A rigorous analytical model is developed for simulating the vibration behaviors of large-diameter openended pipe piles(OEPPs)and surrounding soil undergoing high-strain impact loading.To describe the soil behavior,the...A rigorous analytical model is developed for simulating the vibration behaviors of large-diameter openended pipe piles(OEPPs)and surrounding soil undergoing high-strain impact loading.To describe the soil behavior,the soil along pile shaft is divided into slip and nonslip zones and the base soil is modeled as a fictitious-soil pile(FSP)to account for the wave propagation in the soil.True soil properties are adopted and slippage at the pile-soil interface is considered,allowing realistic representation of largediameter OEPP mechanics.The developed model is validated by comparing with conventional models and finite element method(FEM).It is further used to successfully simulate and interpret the behaviors of a steel OEPP during the offshore field test.It is found that the variation in the vertical vibrations of shaft soil along radial direction is significant for large-diameter OEPPs,and the velocity amplitudes of the internal and external soil attenuate following different patterns.The shaft soil motion may not attenuate with depth due to the soil slippage,while the wave attenuation at base soil indicates an influence depth,with a faster attenuation rate than that in the pile.The findings from the current study should aid in simulating the vibration behaviors of large-diameter OEPP-soil system under high-strain dynamic loading.展开更多
A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field m...A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field model using more different truncated solid conical blocks to clarify the multiblock failure mechanism.Furthermore,the shape of blocks between the failure surface and the tunnel face was considered as an entire circle,and the supporting pressure was assumed as non-uniform distribution on the tunnel face and increased with the tunnel embedded depth.The ground surface settlements and failure mechanism above large-diameter shield tunnels were also investigated under different supporting pressures by the finite difference method.展开更多
A method of coupled BEM-FEM analysis for the elastic spatial structure system is presented. It can be applied to the calculation of the stress and deformation of the large-diamater cylinder structure system and it is ...A method of coupled BEM-FEM analysis for the elastic spatial structure system is presented. It can be applied to the calculation of the stress and deformation of the large-diamater cylinder structure system and it is suitable for symmetric or non-symmetric structures under the distributed or concentrated load. Numerical examples show that the proposed method and computer program BEFEM are quite efficient in the analysis of the large-diameter cylinder structure problems in ocean engineering.展开更多
Considering the viscous damping of the soil and soil-pile vertical coupled vibration,a computational model of large-diameter pipe pile in layered soil was established.The analytical solution in frequency domain was de...Considering the viscous damping of the soil and soil-pile vertical coupled vibration,a computational model of large-diameter pipe pile in layered soil was established.The analytical solution in frequency domain was derived by Laplace transformation method.The responses in time domain were obtained by inverse Fourier transformation.The results of the analytical solution proposed agree well with the solutions in homogenous soil.The effects of the shear modulus and damping coefficients of the soil at both outer and inner sides of the pipe pile were researched.The results indicate that the shear modulus of the outer soil has more influence on velocity admittance than the inner soil.The smaller the shear modulus,the larger the amplitude of velocity admittance.The velocity admittance weakened by the damping of the outer soil is more obvious than that weakened by the damping of the inner soil.The displacements of the piles with the same damping coefficients of the outer soil have less difference.Moreover,the effects of the distribution of soil layers are analyzed.The results indicate that the effect of the upper soil layer on dynamic response of the pipe pile is more obvious than that of the bottom soil layer.A larger damping coefficient of the upper layer results in a smaller velocity admittance.The dynamic response of the pipe pile in layered soil is close to that of the pipe pile in homogenous soil when the properties of the upper soil layer are the same.展开更多
The large-diameter cylinder structure, which is made of large successive bottomless cylinders placed on foundation bed or partly driven into soil, is a recently developed retaining structure in China. It can be used i...The large-diameter cylinder structure, which is made of large successive bottomless cylinders placed on foundation bed or partly driven into soil, is a recently developed retaining structure in China. It can be used in port, coastal and offshore works. The method for stability analysis of the large-diameter cylinder structure, especially for stability analysis of the embedded large-diameter cylinder structure, is an important issue. In this paper, an idea is presented that is, embedded large-diameter cylinder quays can be divided into two types, i.e. the gravity wall type and the cylinder pile wall type. A method for stability analysis of the large-diameter cylinder quay of the cylinder pile wall type is developed and a method for stability analysis of the large-diameter cylinder quay of the gravity wall type is also proposed. The effect of significant parameters on the stability of the large-diameter cylinder quay of the cylinder pile wall type is investigated through numerical calculation.展开更多
This study addresses the increasing demand for large-diameter production timber,and considers the time and space variability of half-sib families of Pinus massoniana.Height,diameter at breast height(DBH)and timber vol...This study addresses the increasing demand for large-diameter production timber,and considers the time and space variability of half-sib families of Pinus massoniana.Height,diameter at breast height(DBH)and timber volume of 440 open-pollinated half-sib progeny families were investigated in 14 progeny trials in different years and production regions.An evaluation of the genetic variation of all half-sib families was carried out during the sustainable rapid growth period and individual volumes were characterized as a major index.ANOVA analysis showed that there was considerable variance in the growth traits of most families in different years and on different sites.The variations caused by temporal and spatial changes of the mating system required three selection methods for analysis.The results show that there were differences among the heritabilities of different growth traits by different halfsib progenies.Average heritability values of height,DBH and volume were 0.33,0.34 and 0.36,respectively.Fortyfive superior families were selected in every progeny test,12 were selected in progeny trials by different years and five in different habitat progeny trials.Three superior families(Gui GC553A,Gui GC414A and Gui GC431A)were selected,although in different years and production regions.The genetic gains of timber volume of these selected r families ranged from 1.20 to 47.00%,which could provide a foundation for superior wood property selection and serve as material for seed improvement and extension in surrounding areas.展开更多
