Refractive index inhomogeneity is one of the important characteristics of optical coating material, which is one of the key factors to produce loss to the ultra-low residual reflection coatings except using the refrac...Refractive index inhomogeneity is one of the important characteristics of optical coating material, which is one of the key factors to produce loss to the ultra-low residual reflection coatings except using the refractive index inhomogeneity to obtain gradient-index coating. In the normal structure of antireflection coatings for center wavelength at 532 nm, the physical thicknesses of layer H and layer L are 22.18 nm and 118.86 nm, respectively. The residual reflectance caused by refractive index inhomogeneity(the degree of inhomogeneous is between -0.2 and 0.2) is about 200 ppm, and the minimum reflectivity wavelength is between 528.2 nm and 535.2 nm. A new numerical method adding the refractive index inhomogeneity to the spectra calculation was proposed to design the laser antireflection coatings, which can achieve the design of antireflection coatings with ppm residual reflection by adjusting physical thickness of the couple layers. When the degree of refractive index inhomogeneity of the layer H and layer L is-0.08 and 0.05 respectively, the residual reflectance increase from zero to 0.0769% at 532 nm. According to the above accuracy numerical method, if layer H physical thickness increases by 1.30 nm and layer L decrease by 4.50 nm, residual reflectance of thin film will achieve to 2.06 ppm. When the degree of refractive index inhomogeneity of the layer H and layer L is 0.08 and -0.05 respectively, the residual reflectance increase from zero to 0.0784% at 532 nm. The residual reflectance of designed thin film can be reduced to 0.8 ppm by decreasing the layer H of 1.55 nm while increasing the layer L of 4.94 nm.展开更多
Adaptive optics scanning laser ophthalmoscopy(AOSLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics(AO) and AO-SLO. Then it co...Adaptive optics scanning laser ophthalmoscopy(AOSLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics(AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods(fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques(adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography). Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors(cones and rods), fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future.展开更多
Cone photoreceptor cell identication is important for the early diagnosis of retinopathy.In this study,an object detection algorithm is used for cone cell identication in confocal adaptive optics scanning laser ophtha...Cone photoreceptor cell identication is important for the early diagnosis of retinopathy.In this study,an object detection algorithm is used for cone cell identication in confocal adaptive optics scanning laser ophthalmoscope(AOSLO)images.An effectiveness evaluation of identication using the proposed method reveals precision,recall,and F_(1)-score of 95.8%,96.5%,and 96.1%,respectively,considering manual identication as the ground truth.Various object detection and identication results from images with different cone photoreceptor cell distributions further demonstrate the performance of the proposed method.Overall,the proposed method can accurately identify cone photoreceptor cells on confocal adaptive optics scanning laser ophthalmoscope images,being comparable to manual identication.展开更多
Multi-conjugation adaptive optics(MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view(FOV).The atmospheric tomographic phase reconst...Multi-conjugation adaptive optics(MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view(FOV).The atmospheric tomographic phase reconstruction and projection of three-dimensional turbulence volume onto wavefront correctors,such as deformable mirrors(DMs) or liquid crystal wavefront correctors(LCWCs),is a very important step in the data processing of an MCAO's controller.In this paper,a method according to the wavefront reconstruction performance of MCAO is presented to evaluate the optimized configuration of multi laser guide stars(LGSs) and the reasonable conjugation heights of LCWCs.Analytical formulations are derived for the different configurations and are used to generate optimized parameters for MCAO.Several examples are given to demonstrate our LGSs configuration optimization method.Compared with traditional methods,our method has minimum wavefront tomographic error,which will be helpful to get higher imaging resolution at large FOV in MCAO.展开更多
Adaptive optics(AO) systems are widespread and considered as an essential part of any large aperture telescope for obtaining a high resolution imaging at present.To enlarge the imaging field of view(FOV),multi-las...Adaptive optics(AO) systems are widespread and considered as an essential part of any large aperture telescope for obtaining a high resolution imaging at present.To enlarge the imaging field of view(FOV),multi-laser guide stars(LGSs) are currently being investigated and used for the large aperture optical telescopes.LGS measurement is necessary and pivotal to obtain the cumulative phase distortion along a target in the multi-LGSs AO system.We propose a high precision phase reconstruction algorithm to estimate the phase for a target with an uncertain turbulence profile based on the interpolation.By comparing with the conventional average method,the proposed method reduces the root mean square(RMS) error from 130 nm to 85 nm with a 30% reduction for narrow FOV.We confirm that such phase reconstruction algorithm is validated for both narrow field AO and wide field AO.展开更多
