)系统同化GPS(Global Positioning System)/PWV(Precipitable Water Vapor)资料,分析GPS/PWV资料对LAPS输出场的影响,并结合WRF模式,将LAPS输出场作为其初始场进行降水预报,进一步考察GPS/PWV资料对降水预报的作用。选取2009年6月28日湖北地区的一次强降水过程,设计三种方案进行试验。结果表明:同化GPS/PWV资料后对LAPS湿度场有显著的改善,而对高度场及风场的作用则不明显;GPS/PWV资料对区域平均可降水量的影响比雷达资料大一个量级;与此同时,利用多种评分方法对6 h累计降水做了检验,分析结果表明同化GPS/PWV资料能够有效地改进WRF模式的初始场,增加丰富的中小尺度信息,并对随后的确定性预报产生正影响。展开更多
基金supported by the National Natural Science Foundation of China(Nos.52305436 and 51975553)the Program for Guangdong Basic and Applied Basic Research Foundation,China(No.2021A151511006)+4 种基金Guangxi Science and Technology Major Program,China(No.AA23023029)Liaoning Natural Science Foundation of China(No.2021-MS-007)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y2021061)the Bintech-IMR R&D Program(No.GYYJSBU-2022-002)the Institute of Metal Research Innovation Found,China(No.2022-PY11).
文摘During aircraft,ship,and automobile manufacturing,lap structures are frequently produced among Al alloy skins,wall panels,and stiffeners.The occurrence of welding defects severely decreases mechanical properties during friction stir lap welding(FSLW).This study focuses on investigating the effects of rotation rate,multipass welding,and cooling methods on lap defect formation,microstructural evolution,and mechanical properties.Hook defects were eliminated by decreasing welding speed,applying two-pass FLSW with a small welding tool,and introducing additional water cooling,thus leading to a remarkable increase in effective sheet thickness and lap width.This above strategy yielded defect-free joints with an ultrafine-grained microstructure and increased tensile shear force from 298 to 551 N/mm.The fracture behavior of FSLW joints was systematically studied,and a fracture factor of lap joints was proposed to predict their fracture mode.By reducing the rotation rate,using two-pass welding,and employing additional water cooling strategies,an enlarged,strengthened,and defect-free lap zone with refined ultrafine grains was achieved with a quality comparable to that of lap welds based on 7xxx Al alloys.Importantly,this study provides a valuable FSLW method for eliminating hook defects and improving joint performance.
文摘Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded austenitic stainless steel parts is limited owing to the micro bulging distortion that occurs on the back surface of the partial penetration side.In this paper,non-penetration lap laser welding experiments,were conducted on galvanized and SUS304 austenitic stainless steel plates using a fiber laser,to investigate the mechanism of bulging distortion.A comparative experiment of DC01 galvanized steel-Q235 carbon steel lap laser welding was carried out,and the deflection and distortion profile of partially penetrated side of the sheets were measured using a noncontact laser interferometer.In addition,the cold-rolled SUS304 was subjected to heat holding at different temperatures and water quenching after bending to characterize its microstructure under tensile and compressive stress.The results show that,during the heating stage of the thermal cycle of laser lap welding,the partial penetration side of the SUS304 steel sheet generates compressive stress,which extrudes the material in the heat-affected zone to the outside of the back of the SUS304 steel sheet,thereby forming a bulge.The findings of these experiments can be of great value for controlling the distortion of the partial penetrated side of austenitic stainless steel sheet during laser non-penetration lap welding.
基金Funded by the Natural Science Foundation of Hubei Province(No.2022CFB386)。
文摘We synthesized photo-responsive carboxymethyl chitosan(CMC-MA)via free radical polymerization and utilized nanoclay laponite(LAP)as an inorganic crosslinking agent to develop an injectable and 3D-printable CMC-MA/LAP hydrogel.We determined the optimal ratio of 2.5 w/v%CMC-MA/7.5 w/v%LAP based on injection molding,compression modulus,swelling properties,rheological properties,and 3D printing properties of the hydrogel system.In-vitro cytocompatibility experiments showed that both CMC-MA and CMC-MA/LAP hydrogel had no inhibitory effect on cell proliferation and can promote cell growth when cultured on the surface of the hydrogel matrix.Moreover,the hydrogel containing LAP particles significantly facilitated cell adhesion(>60%)compared with the hydrogel without LAP(20%).Our findings demonstrate that the CMC-MA/LAP hydrogel has great potential for tissue repair in neural tissue engineering.