This paper aims to present a theoretical method to study the bearing performance of vertically loaded large-diameter pipe pile groups.The interactions between group piles result in different bearing performance of bot...This paper aims to present a theoretical method to study the bearing performance of vertically loaded large-diameter pipe pile groups.The interactions between group piles result in different bearing performance of both a single pile and pile groups.Considering the pile group effect and the skin friction from both outer and inner soils,an analytical solution is developed to calculate the settlement and axial force in large-diameter pipe pile groups.The analytical solution was verified by centrifuge and field testing results.An extensive parametric analysis was performed to study the bearing performance of the pipe pile groups.The results reveal that the axial forces in group piles are not the same.The larger the distance from central pile,the larger the axial force.The axial force in the central pile is the smallest,while that in corner piles is the largest.The axial force on the top of the corner piles decreases while that in the central pile increases with increasing of pile spacing and decreasing of pile length.The axial force in side piles varies little with the variations of pile spacing,pile length,and shear modulus of the soil and is approximately equal to the average load shared by one pile.For a pile group,the larger the pile length is,the larger the influence radius is.As a result,the pile group effect is more apparent for a larger pile length.The settlement of pile groups decreases with increasing of the pile number in the group and the shear modulus of the underlying soil.展开更多
Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders...Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders and reduce production costs.To find the optimal water spray parameters,a fluid-solid coupling model with three-phase flow was established in consideration of water-vapor conversion.The inner and outer walls of gas cylinder with the dimensions of d914 mm×38 mm×12000 mm were quenched using multi-nozzle water spray system.The internal pressure,average heat transfer coefficient(have)and stress of the gas cylinder under different water spray volumes during quenching process were studied.Finally,the mathematical model was experimentally verified.The results show that both the internal pressure and have increase along with the increase of spray volume.The internal pressure increases slowly first and then rapidly,but have increases rapidly first and then slowly.To satisfy hardenability of gas cylinders,the minimum spray volume should not be less than 40 m^3/(h·m).The results of stress indicate that water spray quenching will not cause deformation of bottle body in the range of water volume from 40 to 290 m^3/(h·m).展开更多
The existing researches of the magnetic liquid rotation seal have been mainly oriented to the seal at normal temperature and the seal with the smaller shaft diameter less than 100 mm. However, the large-diameter magne...The existing researches of the magnetic liquid rotation seal have been mainly oriented to the seal at normal temperature and the seal with the smaller shaft diameter less than 100 mm. However, the large-diameter magnetic liquid rotation seal at low temperature has not been reported both in theory and in application up to now. A key factor restricting the application of the large-diameter magnetic liquid rotation seal at low temperature is the high breakaway torque. In this paper, the factors that influence the breakaway torque including the number of seal stages, the injected quantity of magnetic liquid and the standing time at normal temperature are studied. Two kinds of magnetic liquid with variable content of large particles are prepared first, and a seal feedthrough with 140 mm shaft diameter is used in the experiments. All experiments are carried out in a low temperature chamber with a temperature range from 200℃ to -100℃. Different numbers of seal stages are tested under the same condition to study the relation between the breakaway torque and the number of seal stages. Variable quantity of magnetic liquid is injected in the seal gap to get the relation curve of the breakaway torque and the injecting quantity of magnetic liquid. In the experiment for studying the relation between the breakaway torque and the standing time at the normal temperature, the seal feedtrough is laid at normal temperature for different period of time before it is put in the low temperature chamber. The experimental results show that the breakaway torque is proportional to the number of seal stages, the injected quantity of magnetic liquid and the standing time at the normal temperature. Meanwhile, the experimental results are analyzed and the torque formula of magnetic liquid rotation seal at low temperature is deduced from the Navier-Stokes equation on the base of the model of magnetic liquid rotation seal. The presented research can make wider application of the magnetic liquid seal in general. And the large-diameter magnetic liquid rotation seal at low temperature designed by using present research results are to be used in some special fields, such as the military field, etc.展开更多
The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the...The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the organization of the construction activities in the small and confined area,the horizontal transportation for shield boring and high safety management requirements.A super-long invert lining construction jumbo,as well as the matching California switch,is developed,which provides solution for the confliction between the invert lining construction and the horizontal transportation.The procedure and method for the synchronous operation of the shield boring and the secondary lining are developed by referring to the synchronous construction of the secondary lining during the boring of the TBMs in hard rocks.Due to the adoption of the synchronous operation of the shield boring and the secondary lining,the construction period is shortened and the construction cost is reduced.The paper can provide reference for the synchronous construction of the secondary lining in similar projects in the future.展开更多
Objective To discuss the postoperative curative effects of two surgical techniques of minimally invasive total hip arthroplasty (THA) using metal-on-metal largediameter and conventional diameter femoral head for the e...Objective To discuss the postoperative curative effects of two surgical techniques of minimally invasive total hip arthroplasty (THA) using metal-on-metal largediameter and conventional diameter femoral head for the elderly patients展开更多