We investigate the total intensity fluctuation spectrum of the two-longitudinal- mode Nd:YVO4microchip laser(ML).We find that low-frequency relaxation oscillation(RO) peaks still appear in the total intensity flu...We investigate the total intensity fluctuation spectrum of the two-longitudinal- mode Nd:YVO4microchip laser(ML).We find that low-frequency relaxation oscillation(RO) peaks still appear in the total intensity fluctuation spectrum, which is different from a previous research result that the low-frequency RO peaks exist in the spectrum of the individual mode but compensate for each other totally in the total intensity fluctuation spectrum. Taking the spatial hole-burning effect into account, one and two-mode rate equations for Nd:YVO4ML laser are established and studied. Based on the theoretical model, we find that when the gains and losses for two longitudinal models are different, a low-frequency RO peak will appear in the total intensity fluctuation spectrum, while when they share the same gain and loss, the total spectrum will behave like that of a single mode laser. Theoretical simulation results coincide with experimental results very well.展开更多
The nonlinear radiation of the electron is a distinctive feature of the action of tightly focused linearly polarized lasers.In this paper,from the perspective of radiation symmetry,the effect of laser parameters on th...The nonlinear radiation of the electron is a distinctive feature of the action of tightly focused linearly polarized lasers.In this paper,from the perspective of radiation symmetry,the effect of laser parameters on the electron radiation power in the time domain is studied systematically.An asymmetric bimodal structure is found in the time domain in the direction of the maximum radiation.For this special structure,an explanation is given based on the electron dynamics perspective.The structure is compared with the symmetric bimodal structure in the classical theory.The increase in laser intensity,while significantly increasing the radiated power of the electron,exacerbates the asymmetry of the electron radiation.The variation in the initial phase of the laser leads to a periodic variation in the electron motion,which results in a periodic extension of the electron spatial radiation with a period ofπ.Moreover,the existence of jump points with a phase difference ofπin the range of 0-2πis found.The increase in pulse width reduces the radiated power,extends the radiation range,and alleviates the radiation asymmetry.The results in this paper contribute to the study of electron radiation characteristics in intense laser fields.展开更多
Single-fundamental-mode photonic crystal (PhC) vertical cavity surface emitting lasers (VCSEL) are produced and their single-fundamental-mode performances are investigated and demonstrated. A two-dimensional PhC w...Single-fundamental-mode photonic crystal (PhC) vertical cavity surface emitting lasers (VCSEL) are produced and their single-fundamental-mode performances are investigated and demonstrated. A two-dimensional PhC with single-point-defect structure is fabricated using UV photolithography and inductive coupled plasma reactive ion etching on the surface of the VCSEL's top distributed Bragg-reflector. The PhC VCSEL maintains single-fundamental-mode operating with output power 1.7 mW and threshold current 2.5 mA. The full width half maximum of the lasing spectrum is less than 0.1 nm, the far field divergence angle is less than 10° and the side mode suppression ratio is over 35 dB. The device characteristics are analyzed based on the effective index model of the photonic crystal fiber. The experimental results agree well with the theoretical expectation.展开更多
An efficient ammonia terahertz (THz) cavity laser is reported experimentally. Unlike the past design schemes such as hole couplers and freestanding mesh couplers, in our systems the input and output couplers are fab...An efficient ammonia terahertz (THz) cavity laser is reported experimentally. Unlike the past design schemes such as hole couplers and freestanding mesh couplers, in our systems the input and output couplers are fabricated by depositing nickel capacitive metallic meshes on ZnSe and high-resistivity silicon substrates. Thus the couplers not only can be constructed as an F-P oscillator but also can be used as sealed windows that are easier to perform the adjustment of alignment with. To enhanceTHz laser output energy and photon conversion efficiency, the dominant factors such as pump intensity and gas pressure are investigated experimentally. Finally, a 1.35mJ terahertz radiation of ammonia laser with 90μm wavelength (3.33THz) operating at 1.09kPa pumped by a 402mJ TEA CO2 laser with 9R (16) line is generated, and photon conversion efficiencies of 6.5% are achieved.展开更多