基金National Key Research and Development Program of China(Grant No.2018YFA0702900)Science Challenge Project of China(Grant No.TZ2016006)National Natural Science Foundation of China(Grant No.51975096)。
文摘Double-sided lapping is an precision machining method capable of obtaining high-precision surface.However,during the lapping process of thin pure copper substrate,the workpiece will be warped due to the influence of residual stress,including the machining stress and initial residual stress,which will deteriorate the flatness of the workpiece and ultimately affect the performance of components.In this study,finite element method(FEM)was adopted to study the effect of residual stress-related on the deformation of pure copper substrate during double-sided lapping.Considering the initial residual stress of the workpiece,the stress caused by the lapping and their distribution characteristics,a prediction model was proposed for simulating workpiece machining deformation in lapping process by measuring the material removal rate of the upper and lower surfaces of the workpiece under the corresponding parameters.The results showed that the primary cause of the warping deformation of the workpiece in the doublesided lapping is the redistribution of initial residual stress caused by uneven material removal on the both surfaces.The finite element simulation results were in good agreement with the experimental results.
文摘The welding of aluminum(Al)and steel has attracted more and more interest due to the weight reduction trend in vehicle and aerospace manufacturing industries.5182-O/HC260YD+Z lap joint was produced by friction stir welding(FSW),and the microstructure and mechanical property of the joint were systemically characterized.The microstructure in horizontal direction of the Al and steel near interface was similar to their corresponding conventional friction stir welded joint.The joint was divided into stir zone of Al(ST-Al),stir zone of interface(ST-I),thermal-mechanically affected zone of steel(TMAZ-Fe)and base material of steel(BM-Fe)according to their distinct microstructure vertically.Three kinds of intermetallic compounds(IMCs)of FeAl_(3),FeAl and Fe_(3)Al were formed at the interface.The horizontal micro hardness distribution exhibited a hat shape and“M”shape in Al and steel,respectively.The hardest region of the joint was located at the ST-I,with a hardness of 175 HV−210 HV.The joint was fractured along the hook structure,with an average shear strength of 73.9 MPa.Fractural morphology of Al and steel indicted a cleavage fracture mode.
文摘太阳能光伏发电已成为仅次于水电和风能的第三大可再生能源,光伏发电受云量时空变化的影响较大,因此准确模拟云天太阳辐射的时空变化对电网安全运行至关重要。围绕如何减小中尺度气象模式的云初始场误差,进而改进云天的太阳辐射模拟这一关键科学问题,本文通过研究基于卫星资料同化的LAPS(Local Analysis Prediction System)多时间层三维云分析同化方法,改进三维云结构,并将LAPS模式输出结果作为WRF(Weather Research and Forecasting)模式的初始场,模拟了2008年1月及夏季(6~8月)北京地区的总云量和总辐射的时空分布,重点分析了多云和有降水天气过程总辐射的模拟改进效果及其原因。结果表明,同化前后的总云量模拟值与观测值的时间变化趋势基本一致,但大部分时次总云量的模拟值低于观测值;大部分多云及降水时段同化后总云量模拟值较接近于实测值。1月晴天、多云天以及夏季晴天同化前后总辐射模拟值与实测值的时间变化趋势较一致,但同化前后两者的相关性差异不明显;晴天条件下同化前后总辐射模拟值均低于实测值,1月多云条件下多数时段同化后总辐射模拟误差减小不明显,与总云量的改进效果不显著有关。夏季多云、有降水及6月典型降水三种天气条件下同化前后总辐射模拟值与观测值的相关性稍差,同化后两者的相关性较同化前有所改进,尤其是6月典型降水过程改进效果较明显;同化前总辐射模拟误差较大,而同化后误差显著减小,尤其是6月典型降水过程同化后均方根误差和平均相对误差较同化前分别减小了102.6 W m^(-2)和355.9%,最大相对误差减小更显著;同化后总辐射模拟误差小于同化前的比例高达75%,即大部分时刻同化后模拟误差小于同化前。多云和有降水天气过程总辐射模拟效果的显著改进与总云量的改进密切相关,即同化后总云量模拟值增加,云的反射和散射作用增强,导致模拟总辐射减小,即更接近于实测总辐射值。研究结果对于多云和降水天气条件下太阳辐射的模拟效果改进、太阳能资源客观评估以及光伏电站的发电量预测具有一定的科学和实际应用价值。
文摘利用LAPS(Local Analysis and Prediction System)系统同化GPS(Global Positioning System)/PWV(Precipitable Water Vapor)资料,分析GPS/PWV资料对LAPS输出场的影响,并结合WRF模式,将LAPS输出场作为其初始场进行降水预报,进一步考察GPS/PWV资料对降水预报的作用。选取2009年6月28日湖北地区的一次强降水过程,设计三种方案进行试验。结果表明:同化GPS/PWV资料后对LAPS湿度场有显著的改善,而对高度场及风场的作用则不明显;GPS/PWV资料对区域平均可降水量的影响比雷达资料大一个量级;与此同时,利用多种评分方法对6 h累计降水做了检验,分析结果表明同化GPS/PWV资料能够有效地改进WRF模式的初始场,增加丰富的中小尺度信息,并对随后的确定性预报产生正影响。