In large-diameter shield tunnels,applying the double-layer lining structure can improve the load-bearing properties and maintain the stability of segmental lining.The secondary lining thickness is a key parameter in t...In large-diameter shield tunnels,applying the double-layer lining structure can improve the load-bearing properties and maintain the stability of segmental lining.The secondary lining thickness is a key parameter in the design of a double lining structure,which is worth being explored.Based on an actual large-diameter shield tunnel,loading model tests are carried out to investigate the effect of the secondary lining thickness on the mechanical behaviours of the double lining structure.The test results show that within the range of secondary lining thicknesses discussed,the load-bearing limit of the double-layer lining increases with growing secondary lining thickness.As a passive support,the secondary lining acts as an auxiliary load-bearing structure by contacting the segment.And changes in secondary lining thickness have a significant effect on the contact state between the segment and secondary lining,with both the contact pressure level and the contact area between the two varying.For double-layer lining structures in large-diameter shield tunnels,it is proposed that the stiffness of the secondary lining needs to be matched to the stiffness of the segment,as this allows them to have a coordinated deformation and a good joint load-bearing effect.展开更多
Tube thinning control without wrinkling occurring is a key problem urgently to be solved for improving the forming qualities in numerical control (NC) bending processes of large-diameter Al-alloy thin-walled tubes ...Tube thinning control without wrinkling occurring is a key problem urgently to be solved for improving the forming qualities in numerical control (NC) bending processes of large-diameter Al-alloy thin-walled tubes (AATTs). It may be a way solving this problem to exert axial compression loads (ACL) on the tube end in the bending. Thus, this article establishes a three-dimensional (3D) elastic-plastic explicit finite element (FE) model for the bending under ACL and has its reliability verified. Through a multi-index orthogonal experiment design, a combination of process parameters, each expressed by a proper range, for this FE model is derived to overcome the compression instability on tube ends. By combining the FE model with a wrinkling energy prediction model, an in-depth study is conducted on the forming characteristics of large-diameter AATTs with small bending radii and it can be concluded that (1) The larger the tube diameters and the smaller the bending radii, the larger the induced tangent tension stress zones on tube intrados, by which the tube maximum tangent compression stress zones will be partitioned in the bending processes; thus, the smaller the ACL roles in decreasing thinning degrees and the larger the compression instability possibilities on tube ends. (2) The tube wrinkling possibilities under ACL are larger than without ACL acting in the earlier forming periods, and smaller in the later ones. (3) For the tubes with a size factor less than 80, the ACL roles in decreasing thinning degrees are stronger than in increasing wrinkling possibilities.展开更多
The high-frequency interference exists obviously in low strain integrity testing of large-diameter pipe pile when a transientpoint load is applied. An analytical solution of vertical vibratory response of large-diamet...The high-frequency interference exists obviously in low strain integrity testing of large-diameter pipe pile when a transientpoint load is applied. An analytical solution of vertical vibratory response of large-diameter pipe piles in low strain testing isdeduced in this paper. The analytical solution is verified by both numerical simulation and model test results. The time-domainvelocity responses on pile top are analyzed. The calculation results indicate that the time-domain responses at various pointssuffer different high-frequency interferences, thus the peak values and phases of different points are different. The influence ofvibratory modes on high-frequency interference is analyzed. It is found that the high-frequency interference at 90° point main-ly derives from the second flexural mode, but for other points it mainly originates from the first flexural mode. The factors af-fecting the frequency and peak value of interference waves have been investigated in this study. The results indicate that thelarger radius angle between the receiving and 90° points leads to greater peak value of high frequency wave crest. The leasthigh-frequency interference is detected at the angle of 90°. The frequency of interference waves is decreased with the increaseof pile radius, while the peak value is almost constant. The frequency is also related to pile modulus, i.e. the larger pile modu-lus results in greater frequency. The peak value varies with impulse width and soil resistance, i.e., the wider impulse width andlarger soil resistance cause smaller peak value. In conclusion, the frequency of interference waves is dependent on the geomet-rical and mechanics characteristics of the piles such as pile radius and modulus, but independent of the external conditionssuch as impulse width and soil resistance. On the other hand, the peak value of interference waves is mainly dependent on theexternal conditions but independent of the geometrical and mechanics characteristics of the piles. In practice, some externalmeasures should be adopted to weaken high-frequency interference such as using soft hammer, hammer cushion and adoptingsuitable receiving point.展开更多
Due to the shield tunneling underneath,long-term settlements may develop in the existing metro tunnels.The compensation grouting is applied worldwide to stabilize the settlement of ground and existing structures.Few f...Due to the shield tunneling underneath,long-term settlements may develop in the existing metro tunnels.The compensation grouting is applied worldwide to stabilize the settlement of ground and existing structures.Few field studies concerning large-diameter shield pass-ing tunnel from below have analyzed the interaction between the compensation grouting and the existing tunnel.This paper presents a case study on the response of the operating metro tunnels to the compensation grouting of an underlying large-diameter tunnel in muddy clay stratum.The tunnel deformations before,during,and after the compensation grouting were monitored and analyzed.The long-term tunnel settlements were mitigated and stabilized by the timely compensation grouting.Smaller settlement rates were observed during the grouting treatment,and the settlement was gradually stabilized three months after the grouting.The grouting holes at the tunnel invert were used initially for better grouting efficiency.The horizontal displacement and convergence developed during the grouting construc-tion and remained stable after the grouting process.Moreover,some limitations of the grouting treatment were discussed.The tunnel settlement in the section close to the center-line of the south-line tunnel cannot be prevented effectively.The differential displacement cannot be reduced by this grouting program.展开更多