A cryogenic and room-temperature diode pumped Tm,Ho:YVO4 microchip laser with 0.5 mm crystal length lasing around 2μm is demonstrated for the first time to our knowledge. Under cryogenic temperature of 77 K, as much...A cryogenic and room-temperature diode pumped Tm,Ho:YVO4 microchip laser with 0.5 mm crystal length lasing around 2μm is demonstrated for the first time to our knowledge. Under cryogenic temperature of 77 K, as much as 1.2 W output and slope efficiency of 35% with respect to absorbed pump power are obtained. At temperature of 5℃ the maximum output power of 48mW is obtained at an absorbed pump power of 503 mW, representing a 9.5% optical to optical conversion efficiency. In addition, as much as 8 mW single-frequency output lasing at 2052.6 nm is achieved at room temperature of 15℃.展开更多
We demonstrate a high efficiency multi-kW diode-side-pumped Nd:YAG laser. High cooling efficiency of the diode-side-pumped module in the laser is achieved. The middle portion of the Nd:YAG rod in the module is coole...We demonstrate a high efficiency multi-kW diode-side-pumped Nd:YAG laser. High cooling efficiency of the diode-side-pumped module in the laser is achieved. The middle portion of the Nd:YAG rod in the module is cooled by a coolant jet with screwed side surface, and the end-caps of the rod without screwed side surface are cooled by Au coated on the surface. The thermal effect of the laser rod is reduced, which leads to high output power with high optical-optical conversion efficiency. By using three identical Nd:YAG laser modules, an output power of 4.2 kW and beam quality of 58 mm・mrad with an optical-optical efficiency of 35% at 1064 nm is obtained in a laser oscillator. By using four identical Nd:YAG laser modules, an output power of 3.1 kW and beam quality of 17 mm・mrad with an optical-optical efficiency of 25.8% is demonstrated in a master oscillator power-amplifier system.展开更多
A 194-nm cw laser is an essential part in the mercury ion optical frequency standard. We report the generation of over 2mW continuous-wave radiation at 194nm in a beta barium borate crystal using a simple sum frequenc...A 194-nm cw laser is an essential part in the mercury ion optical frequency standard. We report the generation of over 2mW continuous-wave radiation at 194nm in a beta barium borate crystal using a simple sum frequency mixing (SFM) system. One source beams at 718nm is resonantly enhanced with a cavity and the other at 266mn makes a single pass. Considering the walk-off effect in SFM, the source beam waists are designed to be elliptical, thus the conversion efficiency can be promoted. The 266-nm beam produced by frequency doubling of 532-nm laser is shaped close to the diffraction limit to achieve better mode matching.展开更多
We experimentally realize the dual-wavelength bad cavity laser for the first time. As the Cs cell temperature is kept between 118℃ and 144℃, both the 1359nm and 147Ohm lasing outputs of dual-wavelength bad cavity la...We experimentally realize the dual-wavelength bad cavity laser for the first time. As the Cs cell temperature is kept between 118℃ and 144℃, both the 1359nm and 147Ohm lasing outputs of dual-wavelength bad cavity laser are detected. The laser output power of dual-wavelength bad cavity laser is measured when changing the 455 nm pumping laser frequency and power at 127℃ Cs cell temperature. Both the 1359 nm laser and the 1470 nm laser are working at the deep bad cavity regime, and the ratio between the linewidth of cavity mode and the laser gain bandwidth a ≈ 40 for 1359nm and 1470nm lasers. The 147Ohm laser linewidth is measured to be 407.3Hz. The dual-wavelength bad cavity laser operating on atomic transitions demonstrated here has a potential in the application as a stable optical local oscillator, even an active optical frequency standard directly in the future.展开更多
We report a Q-switched 2-μm Tm:YAG laser based on intracavity-pumped by a 1064-nm Nd:YAG laser operating at room temperature for the first time. An average output power of 5.1W is obtained with the repetition rate ...We report a Q-switched 2-μm Tm:YAG laser based on intracavity-pumped by a 1064-nm Nd:YAG laser operating at room temperature for the first time. An average output power of 5.1W is obtained with the repetition rate of 30kHz and a pulse width of 300ns. In addition, we demonstrate a 12.5-W continuous-wave 2-μm Tm:YAG laser, which is, to our best knowledge, the highest power for intracavity-pumping configuration.展开更多
We demonstrate 10 Gb/s directly-modulated 1.3 μm InAs quantum-dot (QD) lasers grown on GaAs substrates by molecular beam epitaxy. The active region of the QD lasers consists of five-stacked InAs QD layers. Ridge-wa...We demonstrate 10 Gb/s directly-modulated 1.3 μm InAs quantum-dot (QD) lasers grown on GaAs substrates by molecular beam epitaxy. The active region of the QD lasers consists of five-stacked InAs QD layers. Ridge-waveguide lasers with a ridge width of 4 μm and a cavity length of 600 μm are fabricated with standard lithography and wet etching techniques. It is found that the lasers emit at 1293 nm with a very low threshold current of 5 mA at room temperature. Furthermore, clear eye-opening patterns under 10 Gb/s modulation rate at temperatures of up to 50oC are achieved by the QD lasers. The results presented here have important implications for realizing low-cost, low-power-consumption, and high-speed light sources for next-generation communication systems.展开更多