In order to determine the relationship among energy consumption of rock and its fragmentation, dynamic strength and strain rate, granite, sandstone and limestone specimens were chosen and tested on large-diameter spli...In order to determine the relationship among energy consumption of rock and its fragmentation, dynamic strength and strain rate, granite, sandstone and limestone specimens were chosen and tested on large-diameter split Hopkinson pressure bar (SHPB) equipment with half-sine waveform loading at the strain rates ranging from 40 to 150 s- 1. With recorded signals, the energy consumption, strain rate and dynamic strength were analyzed. And the fragmentation behaviors of specimens were investigated. The experimental results show that the energy consumption density of rock increases linearly with the total incident energy. The energy consumption density is of an exponent relationship with the average size of rock fragments. The higher the energy consumption density, the more serious the fragmentation, and the better the gradation of fragments. The energy consumption density takes a good logarithm relationship with the dynamic strength of rock. The dynamic strength of rock increases with the increase of strain rate, indicating higher strain rate sensitivity.展开更多
The Hong Kong–Zhuhai–Macao Bridge(HZMB)involved the installation of 120 mega-cylinders with a diameter of 22 m,weights up to 513 t,and penetration depths up to 33 m using an eight-vibratory hammer group.Due to the l...The Hong Kong–Zhuhai–Macao Bridge(HZMB)involved the installation of 120 mega-cylinders with a diameter of 22 m,weights up to 513 t,and penetration depths up to 33 m using an eight-vibratory hammer group.Due to the lack of engineering experience on the drivability of large-diameter cylinders under multiple vibratory hammers,predicting the penetration rate and time of steel cylinders is an open challenge that has a considerable impact on the construction control of the HZMB.In this study,the vibratory penetration of large-diameter steel cylinders in the HZMB is investigated based on geological surveys,field monitoring,and drivability analysis.The vibratory penetration rate,installation accuracy,and dynamic responses of the steel cylinders at both the eastern and western artificial islands are analyzed.The dynamic soil resistance has a great influence on the cylinder drivability.However,the current design methods for estimating the vibratory driving soil resistance are proven inaccurate without considering the scale effects.Therefore,a modified method with a normalized effective area ratio A_(r,eff)is proposed in this study to calculate the vibratory soil resistance for open-ended thin-wall cylinders under unplugged conditions.Considering the scale effects on the vibratory driving soil resistance,the proposed method leads to closer results to the measured data,providing a reference for future engineering practice.展开更多
An analysis of the stability of large-diameter circular tunnels and ground settlement during tunnelling by a pressurized shield was presented. An innovative three-dimensional translational multi-block failure mechanis...An analysis of the stability of large-diameter circular tunnels and ground settlement during tunnelling by a pressurized shield was presented. An innovative three-dimensional translational multi-block failure mechanism was proposed to determine the face support pressure of large-shield tunnelling. Compared with the currently available mechanisms, the proposed mechanism has two unique features:(1) the supporting pressure applied to the tunnel face is assumed to have a non-uniform rather than uniform distribution, and(2) the method takes into account the entire circular excavation face instead of merely an inscribed ellipse. Based on the discrete element method, a numerical simulation of the Shanghai Yangtze River Tunnel was carried out using the Particle Flow Code in two dimensions. The immediate ground movement during excavation, as well as the behaviour of the excavation face, the shield movement, and the excavated area, was considered before modelling the excavation process.展开更多
In recent years, in reaction to the increasing usage of urban areas, the excavation of underground spaces has been developed. One of the most challenging issues encountered by engineers is the construction of subway s...In recent years, in reaction to the increasing usage of urban areas, the excavation of underground spaces has been developed. One of the most challenging issues encountered by engineers is the construction of subway stations as large underground spaces at shallow depth with soft surrounding soils. In this paper, Naghshe Jahan Square subway station located in Isfahan, Iran, has been simulated by geomechanical fnite difference method(FDM). This station is located under important historical structures. Therefore, the ground displacement and surface settlement induced by the excavation of the subway station should be strictly controlled. Many of such problems are affected by selected excavation method. For these reasons, different underground excavation methods associated with construction have been studied. In this study, sequential excavation method and large-diameter curved pipe roofng method are used and the numerical results of the two methods are compared. The presence of groundwater table obliges us to choose special techniques for the stability of the ground around the subway station during construction; hence compressed air and ground freezing techniques are utilized in the simulations of the subway station. Finally, after choosing appropriate support systems, the large-diameter curved pipe roofng method with 1.5 m spacing between curved pipes is proposed.展开更多
The xenon pumping speed testing system of the large-diameter external cryopump was designed to meet the plume test requirements for prototype electric propulsion.The flowmeter method was utilized to measure the xenon ...The xenon pumping speed testing system of the large-diameter external cryopump was designed to meet the plume test requirements for prototype electric propulsion.The flowmeter method was utilized to measure the xenon pumping speed.The test results show that the averaged effective pumping speed of doublecryopumps is 52 200L/s,and that of single-cryopump is 27 100L/s.The pumping speed ratio of two configurations is 1.93.It can be concluded that the pumping speed has in linear relationship with the number of cryopump,and the coefficient is irrelevant with the gas type.The averaged effective pumping speed of xenon is less than its nominal pumping speed,and the averaged pumping efficiency is 0.83.Under the identical inflow conditions,the averaged effective pumping speed ratio of nitrogen is 0.53,slightly less than the theoretical pumping speed ratio of 0.55.Consequently,it can be concluded that results assessment of large-diameter external cryopump design index can guide the engineering application,showing certain reference significance.展开更多
基金support from the Exploring Youth Project of Zhejiang Natural Science Foundation (Grant No.LQ24E080009)the Key Project of Natural Science Foundation of Zhejiang Province (Grant No.LXZ22E080001)the National Natural Science Foundation of China (Grant No.52108347).
文摘A rigorous analytical model is developed for simulating the vibration behaviors of large-diameter openended pipe piles(OEPPs)and surrounding soil undergoing high-strain impact loading.To describe the soil behavior,the soil along pile shaft is divided into slip and nonslip zones and the base soil is modeled as a fictitious-soil pile(FSP)to account for the wave propagation in the soil.True soil properties are adopted and slippage at the pile-soil interface is considered,allowing realistic representation of largediameter OEPP mechanics.The developed model is validated by comparing with conventional models and finite element method(FEM).It is further used to successfully simulate and interpret the behaviors of a steel OEPP during the offshore field test.It is found that the variation in the vertical vibrations of shaft soil along radial direction is significant for large-diameter OEPPs,and the velocity amplitudes of the internal and external soil attenuate following different patterns.The shaft soil motion may not attenuate with depth due to the soil slippage,while the wave attenuation at base soil indicates an influence depth,with a faster attenuation rate than that in the pile.The findings from the current study should aid in simulating the vibration behaviors of large-diameter OEPP-soil system under high-strain dynamic loading.
基金Project(41202220) supported by the National Natural Science Foundation of ChinaProject(2011YYL034) supported by the Fundamental Research Funds for the Central Universities,China
文摘A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field model using more different truncated solid conical blocks to clarify the multiblock failure mechanism.Furthermore,the shape of blocks between the failure surface and the tunnel face was considered as an entire circle,and the supporting pressure was assumed as non-uniform distribution on the tunnel face and increased with the tunnel embedded depth.The ground surface settlements and failure mechanism above large-diameter shield tunnels were also investigated under different supporting pressures by the finite difference method.
文摘A method of coupled BEM-FEM analysis for the elastic spatial structure system is presented. It can be applied to the calculation of the stress and deformation of the large-diamater cylinder structure system and it is suitable for symmetric or non-symmetric structures under the distributed or concentrated load. Numerical examples show that the proposed method and computer program BEFEM are quite efficient in the analysis of the large-diameter cylinder structure problems in ocean engineering.
基金Project(U1134207)supported by the National Natural Science and High Speed Railway Jointed Foundation of ChinaProject(B13024)supported by the "111" Program of China+1 种基金Project(BK2012811)supported by the Nature Science Foundation of Jiangsu Province,ChinaProject(NCET-12-0843)supported by the Fund for New Century Excellent Talents in Universities,China
文摘Considering the viscous damping of the soil and soil-pile vertical coupled vibration,a computational model of large-diameter pipe pile in layered soil was established.The analytical solution in frequency domain was derived by Laplace transformation method.The responses in time domain were obtained by inverse Fourier transformation.The results of the analytical solution proposed agree well with the solutions in homogenous soil.The effects of the shear modulus and damping coefficients of the soil at both outer and inner sides of the pipe pile were researched.The results indicate that the shear modulus of the outer soil has more influence on velocity admittance than the inner soil.The smaller the shear modulus,the larger the amplitude of velocity admittance.The velocity admittance weakened by the damping of the outer soil is more obvious than that weakened by the damping of the inner soil.The displacements of the piles with the same damping coefficients of the outer soil have less difference.Moreover,the effects of the distribution of soil layers are analyzed.The results indicate that the effect of the upper soil layer on dynamic response of the pipe pile is more obvious than that of the bottom soil layer.A larger damping coefficient of the upper layer results in a smaller velocity admittance.The dynamic response of the pipe pile in layered soil is close to that of the pipe pile in homogenous soil when the properties of the upper soil layer are the same.
基金by the National Natural Science Foundation of China(Grant No.59679003)the Natural Science Foundation of Tianjin(Grant No.973606311)
文摘The large-diameter cylinder structure, which is made of large successive bottomless cylinders placed on foundation bed or partly driven into soil, is a recently developed retaining structure in China. It can be used in port, coastal and offshore works. The method for stability analysis of the large-diameter cylinder structure, especially for stability analysis of the embedded large-diameter cylinder structure, is an important issue. In this paper, an idea is presented that is, embedded large-diameter cylinder quays can be divided into two types, i.e. the gravity wall type and the cylinder pile wall type. A method for stability analysis of the large-diameter cylinder quay of the cylinder pile wall type is developed and a method for stability analysis of the large-diameter cylinder quay of the gravity wall type is also proposed. The effect of significant parameters on the stability of the large-diameter cylinder quay of the cylinder pile wall type is investigated through numerical calculation.
文摘This study addresses the increasing demand for large-diameter production timber,and considers the time and space variability of half-sib families of Pinus massoniana.Height,diameter at breast height(DBH)and timber volume of 440 open-pollinated half-sib progeny families were investigated in 14 progeny trials in different years and production regions.An evaluation of the genetic variation of all half-sib families was carried out during the sustainable rapid growth period and individual volumes were characterized as a major index.ANOVA analysis showed that there was considerable variance in the growth traits of most families in different years and on different sites.The variations caused by temporal and spatial changes of the mating system required three selection methods for analysis.The results show that there were differences among the heritabilities of different growth traits by different halfsib progenies.Average heritability values of height,DBH and volume were 0.33,0.34 and 0.36,respectively.Fortyfive superior families were selected in every progeny test,12 were selected in progeny trials by different years and five in different habitat progeny trials.Three superior families(Gui GC553A,Gui GC414A and Gui GC431A)were selected,although in different years and production regions.The genetic gains of timber volume of these selected r families ranged from 1.20 to 47.00%,which could provide a foundation for superior wood property selection and serve as material for seed improvement and extension in surrounding areas.