We report our recent progress of investigations on InGaN-based blue-violet laser diodes (LDs). The roomtemperature (RT) cw operation lifetime of LDs has extended to longer than 15.6 h. The LD structure was grown o...We report our recent progress of investigations on InGaN-based blue-violet laser diodes (LDs). The roomtemperature (RT) cw operation lifetime of LDs has extended to longer than 15.6 h. The LD structure was grown on a c-plane free-standing (FS) GaN substrate by metal organic chemical vapor deposition (MOCVD). The typical threshold current and voltage of LD under RT cw operation are 78 mA and 6.8 V, respectively. The experimental analysis of degradation of LD performances suggests that after aging treatment, the increase of series resistance and threshold current can be mainly attributed to the deterioration of p-type ohmic contact and the decrease of internal quantum efticiency of multiple quantum well (MQW), respectively.展开更多
We experimentally demonstrate the C-band wavelength conversion using four-wave mixing in a 17-mm-long silicon-on-insulator waveguide pumped by a dispersed mode-locked femtosecond laser pulse. The idler can be observed...We experimentally demonstrate the C-band wavelength conversion using four-wave mixing in a 17-mm-long silicon-on-insulator waveguide pumped by a dispersed mode-locked femtosecond laser pulse. The idler can be observed with an incident average pump power lower than 4 dBm, and about 35 nm of conversion bandwidth from 1530nm to 1565nm is measured by using a 1550-nm pump wavelength. The pulse-pumped efficiency is demonstrated to be higher, by more than 22 dB, than the cw-pumped efficiency. The conversion efficiency variations with respect to the pump and signal powers are also investigated.展开更多
An output coupler for optically pumped terahertz laser consisting of capacitive strip-grating and wedged high- resistivity silicon substrate is designed theoretically and its transmittance performance is also discusse...An output coupler for optically pumped terahertz laser consisting of capacitive strip-grating and wedged high- resistivity silicon substrate is designed theoretically and its transmittance performance is also discussed. The etalon effects frequently occurring in previous experiments are effectively suppressed, and thus a fiat and accurate transmittance spectrum is obtained in a narrow wavenumber interval of 2 cm^-1 near a particular center wavenumber. Furthermore the transmittance sensitivity to the slight shift of substrate thickness is also completely eliminated. The wedged output coupler is easy to fabricate and its substrate may be used repeatedly to meet various transmittance requirements.展开更多
We report an LD side-pumped continuous-wave passive mode-locked Nd:YAG laser with a Z-type folded cavity based on a semiconductor saturable absorber mirror (SESAM). The average output power 2.95 W of mode-locked la...We report an LD side-pumped continuous-wave passive mode-locked Nd:YAG laser with a Z-type folded cavity based on a semiconductor saturable absorber mirror (SESAM). The average output power 2.95 W of mode-locked laser with electro-optical conversion efficiency of 1.3% and high beam quality (Mx2=1.25 and My2=1.22) is achieved. The repetition rate of mode-locked pulse of 88 MHz with pulse energy of 34 nJ is obtained.展开更多
We present an 880-nm laser-diode partially end-pumped Nd:YVO4 slab cw laser with output 126.7 W by using a hybrid resonator. The slop efficiency and optical-to-optical efficiency with respect to absorbed pumping powe...We present an 880-nm laser-diode partially end-pumped Nd:YVO4 slab cw laser with output 126.7 W by using a hybrid resonator. The slop efficiency and optical-to-optical efficiency with respect to absorbed pumping power are 73.2% and 58.7%, respectively. At the output power of 100 W, the beam propagation M2 factors are 1.1 in the unstable direction and 1.15 in the stable direction.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61405145 and 61235011)the Natural Science Foundation of Tianjin,China(Grant No.15JCZDJC31900)the China Postdoctoral Science Foundation(Grant Nos.2015T80115 and 2014M560104)