基金supported by the Joint High Speed Railway Key Program of National Natural Science Foundation of China (Grant No.U1134207)the National Natural Science Foundation of China (Grant No.51378177)+1 种基金the Program for Excellent University Talents in New Century (Grant No.NCET-12-0843)the Fundamental Research Fund for the Central Universities (Grant No.106112014CDJZR200007)
文摘This paper aims to present a theoretical method to study the bearing performance of vertically loaded large-diameter pipe pile groups.The interactions between group piles result in different bearing performance of both a single pile and pile groups.Considering the pile group effect and the skin friction from both outer and inner soils,an analytical solution is developed to calculate the settlement and axial force in large-diameter pipe pile groups.The analytical solution was verified by centrifuge and field testing results.An extensive parametric analysis was performed to study the bearing performance of the pipe pile groups.The results reveal that the axial forces in group piles are not the same.The larger the distance from central pile,the larger the axial force.The axial force in the central pile is the smallest,while that in corner piles is the largest.The axial force on the top of the corner piles decreases while that in the central pile increases with increasing of pile spacing and decreasing of pile length.The axial force in side piles varies little with the variations of pile spacing,pile length,and shear modulus of the soil and is approximately equal to the average load shared by one pile.For a pile group,the larger the pile length is,the larger the influence radius is.As a result,the pile group effect is more apparent for a larger pile length.The settlement of pile groups decreases with increasing of the pile number in the group and the shear modulus of the underlying soil.
基金Project(51674096)supported by the National Natural Science Foundation of ChinaProject(E2016203119)supported by Hebei Natural Science Foundation of ChinaProject(18211045)supported by the Key Research and Development Foundation in Hebei Province of China
文摘Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders and reduce production costs.To find the optimal water spray parameters,a fluid-solid coupling model with three-phase flow was established in consideration of water-vapor conversion.The inner and outer walls of gas cylinder with the dimensions of d914 mm×38 mm×12000 mm were quenched using multi-nozzle water spray system.The internal pressure,average heat transfer coefficient(have)and stress of the gas cylinder under different water spray volumes during quenching process were studied.Finally,the mathematical model was experimentally verified.The results show that both the internal pressure and have increase along with the increase of spray volume.The internal pressure increases slowly first and then rapidly,but have increases rapidly first and then slowly.To satisfy hardenability of gas cylinders,the minimum spray volume should not be less than 40 m^3/(h·m).The results of stress indicate that water spray quenching will not cause deformation of bottle body in the range of water volume from 40 to 290 m^3/(h·m).
基金supported by National Natural Science Foundation of China (Grant No. 50875017)
文摘The existing researches of the magnetic liquid rotation seal have been mainly oriented to the seal at normal temperature and the seal with the smaller shaft diameter less than 100 mm. However, the large-diameter magnetic liquid rotation seal at low temperature has not been reported both in theory and in application up to now. A key factor restricting the application of the large-diameter magnetic liquid rotation seal at low temperature is the high breakaway torque. In this paper, the factors that influence the breakaway torque including the number of seal stages, the injected quantity of magnetic liquid and the standing time at normal temperature are studied. Two kinds of magnetic liquid with variable content of large particles are prepared first, and a seal feedthrough with 140 mm shaft diameter is used in the experiments. All experiments are carried out in a low temperature chamber with a temperature range from 200℃ to -100℃. Different numbers of seal stages are tested under the same condition to study the relation between the breakaway torque and the number of seal stages. Variable quantity of magnetic liquid is injected in the seal gap to get the relation curve of the breakaway torque and the injecting quantity of magnetic liquid. In the experiment for studying the relation between the breakaway torque and the standing time at the normal temperature, the seal feedtrough is laid at normal temperature for different period of time before it is put in the low temperature chamber. The experimental results show that the breakaway torque is proportional to the number of seal stages, the injected quantity of magnetic liquid and the standing time at the normal temperature. Meanwhile, the experimental results are analyzed and the torque formula of magnetic liquid rotation seal at low temperature is deduced from the Navier-Stokes equation on the base of the model of magnetic liquid rotation seal. The presented research can make wider application of the magnetic liquid seal in general. And the large-diameter magnetic liquid rotation seal at low temperature designed by using present research results are to be used in some special fields, such as the military field, etc.
文摘The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the organization of the construction activities in the small and confined area,the horizontal transportation for shield boring and high safety management requirements.A super-long invert lining construction jumbo,as well as the matching California switch,is developed,which provides solution for the confliction between the invert lining construction and the horizontal transportation.The procedure and method for the synchronous operation of the shield boring and the secondary lining are developed by referring to the synchronous construction of the secondary lining during the boring of the TBMs in hard rocks.Due to the adoption of the synchronous operation of the shield boring and the secondary lining,the construction period is shortened and the construction cost is reduced.The paper can provide reference for the synchronous construction of the secondary lining in similar projects in the future.
文摘Objective To discuss the postoperative curative effects of two surgical techniques of minimally invasive total hip arthroplasty (THA) using metal-on-metal largediameter and conventional diameter femoral head for the elderly patients
基金supported by the National Natural Science Foundation of China(Grant Nos.52178398,51991394,and 51278424).
文摘In large-diameter shield tunnels,applying the double-layer lining structure can improve the load-bearing properties and maintain the stability of segmental lining.The secondary lining thickness is a key parameter in the design of a double lining structure,which is worth being explored.Based on an actual large-diameter shield tunnel,loading model tests are carried out to investigate the effect of the secondary lining thickness on the mechanical behaviours of the double lining structure.The test results show that within the range of secondary lining thicknesses discussed,the load-bearing limit of the double-layer lining increases with growing secondary lining thickness.As a passive support,the secondary lining acts as an auxiliary load-bearing structure by contacting the segment.And changes in secondary lining thickness have a significant effect on the contact state between the segment and secondary lining,with both the contact pressure level and the contact area between the two varying.For double-layer lining structures in large-diameter shield tunnels,it is proposed that the stiffness of the secondary lining needs to be matched to the stiffness of the segment,as this allows them to have a coordinated deformation and a good joint load-bearing effect.
基金National Natural Science Foundation of China (59975076, 50175092)National Science Fund of China for Distinguished Young Scholars (50225518)
文摘Tube thinning control without wrinkling occurring is a key problem urgently to be solved for improving the forming qualities in numerical control (NC) bending processes of large-diameter Al-alloy thin-walled tubes (AATTs). It may be a way solving this problem to exert axial compression loads (ACL) on the tube end in the bending. Thus, this article establishes a three-dimensional (3D) elastic-plastic explicit finite element (FE) model for the bending under ACL and has its reliability verified. Through a multi-index orthogonal experiment design, a combination of process parameters, each expressed by a proper range, for this FE model is derived to overcome the compression instability on tube ends. By combining the FE model with a wrinkling energy prediction model, an in-depth study is conducted on the forming characteristics of large-diameter AATTs with small bending radii and it can be concluded that (1) The larger the tube diameters and the smaller the bending radii, the larger the induced tangent tension stress zones on tube intrados, by which the tube maximum tangent compression stress zones will be partitioned in the bending processes; thus, the smaller the ACL roles in decreasing thinning degrees and the larger the compression instability possibilities on tube ends. (2) The tube wrinkling possibilities under ACL are larger than without ACL acting in the earlier forming periods, and smaller in the later ones. (3) For the tubes with a size factor less than 80, the ACL roles in decreasing thinning degrees are stronger than in increasing wrinkling possibilities.
基金supported by the National Natural Science Foundation of China(Grant No.51008115)the Provincial Science Foundation of Jiangsu(Grant No.BK2008040)
文摘The high-frequency interference exists obviously in low strain integrity testing of large-diameter pipe pile when a transientpoint load is applied. An analytical solution of vertical vibratory response of large-diameter pipe piles in low strain testing isdeduced in this paper. The analytical solution is verified by both numerical simulation and model test results. The time-domainvelocity responses on pile top are analyzed. The calculation results indicate that the time-domain responses at various pointssuffer different high-frequency interferences, thus the peak values and phases of different points are different. The influence ofvibratory modes on high-frequency interference is analyzed. It is found that the high-frequency interference at 90° point main-ly derives from the second flexural mode, but for other points it mainly originates from the first flexural mode. The factors af-fecting the frequency and peak value of interference waves have been investigated in this study. The results indicate that thelarger radius angle between the receiving and 90° points leads to greater peak value of high frequency wave crest. The leasthigh-frequency interference is detected at the angle of 90°. The frequency of interference waves is decreased with the increaseof pile radius, while the peak value is almost constant. The frequency is also related to pile modulus, i.e. the larger pile modu-lus results in greater frequency. The peak value varies with impulse width and soil resistance, i.e., the wider impulse width andlarger soil resistance cause smaller peak value. In conclusion, the frequency of interference waves is dependent on the geomet-rical and mechanics characteristics of the piles such as pile radius and modulus, but independent of the external conditionssuch as impulse width and soil resistance. On the other hand, the peak value of interference waves is mainly dependent on theexternal conditions but independent of the geometrical and mechanics characteristics of the piles. In practice, some externalmeasures should be adopted to weaken high-frequency interference such as using soft hammer, hammer cushion and adoptingsuitable receiving point.
基金support from the National Natural Science Foundation of China(Grant Nos.51778575)the Zhejiang Provincial Science and Technology Department(Grant Nos.2019C03103)the Science and Technology Committee of Shanghai Municipality(Grant Nos.16QB1403400).
文摘Due to the shield tunneling underneath,long-term settlements may develop in the existing metro tunnels.The compensation grouting is applied worldwide to stabilize the settlement of ground and existing structures.Few field studies concerning large-diameter shield pass-ing tunnel from below have analyzed the interaction between the compensation grouting and the existing tunnel.This paper presents a case study on the response of the operating metro tunnels to the compensation grouting of an underlying large-diameter tunnel in muddy clay stratum.The tunnel deformations before,during,and after the compensation grouting were monitored and analyzed.The long-term tunnel settlements were mitigated and stabilized by the timely compensation grouting.Smaller settlement rates were observed during the grouting treatment,and the settlement was gradually stabilized three months after the grouting.The grouting holes at the tunnel invert were used initially for better grouting efficiency.The horizontal displacement and convergence developed during the grouting construc-tion and remained stable after the grouting process.Moreover,some limitations of the grouting treatment were discussed.The tunnel settlement in the section close to the center-line of the south-line tunnel cannot be prevented effectively.The differential displacement cannot be reduced by this grouting program.