文摘Refractive index inhomogeneity is one of the important characteristics of optical coating material, which is one of the key factors to produce loss to the ultra-low residual reflection coatings except using the refractive index inhomogeneity to obtain gradient-index coating. In the normal structure of antireflection coatings for center wavelength at 532 nm, the physical thicknesses of layer H and layer L are 22.18 nm and 118.86 nm, respectively. The residual reflectance caused by refractive index inhomogeneity(the degree of inhomogeneous is between -0.2 and 0.2) is about 200 ppm, and the minimum reflectivity wavelength is between 528.2 nm and 535.2 nm. A new numerical method adding the refractive index inhomogeneity to the spectra calculation was proposed to design the laser antireflection coatings, which can achieve the design of antireflection coatings with ppm residual reflection by adjusting physical thickness of the couple layers. When the degree of refractive index inhomogeneity of the layer H and layer L is-0.08 and 0.05 respectively, the residual reflectance increase from zero to 0.0769% at 532 nm. According to the above accuracy numerical method, if layer H physical thickness increases by 1.30 nm and layer L decrease by 4.50 nm, residual reflectance of thin film will achieve to 2.06 ppm. When the degree of refractive index inhomogeneity of the layer H and layer L is 0.08 and -0.05 respectively, the residual reflectance increase from zero to 0.0784% at 532 nm. The residual reflectance of designed thin film can be reduced to 0.8 ppm by decreasing the layer H of 1.55 nm while increasing the layer L of 4.94 nm.
基金Supported by National Key Scientific Instrument and Equipment Development Project of China (No.2012YQ12008005)
文摘Adaptive optics scanning laser ophthalmoscopy(AOSLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics(AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods(fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques(adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography). Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors(cones and rods), fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future.
基金the Natural Science Foundation of Jiangsu Province(BK20200214)National Key R&D Program of China(2017YFB0403701)+5 种基金Jiangsu Province Key R&D Program(BE2019682 and BE2018667)National Natural Science Foundation of China(61605210,61675226,and 62075235)Youth Innovation Promotion Association of Chinese Academy of Sciences(2019320)Frontier Science Research Project of the Chinese Academy of Sciences(QYZDB-SSW-JSC03)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB02060000)and Entrepreneurship and Innova-tion Talents in Jiangsu Province(Innovation of Scienti¯c Research Institutes).
文摘Cone photoreceptor cell identication is important for the early diagnosis of retinopathy.In this study,an object detection algorithm is used for cone cell identication in confocal adaptive optics scanning laser ophthalmoscope(AOSLO)images.An effectiveness evaluation of identication using the proposed method reveals precision,recall,and F_(1)-score of 95.8%,96.5%,and 96.1%,respectively,considering manual identication as the ground truth.Various object detection and identication results from images with different cone photoreceptor cell distributions further demonstrate the performance of the proposed method.Overall,the proposed method can accurately identify cone photoreceptor cells on confocal adaptive optics scanning laser ophthalmoscope images,being comparable to manual identication.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174274,11174279,61205021,11204299,61475152,and 61405194)the State Key Laboratory of Applied Optics,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences
文摘Multi-conjugation adaptive optics(MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view(FOV).The atmospheric tomographic phase reconstruction and projection of three-dimensional turbulence volume onto wavefront correctors,such as deformable mirrors(DMs) or liquid crystal wavefront correctors(LCWCs),is a very important step in the data processing of an MCAO's controller.In this paper,a method according to the wavefront reconstruction performance of MCAO is presented to evaluate the optimized configuration of multi laser guide stars(LGSs) and the reasonable conjugation heights of LCWCs.Analytical formulations are derived for the different configurations and are used to generate optimized parameters for MCAO.Several examples are given to demonstrate our LGSs configuration optimization method.Compared with traditional methods,our method has minimum wavefront tomographic error,which will be helpful to get higher imaging resolution at large FOV in MCAO.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174274,11174279,61205021,11204299,61475152,and 61405194)State Key Laboratory of Applied Optics,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences
文摘Adaptive optics(AO) systems are widespread and considered as an essential part of any large aperture telescope for obtaining a high resolution imaging at present.To enlarge the imaging field of view(FOV),multi-laser guide stars(LGSs) are currently being investigated and used for the large aperture optical telescopes.LGS measurement is necessary and pivotal to obtain the cumulative phase distortion along a target in the multi-LGSs AO system.We propose a high precision phase reconstruction algorithm to estimate the phase for a target with an uncertain turbulence profile based on the interpolation.By comparing with the conventional average method,the proposed method reduces the root mean square(RMS) error from 130 nm to 85 nm with a 30% reduction for narrow FOV.We confirm that such phase reconstruction algorithm is validated for both narrow field AO and wide field AO.
基金Project supported by the Beijing Higher Education Young Elite Teacher ProjectChina(Grant No.YETP0086)+2 种基金the Tsinghua University Initiative Scientific Research ProgrammeChina(Grant No.2012Z02166)the Special-funded Programme on National Key Scientific Instruments and Equipment Development of China(Grant No.2011YQ04013603)
文摘We investigate the total intensity fluctuation spectrum of the two-longitudinal- mode Nd:YVO4microchip laser(ML).We find that low-frequency relaxation oscillation(RO) peaks still appear in the total intensity fluctuation spectrum, which is different from a previous research result that the low-frequency RO peaks exist in the spectrum of the individual mode but compensate for each other totally in the total intensity fluctuation spectrum. Taking the spatial hole-burning effect into account, one and two-mode rate equations for Nd:YVO4ML laser are established and studied. Based on the theoretical model, we find that when the gains and losses for two longitudinal models are different, a low-frequency RO peak will appear in the total intensity fluctuation spectrum, while when they share the same gain and loss, the total spectrum will behave like that of a single mode laser. Theoretical simulation results coincide with experimental results very well.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10947170/A05 and 11104291)Natural Science Fund for Colleges and Universities in Jiangsu Province (Grant No.10KJB140006)+2 种基金Natural Science Foundation of Shanghai (Grant No.11ZR1441300)Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No.NY221098)sponsored by the Jiangsu Qing Lan Project and STITP Project (Grant No.CXXYB2022516)。
文摘The nonlinear radiation of the electron is a distinctive feature of the action of tightly focused linearly polarized lasers.In this paper,from the perspective of radiation symmetry,the effect of laser parameters on the electron radiation power in the time domain is studied systematically.An asymmetric bimodal structure is found in the time domain in the direction of the maximum radiation.For this special structure,an explanation is given based on the electron dynamics perspective.The structure is compared with the symmetric bimodal structure in the classical theory.The increase in laser intensity,while significantly increasing the radiated power of the electron,exacerbates the asymmetry of the electron radiation.The variation in the initial phase of the laser leads to a periodic variation in the electron motion,which results in a periodic extension of the electron spatial radiation with a period ofπ.Moreover,the existence of jump points with a phase difference ofπin the range of 0-2πis found.The increase in pulse width reduces the radiated power,extends the radiation range,and alleviates the radiation asymmetry.The results in this paper contribute to the study of electron radiation characteristics in intense laser fields.
基金Supported by the National High Technology Research and Development Program of China under Grant Nos 2008AA03Z402 and 2009AA03Z412, the Nation Natural Foundation of China under Grant Nos 60807010, 60736037 and 60887030, the National Basic Research Program of China under Grant No 2009CB320300, and the Beijing Natural Science Foundation of Beijing under Grant No 4092007.
文摘Single-fundamental-mode photonic crystal (PhC) vertical cavity surface emitting lasers (VCSEL) are produced and their single-fundamental-mode performances are investigated and demonstrated. A two-dimensional PhC with single-point-defect structure is fabricated using UV photolithography and inductive coupled plasma reactive ion etching on the surface of the VCSEL's top distributed Bragg-reflector. The PhC VCSEL maintains single-fundamental-mode operating with output power 1.7 mW and threshold current 2.5 mA. The full width half maximum of the lasing spectrum is less than 0.1 nm, the far field divergence angle is less than 10° and the side mode suppression ratio is over 35 dB. The device characteristics are analyzed based on the effective index model of the photonic crystal fiber. The experimental results agree well with the theoretical expectation.