基金Projects(50674107, 10472134, 50490274) supported by the National Natural Science Foundation of China
文摘In order to determine the relationship among energy consumption of rock and its fragmentation, dynamic strength and strain rate, granite, sandstone and limestone specimens were chosen and tested on large-diameter split Hopkinson pressure bar (SHPB) equipment with half-sine waveform loading at the strain rates ranging from 40 to 150 s- 1. With recorded signals, the energy consumption, strain rate and dynamic strength were analyzed. And the fragmentation behaviors of specimens were investigated. The experimental results show that the energy consumption density of rock increases linearly with the total incident energy. The energy consumption density is of an exponent relationship with the average size of rock fragments. The higher the energy consumption density, the more serious the fragmentation, and the better the gradation of fragments. The energy consumption density takes a good logarithm relationship with the dynamic strength of rock. The dynamic strength of rock increases with the increase of strain rate, indicating higher strain rate sensitivity.
基金supported by the National Natural Science Foundation of China(52001267)Tianjin Port Engineering Institute Co.,Ltd.,and Eunsung O&C Offshore Marine and Construction(EUNSUNG19EG01).
文摘The Hong Kong–Zhuhai–Macao Bridge(HZMB)involved the installation of 120 mega-cylinders with a diameter of 22 m,weights up to 513 t,and penetration depths up to 33 m using an eight-vibratory hammer group.Due to the lack of engineering experience on the drivability of large-diameter cylinders under multiple vibratory hammers,predicting the penetration rate and time of steel cylinders is an open challenge that has a considerable impact on the construction control of the HZMB.In this study,the vibratory penetration of large-diameter steel cylinders in the HZMB is investigated based on geological surveys,field monitoring,and drivability analysis.The vibratory penetration rate,installation accuracy,and dynamic responses of the steel cylinders at both the eastern and western artificial islands are analyzed.The dynamic soil resistance has a great influence on the cylinder drivability.However,the current design methods for estimating the vibratory driving soil resistance are proven inaccurate without considering the scale effects.Therefore,a modified method with a normalized effective area ratio A_(r,eff)is proposed in this study to calculate the vibratory soil resistance for open-ended thin-wall cylinders under unplugged conditions.Considering the scale effects on the vibratory driving soil resistance,the proposed method leads to closer results to the measured data,providing a reference for future engineering practice.
基金Project(41202220)supported by the National Natural Science Foundation of ChinaProject(20120022120003)supported by the Research Fund for the Doctoral Program of Higher Education,China+1 种基金Project(2652012065)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2013006)supported by the Research Fund for Key Laboratory on Deep GeoDrilling Technology from the Ministry of Land and Resources of China
文摘An analysis of the stability of large-diameter circular tunnels and ground settlement during tunnelling by a pressurized shield was presented. An innovative three-dimensional translational multi-block failure mechanism was proposed to determine the face support pressure of large-shield tunnelling. Compared with the currently available mechanisms, the proposed mechanism has two unique features:(1) the supporting pressure applied to the tunnel face is assumed to have a non-uniform rather than uniform distribution, and(2) the method takes into account the entire circular excavation face instead of merely an inscribed ellipse. Based on the discrete element method, a numerical simulation of the Shanghai Yangtze River Tunnel was carried out using the Particle Flow Code in two dimensions. The immediate ground movement during excavation, as well as the behaviour of the excavation face, the shield movement, and the excavated area, was considered before modelling the excavation process.
文摘In recent years, in reaction to the increasing usage of urban areas, the excavation of underground spaces has been developed. One of the most challenging issues encountered by engineers is the construction of subway stations as large underground spaces at shallow depth with soft surrounding soils. In this paper, Naghshe Jahan Square subway station located in Isfahan, Iran, has been simulated by geomechanical fnite difference method(FDM). This station is located under important historical structures. Therefore, the ground displacement and surface settlement induced by the excavation of the subway station should be strictly controlled. Many of such problems are affected by selected excavation method. For these reasons, different underground excavation methods associated with construction have been studied. In this study, sequential excavation method and large-diameter curved pipe roofng method are used and the numerical results of the two methods are compared. The presence of groundwater table obliges us to choose special techniques for the stability of the ground around the subway station during construction; hence compressed air and ground freezing techniques are utilized in the simulations of the subway station. Finally, after choosing appropriate support systems, the large-diameter curved pipe roofng method with 1.5 m spacing between curved pipes is proposed.
基金National Defense Science and Industry Bureau the Sino Russian in Cooperation of Spaceflight
文摘The xenon pumping speed testing system of the large-diameter external cryopump was designed to meet the plume test requirements for prototype electric propulsion.The flowmeter method was utilized to measure the xenon pumping speed.The test results show that the averaged effective pumping speed of doublecryopumps is 52 200L/s,and that of single-cryopump is 27 100L/s.The pumping speed ratio of two configurations is 1.93.It can be concluded that the pumping speed has in linear relationship with the number of cryopump,and the coefficient is irrelevant with the gas type.The averaged effective pumping speed of xenon is less than its nominal pumping speed,and the averaged pumping efficiency is 0.83.Under the identical inflow conditions,the averaged effective pumping speed ratio of nitrogen is 0.53,slightly less than the theoretical pumping speed ratio of 0.55.Consequently,it can be concluded that results assessment of large-diameter external cryopump design index can guide the engineering application,showing certain reference significance.