文摘An efficient ammonia terahertz (THz) cavity laser is reported experimentally. Unlike the past design schemes such as hole couplers and freestanding mesh couplers, in our systems the input and output couplers are fabricated by depositing nickel capacitive metallic meshes on ZnSe and high-resistivity silicon substrates. Thus the couplers not only can be constructed as an F-P oscillator but also can be used as sealed windows that are easier to perform the adjustment of alignment with. To enhanceTHz laser output energy and photon conversion efficiency, the dominant factors such as pump intensity and gas pressure are investigated experimentally. Finally, a 1.35mJ terahertz radiation of ammonia laser with 90μm wavelength (3.33THz) operating at 1.09kPa pumped by a 402mJ TEA CO2 laser with 9R (16) line is generated, and photon conversion efficiencies of 6.5% are achieved.
文摘A cryogenic and room-temperature diode pumped Tm,Ho:YVO4 microchip laser with 0.5 mm crystal length lasing around 2μm is demonstrated for the first time to our knowledge. Under cryogenic temperature of 77 K, as much as 1.2 W output and slope efficiency of 35% with respect to absorbed pump power are obtained. At temperature of 5℃ the maximum output power of 48mW is obtained at an absorbed pump power of 503 mW, representing a 9.5% optical to optical conversion efficiency. In addition, as much as 8 mW single-frequency output lasing at 2052.6 nm is achieved at room temperature of 15℃.
文摘We demonstrate a high efficiency multi-kW diode-side-pumped Nd:YAG laser. High cooling efficiency of the diode-side-pumped module in the laser is achieved. The middle portion of the Nd:YAG rod in the module is cooled by a coolant jet with screwed side surface, and the end-caps of the rod without screwed side surface are cooled by Au coated on the surface. The thermal effect of the laser rod is reduced, which leads to high output power with high optical-optical conversion efficiency. By using three identical Nd:YAG laser modules, an output power of 4.2 kW and beam quality of 58 mm・mrad with an optical-optical efficiency of 35% at 1064 nm is obtained in a laser oscillator. By using four identical Nd:YAG laser modules, an output power of 3.1 kW and beam quality of 17 mm・mrad with an optical-optical efficiency of 25.8% is demonstrated in a master oscillator power-amplifier system.
基金Supported by the National Natural Science Foundation of China under Grant Nos 91436103 and 11204374
文摘A 194-nm cw laser is an essential part in the mercury ion optical frequency standard. We report the generation of over 2mW continuous-wave radiation at 194nm in a beta barium borate crystal using a simple sum frequency mixing (SFM) system. One source beams at 718nm is resonantly enhanced with a cavity and the other at 266mn makes a single pass. Considering the walk-off effect in SFM, the source beam waists are designed to be elliptical, thus the conversion efficiency can be promoted. The 266-nm beam produced by frequency doubling of 532-nm laser is shaped close to the diffraction limit to achieve better mode matching.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10874009,11074011 and 91436210the International Science and Technology Cooperation Program of China under Grant No 2010DFR10900
文摘We experimentally realize the dual-wavelength bad cavity laser for the first time. As the Cs cell temperature is kept between 118℃ and 144℃, both the 1359nm and 147Ohm lasing outputs of dual-wavelength bad cavity laser are detected. The laser output power of dual-wavelength bad cavity laser is measured when changing the 455 nm pumping laser frequency and power at 127℃ Cs cell temperature. Both the 1359 nm laser and the 1470 nm laser are working at the deep bad cavity regime, and the ratio between the linewidth of cavity mode and the laser gain bandwidth a ≈ 40 for 1359nm and 1470nm lasers. The 147Ohm laser linewidth is measured to be 407.3Hz. The dual-wavelength bad cavity laser operating on atomic transitions demonstrated here has a potential in the application as a stable optical local oscillator, even an active optical frequency standard directly in the future.
基金Supported by the State Key Program for Basic Research of China under Grant No 2004CB619006, the National High Technology Research and Development Program under Grant No 2006AA030104, the National Natural Science Foundation of China under Grant No 50590404, and the Knowledge Innovation Project of Chinese Academy of Sciences.
文摘We report a Q-switched 2-μm Tm:YAG laser based on intracavity-pumped by a 1064-nm Nd:YAG laser operating at room temperature for the first time. An average output power of 5.1W is obtained with the repetition rate of 30kHz and a pulse width of 300ns. In addition, we demonstrate a 12.5-W continuous-wave 2-μm Tm:YAG laser, which is, to our best knowledge, the highest power for intracavity-pumping configuration.
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2006AA03Z401, One-Hundred Talents Program of Chinese Academy of Sciences, and the National Natural Science Foundation of China under Grant No 60876033.
文摘We demonstrate 10 Gb/s directly-modulated 1.3 μm InAs quantum-dot (QD) lasers grown on GaAs substrates by molecular beam epitaxy. The active region of the QD lasers consists of five-stacked InAs QD layers. Ridge-waveguide lasers with a ridge width of 4 μm and a cavity length of 600 μm are fabricated with standard lithography and wet etching techniques. It is found that the lasers emit at 1293 nm with a very low threshold current of 5 mA at room temperature. Furthermore, clear eye-opening patterns under 10 Gb/s modulation rate at temperatures of up to 50oC are achieved by the QD lasers. The results presented here have important implications for realizing low-cost, low-power-consumption, and high-speed light sources for next-generation communication systems.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60976045, 60506001, 60776047 and 60836003, and the National Basic Research Program of China under Grant No 2007CB936700.
文摘We report our recent progress of investigations on InGaN-based blue-violet laser diodes (LDs). The roomtemperature (RT) cw operation lifetime of LDs has extended to longer than 15.6 h. The LD structure was grown on a c-plane free-standing (FS) GaN substrate by metal organic chemical vapor deposition (MOCVD). The typical threshold current and voltage of LD under RT cw operation are 78 mA and 6.8 V, respectively. The experimental analysis of degradation of LD performances suggests that after aging treatment, the increase of series resistance and threshold current can be mainly attributed to the deterioration of p-type ohmic contact and the decrease of internal quantum efticiency of multiple quantum well (MQW), respectively.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60708006 and 60978026, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20070335118, and the Zhejiang Provincial Natural Science Foundation of China under Grant No Y1090379.
文摘We experimentally demonstrate the C-band wavelength conversion using four-wave mixing in a 17-mm-long silicon-on-insulator waveguide pumped by a dispersed mode-locked femtosecond laser pulse. The idler can be observed with an incident average pump power lower than 4 dBm, and about 35 nm of conversion bandwidth from 1530nm to 1565nm is measured by using a 1550-nm pump wavelength. The pulse-pumped efficiency is demonstrated to be higher, by more than 22 dB, than the cw-pumped efficiency. The conversion efficiency variations with respect to the pump and signal powers are also investigated.
文摘An output coupler for optically pumped terahertz laser consisting of capacitive strip-grating and wedged high- resistivity silicon substrate is designed theoretically and its transmittance performance is also discussed. The etalon effects frequently occurring in previous experiments are effectively suppressed, and thus a fiat and accurate transmittance spectrum is obtained in a narrow wavenumber interval of 2 cm^-1 near a particular center wavenumber. Furthermore the transmittance sensitivity to the slight shift of substrate thickness is also completely eliminated. The wedged output coupler is easy to fabricate and its substrate may be used repeatedly to meet various transmittance requirements.
文摘We report an LD side-pumped continuous-wave passive mode-locked Nd:YAG laser with a Z-type folded cavity based on a semiconductor saturable absorber mirror (SESAM). The average output power 2.95 W of mode-locked laser with electro-optical conversion efficiency of 1.3% and high beam quality (Mx2=1.25 and My2=1.22) is achieved. The repetition rate of mode-locked pulse of 88 MHz with pulse energy of 34 nJ is obtained.
文摘We present an 880-nm laser-diode partially end-pumped Nd:YVO4 slab cw laser with output 126.7 W by using a hybrid resonator. The slop efficiency and optical-to-optical efficiency with respect to absorbed pumping power are 73.2% and 58.7%, respectively. At the output power of 100 W, the beam propagation M2 factors are 1.1 in the unstable direction and 1.15 in the stable direction.